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Abstract. We start from a realistic half space model for thermal imaging, which we

then use to develop a mathematical asymptotic analysis well suited for the design of re-

construction algorithms. We seek to reconstruct thermal anomalies only through their

rough features. With this way our proposed algorithms are stable against measurement

noise and geometry perturbations. Based on rigorous asymptotic estimates, we first

obtain an approximation for the temperature profile which we then use to design nonit-

erative detection algorithms. We show on numerical simulations evidence that they are

accurate and robust. Moreover, we provide a mathematical model for ultrasonic tem-

perature imaging, which is an important technique in cancerous tissue ablation therapy.
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1. Introduction

Medical thermal imaging has become a procedure of choice in the screening for breast,

skin, or liver cancer [10]. It has the ability to identify various stages of disease devel-

opment, and can pick up early stages which usually elude traditional anatomical exam-

inations. Thermal imaging relies on the fact that chemical and blood vessel activity in

pre-cancerous tissue and its surroundings are higher than in healthy tissue. Pre-cancerous

and cancerous areas are characterized by heightened metabolism and require an abundant

stream of nutrients to maintain growth. These extra nutrients are transported through

various channels such as increased chemical activity, enhanced blood stream, and creation
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of new blood vessels (neoangiogenesis) [15]. This process results in a local increase in

temperature.

Detection of these small temperature variations is made possible by state of the art

imaging techniques. They involve ultra-sensitive thermal cameras and sophisticated soft-

ware in detecting, analyzing, and producing high-resolution thermal images of vascular

changes. More precisely, medical thermal imaging technique proceeds as follows: an in-

frared scanning device is used to convert infrared radiation emitted from the skin surface

to electrical impulses. Those are then plotted on a color monitor. This map of body sur-

face temperature is referred to as a thermogram. The spectrum of colors corresponds to a

scale of infrared radiation emitted from the body surface. Since temperature distribution is

highly isotropic in healthy tissue, subtle temperature anisotropies produce a clear imprint.

See [1,13].

Thermal imaging is a very reliable technology. In fact, clinical studies have shown

that thermal imaging has an average sensitivity and specificity of 90% when applied to

screening of breast tissue. As of today, an abnormal infrared image is the single most

important marker of high risk of onset breast cancer. Thermal imaging may also be used

for different purposes such as

(i) assessing the extent of a previously diagnosed lesion;

(ii) localizing an abnormal area not previously identified, so further diagnostic tests

can be performed;

(iii) detecting early lesions before they are clinically apparent;

(iv) guiding thermal ablation therapies.

In this paper, following an asymptotic formalism in much the same spirit as the recent

texts [2, 5], we perform a quantitative study of temperature perturbation due to small

thermal anomalies and design algorithms for localizing these anomalies and estimating

their size. We start from a realistic model in half space with convective boundary condition

on the surface.

Since the exterior temperature is imposed, a convective boundary condition must be

used for the model to be physically relevant. Moreover, since the anomalies are expected to

be at some distance away from the boundary, the resulting change in surface temperature

will be very small: a realistic reconstruction method must take into account inevitable

noise blurring of measurements as well as the ill posed nature of the inverse problem.

Additionally, we believe that we can realistically assume that the temperature is a known

constant far away from the surface: this models temperature far inside the human body,

assumed to be constant. In essence, measurements will be made on a planar surface,

assumed to be large enough compared to the size of anomalies. In this case a half space

formulation provides a viable model. We refer the reader to [7], where such half space

formulations are scrutinized.

It is noteworthy that our results can be applied to other types of thermography prob-

lems, such as the detection of buried objects in the underground. We seek to reconstruct
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only some rough feature of present anomalies. This partial reconstruction has the ad-

vantage to be stable against measurement noise and perturbation in geometry. Based on

rigorously derived asymptotic estimates, we find an approximation formula that leads us

to noniterative detection algorithms for finding dominant features of present anomalies.

We also consider in this paper how to lay the mathematical background for ultrasonic tem-

perature imaging. Ultrasonic temperature imaging is an essential tool for guiding medical

devices in the course of thermal ablation therapy. It relies on the fact that sound speed

in tissues depends on temperature. Thermal ablation therapy, such as focused ultrasound

surgery, is a new way of destroying malignant tumors without damaging surrounding tis-

sue. This technique consists of running the focused ultrasound surgery system at an initial,

pre-ablative low intensity while using a diagnostic ultrasound imaging system to detect the

associated localized temperature rise. This assumes that the temperature dependence of

sound speed is known.

Let us now recall some previous results on anomaly detection by thermal imaging. In

a recent paper [4], efficient noniterative algorithms for locating thermal anomalies from

boundary measurements of temperature were introduced. The proposed reconstruction

was based on a small volume assumption for the anomalies. The authors also assumed that

the anomalies lay inside a bounded homogeneous domain, on whose boundary a heat flux

was imposed. Resulting temperature was then measured on the same boundary. In another

piece of work, Miller et al. [12] studied ultrasonic temperature imaging. Remarkably, their

investigation lacks any mathematical analysis. We believe that a rigorous mathematical

theory for the effects of thermal anomalies had to be investigated, and that this investiga-

tion would help design quantitative analysis methods. Ultimately this study should result

in improving accuracy of lesion detection. In the following sections we will first present

our novel mathematical analysis, we will then derive reconstruction algorithms. Numerical

evidence validating these algorithms is presented in the last section of this paper.

2. Physical background, non-dimensionalisation, Green’s function

2.1. Problem statement

We consider the transient heat equation in the half space

Ω = {(x1, x2, x3) ∈ R3 : x3 < 0}
in a homogeneous background of thermal conductivity k0. The background contains re-

gions (of small) volume where the conductivity is different. Denote D the union of all

regions where the heat conductivity is different from k0, and k the over all thermal con-

ductivity function. We define

D = ∪m
j=1D j ,

where the D j ’s are such that k(x) is equal to the positive constant k j on D j. If we denote

τ the temperature function, τ satisfies [9]

∂ τ

∂ t
−∇ · k∇τ= 0 in Ω and in (Ω \ D)× (0, T ), (2.1)
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τ+ = τ− on ∂ D j × (0, T ), (2.2)

k0(∇τ · ν)+ = k j(∇τ · ν)− on ∂ D j × (0, T ), (2.3)

lim
|x |→∞

τ(x , t) = τ0, (2.4)

τ(x , 0) = τini t(x), (2.5)

− k0∇τ · e3 = Ccool(τ−τex t) on ∂Ω× (0, T ), (2.6)

where τ0 is the (constant) temperature at infinity, τini t is the initial temperature profile,

and condition (2.6) expresses the radiational cooling on the boundary of Ω. Ccool is a

positive constant that provides thermal resistance and τex t(x1, x2, t) is an imposed exterior

temperature.

2.2. Non-dimensionalisation

To obtain simpler equations we set

u(x,t) = τ

�
k0

Ccool

x ,
k0

C2
cool

t

�
−τ0

to obtain the following equations for u:

∂ u

∂ t
−∆u= 0 in (Ω \ D)× (0, T ), (2.7)

∂ u

∂ t
−∇ · k

k0

∇u= 0 in D× (0, T ), (2.8)

u+ = u− on ∂ D j × (0, T ), (2.9)

(∇u · ν)+ = k j

k0

(∇u · ν)− on ∂ D j × (0, T ), (2.10)

lim
|x |→∞

u(x , t) = 0, (2.11)

u(x , 0) = τini t

� k0

Ccool

x
�
−τ0 =: uini t , (2.12)

∂ u

∂ x3

+ u = τex t

� k0

Ccool

x ,
k0

C2
cool

t
�
−τ0 := uex t on ∂Ω× (0, T ). (2.13)

2.3. Existence, uniqueness and continuous dependence on initial data and

boundary condition

From general PDE theory, an existence, uniqueness and continuous dependence on

initial data and boundary condition result can be stated for the system (2.7)-(2.13).
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Theorem 2.1. Assume uini t ∈ L2(Ω), uex t ∈ L2(0, T ; L2(∂Ω)), f ∈ L2(0, T ; L2(Ω)). There

is a unique weak solution to the following problem:

∂ u

∂ t
−∇ · k

k0

∇u= f in Ω× (0, T ), (2.14)

u(x , 0) = uini t , (2.15)

∂ u

∂ x3

+ u = uex t on ∂Ω× (0, T ). (2.16)

This solution satisfies the estimates

‖u‖L2(0,T ;H1(Ω)) ≤ C
�
‖uini t‖L2(Ω) + ‖uex t‖L2(0,T ;L2(∂Ω)) + ‖ f ‖L2(0,T ;L2(Ω))

�
, (2.17)

where C is a positive constant depending only on the two positive constants

m1 :=min
k

k0

, m2 :=max
k

k0

.

Proof. The bilinear functional

a(u, v) =

∫

Ω

k

k0

∇u∇v+

∫

∂Ω

uv,

defined on H1(Ω)×H1(Ω) satisfies

|a(u, v)| ≤ (1+m2)‖u‖H1(Ω)‖v‖H1(Ω), |a(u,u)| ≥ m1‖u‖2H1(Ω)
−m1‖u‖2L2(Ω)

.

Define the continuous linear functional L on H1(Ω) by

L(v) =

∫

Ω

f (x , t)v(x)d x +

∫

∂Ω

uex t(x , t)v(x)d x ,

for almost all t in (0, T ). It follows from, for instance [11, Theorem 1.1, Chapter IV]

or [8, Theorem X.9], that the initial value problem

a(u(t), v) +
d

d t
(u(t), v)L2(Ω) = (L(u(t)), v)H1(Ω)′,H1(Ω), (2.18)

u(0) = uini t , (2.19)

has a unique solution in L2(0, T ; H1(Ω)) that depends continuously on L and uini t . 2

Remark 2.2. We make the following remark on regularity. It is well known that the so-

lution to (2.18)-(2.19) is smooth in (Ω \ D)× (0, T ) and in D× (0, T ) provided that f be

smooth. Due to [11, Theorem 3.1, Chapter V], if L and uini t are more regular, say f is

such that � d

d t

� j

f is in L2(0, T ; Hs
loc(Ω)) for j = 0, · · · , p,



Asymptotic Formulas for Thermography Based Recovery of Anomalies 23

uex t is such that

� d

d t

� j

uex t is in L2(0, T ; H
s+ 1

2

l oc
(∂Ω)) for j = 0, · · · , p+ 1,

and uini t is in Hs+2
l oc
(Ω), then u is such that

� d

d t

� j

u is in L2(0, T ; Hs+2
l oc
(Ω \ D)) for j = 0, · · · , p+ 1

provided the compatibility conditions:

� ∂

∂ x1

�s1
� ∂

∂ x2

�s2
�∂ uini t

∂ x3

+ uini t

�
= lim

t→0

� ∂

∂ x1

�s1
� ∂

∂ x2

�s2

(uex t) on ∂Ω,

for 0≤ s1 + s2 ≤ s, are satisfied.

2.4. Green’s function and solution to the unperturbed problem

Setting

g(x1,ξ1, t) =
1

2
p
πt

�
e
− (x1−ξ1)

2

4t + e
− (x1+ξ1)

2

4t

− 2

∫ ∞

0

exp
�
− (x1+ ξ1 +η)

2

4t
−η
�

dη

�
(2.20)

it is known that g satisfies (see Sommerfeld’s long rod solution [14])

∂t g = ∂ 2
x1

g if t > 0,ξ 6= x and ξ 6= −x ,

∂x1
g − g = 0 at x1 = 0, for t > 0,

and g is a fundamental solution to the heat equation in the rod, in the sense that the

function defined by

∫ t

0

∫ ∞

0

f (ξ1, s)g(x1,ξ1, t − s) dξ1ds

is 0 at time 0, and satisfies (∂t − ∂ 2
x1
).= f in (0,∞)2 and ∂x1

· −· = 0 at x1 = 0, for t > 0,

if f is smooth.

Based on g we construct two Green’s functions adapted to our problem

G1(x1, x2, x3,ξ1,ξ2,ξ3, t) =
1

(2
p
πt)3

e
− (x1−ξ1)

2+(x2−ξ2)
2

4t

�
e
− (x3−ξ3)

2

4t + e
− (x3+ξ3)

2

4t

− 2

∫ ∞

0

exp
�
− (−x3−ξ3 +η)

2

4t
−η
�

dη

�
,

G2(x1, x2, x3,ξ1,ξ2, t) = G1(x1, x2, x3,ξ1,ξ2, 0, t).
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Note that the integral term in G1 can be re- expressed as

−2

∫ ∞

0

exp
�
− (−x3− ξ3 +η)

2

4t
−η
�

dη= −2
p
πte−x3−ξ3+terfc

�2t − x3 − ξ3

2
p

t

�
,

where erfc is the complementary error function. If we define

u1(x1, x2, x3, t) =

∫ 0

−∞

∫ ∞

−∞

∫ ∞

−∞
f1(ξ)G1(x ,ξ, t)dξ, (2.21)

u2(x1, x2, x3, t) =

∫ t

0

∫ ∞

−∞

∫ ∞

−∞
f2(ξ1,ξ2, s)G2(x ,ξ1,ξ2, t − s)dξ1dξ2ds, (2.22)

where ξ := (ξ1,ξ2,ξ3) and x := (x1, x2, x3), then u1 satisfies

∂tu1 −∆u1 = 0 in Ω× (0,∞), (2.23)

∂x3
u1 + u1 = 0 on ∂Ω× (0,∞), (2.24)

u1(x1, x2, x3, 0) = f1(x1, x2, x3), (2.25)

and u2 satisfies

∂tu2 −∆u2 = 0 in Ω× (0,∞), (2.26)

∂x3
u2 + u2 = f2 on ∂Ω× (0,∞), (2.27)

u2(x1, x2, x3, 0) = 0. (2.28)

Consequently if the thermal conductivity k is constant throughout Ω (or equivalently the

set D is empty) problem (2.7)-(2.13) can be solved by convolution. The solution, denoted

by u0 in that case, is given by

u0(x1, x2, t) =

∫ 0

−∞

∫ ∞

−∞

∫ ∞

−∞
uini t(ξ)G1(x ,ξ, t)dξ1dξ2dξ3

+

∫ t

0

∫ ∞

−∞

∫ ∞

−∞
uex t(ξ1,ξ2, s)G2(x ,ξ1,ξ2, t − s)dξ1dξ2ds. (2.29)

Remark 2.3. Eqs. (2.23)-(2.25) assume some regularity on f1. For example (2.23)-(2.24)

are satisfied if f1 is in L2(Ω) and for (2.25) to be satisfied at a fixed point x we may require

lim
ǫ→0

∫

|y|≤ǫ
| f1(x + y)− f1(x)|d y = 0.

Obtaining Eqs. (2.26)-(2.28) from (2.22) is not standard: we provide a proof in the ap-

pendix. It can be done under the assumptions f2 is in L2(R2× (0,∞)) and

lim
ǫ→0

∫

0≤s≤ǫ

∫

|y|≤ǫ
| f2(x + y, t − s)− f2(x , t)|d yds = 0,

for (4.4) to be satisfied at (x , t).
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3. The perturbed temperature field

In this section we rigorously derive inner and outer expansions of the perturbations in

the temperature field with respect to the size of the anomaly. Our derivations follow those

in [4]. However, because of the half-space setting and the convective boundary condition

on the surface, some substantial changes are necessary. The arguments of [4] have to be

adapted with special care to the more practical setting we are dealing with in this paper.

For the reader’s convenience, we give a detailed solution to the present problem.

3.1. A preliminary result

We now give a continuous dependence result for a problem similar to (2.7)-(2.16) with

special jump conditions across ∂ D. The following proposition holds.

Proposition 3.1. Let D be a region made up of a finite collection of bounded connected smooth

domains D j, strictly included in Ω. Let α be a positive constant less than 1. As previously k is

assumed to be equal to the positive constant k j in D j and k0 in Ω \ D. There is a unique v in

L2(0, T ; H1(Ω)) satisfying the problem

∂ v

∂ t
−∆v = F in (Ω \ D)× (0, T ), (3.1)

∂ v

∂ t
−∇ · k

k0

∇v = F in D× (0, T ), (3.2)

v+ = v− on ∂ D j × (0, T ), (3.3)

(∇v · ν)+ − k j

k0

(∇v · ν)− = f on ∂ D j × (0, T ), (3.4)

v(x , 0) = vini t , (3.5)

∂ v

∂ x2

+αv = vex t on ∂Ω× (0, T ), (3.6)

where F is in L2(0, T ; L2(Ω)), f is in L2(0, T ; L2(∂ D)), vini t is in L2(Ω), vex t is in

L2(0, T ; L2(∂Ω)). Indeed,

‖v‖L2(0,T ;H1(Ω))

≤ C
�
‖vini t‖L2(Ω)+ ‖vex t‖L2(0,T ;L2(∂Ω)) + ‖F‖L2(0,T ;L2(Ω)) + ‖ f ‖L2(0,T ;L2(∂ D))

�
, (3.7)

where C depends on min k/k0, max k/k0 but is independent of α ≤ 1 and of D.

Proof. Choose the functional L to be

L(v) =

∫

Ω

F(x , t)v(x)d x +

∫

∂Ω

uex t(x , t)v(x)d x +

∫

∂ D

f (x , t)v(x)d x ,
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for almost all t in (0, T ), and a to be

a(u, v) =

∫

Ω

k

k0

∇u∇v+α

∫

∂Ω

uv.

It is clear that the proposition is a simple extension of Theorem 2.1. 2

3.2. Equations for the perturbed part of the temperature field

We now assume that D j = z j + ǫB j, where the z j ’s are fixed points and ǫ is a dilation

parameter tending to 0. We denote uǫ the corresponding solution to (2.7)-(2.13). We

also assume that uini t is in L2(Ω) and that and uex t is in L2(0, T ; L2(∂Ω)). The difference

vǫ = uǫ − u0 satisfies the following equations

∂ vǫ

∂ t
−∆vǫ = 0 in (Ω \ D)× (0, T ), (3.8)

∂ vǫ

∂ t
−∇ · k

k0

∇vǫ =
� k

k0

− 1
�
∆u0 in D× (0, T ), (3.9)

v+ǫ = v−ǫ on ∂ D j × (0, T ), (3.10)

(∇vǫ · ν)+ −
k j

k0

(∇vǫ · ν)− =
� k

k0

− 1
�
∇u0 · ν on ∂ D j × (0, T ), (3.11)

lim
|x |→∞

vǫ(x , t) = 0, vǫ(x , 0) = 0, (3.12)

∂ vǫ

∂ x3

+ vǫ = 0 on ∂Ω× (0, T ), (3.13)

where u0 is given by (2.29). As u0 is smooth in a neighborhood of D in the time interval

(η, T ) for 0< η < T , Eqs. (3.8)-(3.13) imply due to Proposition 3.1 that

‖vǫ‖L2(0,T ;H1(Ω)) ≤ C T
1

2 ǫ.

3.3. The correction term

As in [4], set

V = vǫ + ǫ

m∑

j=1

3∑

i=1

∂xi
u0(z j , t)ψ j,i

� x − z j

ǫ

�
,

where ψ j,i satisfies

∆ψ j,i = 0 in B j and in R3 \ B j , ψ j,i is continuous across ∂ B j ,

(∂νψ j,i)
+ − k

k0

(∂νψ j,i)
− =

�
1− k

k0

�
∂ν x i,

ψ j,i(x) = O
� 1

|x |2
�

as |x | → +∞.

The following result holds.
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Theorem 3.2. There exists a positive constant C independent of T and ǫ such that

‖V‖L2(0,T ;H1(Ω)) ≤ C T
1

2 ǫ
5

2 .

Proof. For the sake of simpler notations we assume in this proof that m = 1. We first

perform a rescaling by setting v(x , t) = V (ǫx ,ǫ2t). Then v satisfies (3.1)-(3.6) with m = 1

and

F(x , t) = ǫ3
3∑

i=1

(∂xi
∂tu0)(z1,ǫ2 t)ψi

�
x − z1

ǫ

�
, in Ω \

�z1

ǫ
+ B1

�
× (0, T/ǫ2),

F(x , t) = ǫ3
3∑

i=1

(∂xi
∂tu0)(z1,ǫ2 t)ψi

�
x − z1

ǫ

�

+ ǫ2
� k

k0

− 1
�
(∆u0)(ǫx ,ǫ2t), in

�z1

ǫ
+ B1

�
× (0, T/ǫ2),

f (x , t) = ǫ
� k

k0

− 1
�
(∂νu0)(ǫx ,ǫ2t) + ǫ

3∑

i=1

(∂xi
u0)(z1,ǫ2 t)

�
1− k

k0

�
∂ν x i,

on
�z1

ǫ
+ ∂ B1

�
× (0, T/ǫ2),

vini t = ǫ

3∑

i=1

∂iu0(z j , 0)ψi

�
x − z1

ǫ

�
,

vex t = ǫ

3∑

i=1

∂iu0(z j , 0)(∂x3
ψi)
�

x − z1

ǫ

�
+ ǫ2

3∑

i=1

∂iu0(z j, 0)ψi

�
x − z1

ǫ

�
,

on ∂Ω, with the choice α= ǫ.

It is easily seen that

‖F(x , t)‖2
L2(Ω)
≤ Cǫ4.

Consequently,

‖F(x , t)‖2
L2(0,T/ǫ2 ;L2(Ω))

≤ C Tǫ2. (3.14)

Next, we estimate f . We set y = x − z1/ǫ. That way

f (x , t) = f
�

y +
z1

ǫ
, t
�
= ǫ
� k

k0

− 1
�
(∂νu0)(ǫ y + z1,ǫ2 t)

+ ǫ

3∑

i=1

(∂xi
u0)(z1,ǫ2 t)

�
1− k

k0

�
∂ν yi , for y on (∂ B1)× (0, T/ǫ2),

and using the fact that u0 is smooth in Ω×(0, T ), we see that f is bounded in the sup norm

by Cǫ2, from which it follows that

‖ f (x , t)‖2
L2(∂ B1)

≤ Cǫ4.
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Consequently,

‖ f (x , t)‖2
L2(0,T/ǫ2 ;L2(∂ B1))

≤ C Tǫ2. (3.15)

It is also clear that

‖vini t‖2L2(Ω)
≤ Cǫ2. (3.16)

Finally, we estimate vex t . Denote (z11, z12, z13) the coordinates of z1. For x = (x1, x2, 0) on

∂Ω
���x − z1

ǫ

���
2

=
�

x1−
z11

ǫ

�2

+
�

x2 −
z12

ǫ

�2

+
�z13

ǫ

�2

.

We find due to the decay of (∂x3
ψ j,i) that

‖(∂x3
ψi)(x − z1/ǫ)‖2L2(∂Ω)

≤ C

∫ ∞

0

ρdρ

ρ6 + (z13/ǫ)
6
≤ Cǫ4,

and due to the decay of ψ j,i that

‖ψi(x − z1/ǫ)‖2L2(∂Ω)
≤ C

∫ ∞

0

ρdρ

ρ4+ (z13/ǫ)
4
≤ Cǫ2.

We infer,

‖vex t‖2L2(∂Ω)
≤ Cǫ6.

Consequently,

‖vex t‖2L2(0,T/ǫ2 ;L2(∂Ω))
≤ C Tǫ4. (3.17)

We now apply (3.7) to obtain that

‖v(x , t)‖2
L2(0,T/ǫ2 ;H1(Ω))

≤ C Tǫ2

and changing variables yields

‖V (x , t)‖2
L2(0,T ;L2(Ω))

≤ ǫ5‖v(x , t)‖2
L2(0,T/ǫ2 ;L2(Ω))

≤ C Tǫ7,

‖∇x V (x , t)‖2
L2(0,T ;L2(Ω))

≤ ǫ3‖∇x v(x , t)‖2
L2(0,T/ǫ2 ;L2(Ω))

≤ C Tǫ5,

as desired. 2

4. The two-dimensional case

Section 2 can be adjusted to a two-dimensional model by making a few straightforward

modifications. We make these adjustments explicit only for the expression for the Green’s

function for the homogeneous problem. Adjusting Section 2 is less obvious and will require

the introduction of a cut off function.
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4.1. Straightforward modifications of Green’s function to fit the 2D case

Based on g defined in (2.20) we construct two Green’s functions adapted to our prob-

lem

G1(x1, x2,ξ1,ξ2, t) =
1

4πt
e−

(x1−ξ1)
2

4t

�
e−

(x2−ξ2)
2

4t + e−
(x2+ξ2)

2

4t

− 2

∫ ∞

0

exp
�
− (−x2− ξ2 +η)

2

4t
−η
�

dη

�
,

and

G2(x1, x2,ξ1, t) = G1(x1, x2,ξ1, 0, t).

If we define

u1(x1, x2, t) =

∫ ∞

−∞

∫ 0

−∞
f1(ξ1,ξ2)G1(x1, x2,ξ1,ξ2, t)dξ2dξ1, (4.1)

u2(x1, x2, t) =

∫ t

0

∫ ∞

−∞
f2(ξ1, s)G2(x1, x2,ξ1, t − s)dξ1ds. (4.2)

Then u1 satisfies

∂tu1 −∆u1 = 0 in Ω× (0,∞),
∂x2

u1 + u1 = 0 on ∂Ω× (0,∞),
u1(x1, x2, 0) = f1(x1, x2),

and u2 satisfies

∂tu2 −∆u2 = 0 in Ω× (0,∞), (4.3)

∂x2
u2 + u2 = f2 on ∂Ω× (0,∞), (4.4)

u1(x1, x2, 0) = 0. (4.5)

Consequently, if the thermal conductivity k is constant throughout Ω (or equivalently the

set D is empty) problem (2.7)-(2.13) can be solved by convolution. The solution, denoted

u0 in that case is given by

u0(x1, x2, t) =

∫ ∞

−∞

∫ 0

−∞
uini t(ξ1,ξ2)G1(x1, x2,ξ1,ξ2, t)dξ2dξ1

+

∫ t

0

∫ ∞

−∞
uex t(ξ1, s)G2(x1, x2,ξ1, t − s)dξ1ds.
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4.2. Special corrector obtained by introducing a cut off function

The definition of the difference vǫ between the homogeneous and perturbed heat pro-

files is the same in the two dimensional case: Eqs. (3.8)-(3.13) apply in that case too.

Proposition 3.1 may be used as well in the two dimensional case. It is the insufficiently

rapid decay of ψ j,i at infinity that makes the two dimensional case distinct, as explained

further down. Let ψ j,i satisfy

∆ψ j,i = 0 in B j and in R2 \ B j ,

ψ j,i is continuous across ∂ B j ,

(∂νψ j,i)
+ − k

k0

(∂νψ j,i)
− = (1− k/k0)∂ν x i,

ψ j,i(x) = O (|x |−1) as |x | → +∞.

As a closed form expression for ψ j,i in the case where B j is the unit disk centered at the

origin is given by

ψ j,i(x) =
k0 − k

k0 + k
x i in B j ,

ψ j,i(x) =
k0 − k

k0 + k

x i

|x |2 in R2 \ B j,

we conclude that ψ j,i(x) is not in L2(R2) in that case. Fix a function ρ in C∞(R2) such

that

ρ(x) = 1 if |x | ≤ 1, ρ(x) = 0 if |x | ≥ 2.

Set

V = vǫ + ǫ

m∑

j=1

2∑

i=1

∂xi
u0(z j , t)ψ j,i

� x − z j

ǫ

�
ρ(ǫx). (4.6)

Notice that




ψ j,i

� x − z j

ǫ

�
ρ(ǫx)





2

L2(Ω)
≤ Cǫ2| logǫ|.

4.3. Derivation of the order of the estimate

Our main result is the following theorem.

Theorem 4.1. There exists a positive constant C independent of T and ǫ such that

‖V‖L2(0,T ;H1(Ω)) ≤ C T
1

2 ǫ2| logǫ| 12 ,

for the two-dimensional case.
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Proof. For the sake of simpler notations we assume that m = 1. First we rescale

v(x , t) = V (ǫx ,ǫ2t). v satisfies (3.1)-(3.6) with m = 1 and

F(x , t) = ǫ3
2∑

i=1

(∂xi
∂tu0)(z j ,ǫ

2 t)ψi

�
x − z1

ǫ

�
ρ(ǫ2 x)+ (∂xi

u0)(z j,ǫ
2 t)

�
∇ψi

�
x − z1

ǫ

�

∇ρ(ǫ2 x)+ ǫψi

�
x − z1

ǫ

�
∆ρ(ǫ2 x)

�
, in Ω \

�z1

ǫ
+ B1

�
× (0, T/ǫ2),

F(x , t) = ǫ3
2∑

i=1

(∂xi
∂tu0)(z1,ǫ2 t)ψi

�
x − z1

ǫ

�
+ ǫ2

� k

k0

− 1
�
(∆u0)(ǫx ,ǫ2t),

in
�z1

ǫ
+ B1

�
× (0, T/ǫ2),

f (x , t) = ǫ
� k

k0

− 1
�
(∂νu0)(ǫx ,ǫ2t) + ǫ

2∑

i=1

(∂xi
u0)(z j ,ǫ

2 t)
�

1− k

k0

�
∂ν x i,

on
�z1

ǫ
+ ∂ B1

�
× (0, T/ǫ2),

vini t = ǫ

2∑

i=1

∂iu0(z j , 0)ψi

�
x − z1

ǫ

�
ρ(ǫ2 x),

vex t = ǫ

2∑

i=1

∂iu0(z j , 0)(∂x2
ψi)
�

x − z1

ǫ

�
ρ(ǫ2 x)+ ǫ∂iu0(z j , 0)ψi

�
x − z1

ǫ

�
(∂x2

ρ)(ǫ2 x)

+ ǫ2
2∑

i=1

∂iu0(z j , 0)ψi

�
x − z1

ǫ

�
ρ(ǫ2 x), on ∂Ω with the choice α = ǫ.

It is easily seen that

‖F(x , t)‖2
L2(Ω)
≤ Cǫ4 thus ‖F(x , t)‖2

L2(0,T/ǫ2 ;L2(Ω))
≤ C Tǫ2. (4.7)

Next, using the fact that u0 is smooth in Ω× (0, T ), we obtain just as in the three dimen-

sional case

‖ f (x , t)‖2
L2(∂ B1)

≤ Cǫ4 thus ‖ f (x , t)‖2
L2(0,T/ǫ2 ;L2(∂ B1))

≤ C Tǫ2. (4.8)

It is also clear that

‖vini t‖2L2(Ω)
≤ Cǫ2| logǫ|. (4.9)

Finally we estimate vex t . Denote (z11, z12) the coordinates of z1. For x = (x1, 0) on ∂Ω

|x − z1/ǫ|2 = (x1− z11/ǫ)
2+ (z12/ǫ)

2.

We find due to the decay of (∂x2
ψ j,i) that

‖(∂x2
ψi)(x − z1/ǫ)ρ(ǫ

2 x)‖2
L2(∂ Ω)

≤ C

∫ ∞

0

dρ

ρ4 + (z13/ǫ)
4
≤ Cǫ3,
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and due to the decay of ψ j,i that

‖ψi(x − z1/ǫ)∂x2
ρ(ǫ2 x)‖2

L2(∂Ω)
≤ C

∫ ∞

0

dρ

ρ2 + (z13/ǫ)
2
≤ Cǫ,

‖ψi(x − z1/ǫ)ρ(ǫ
2x)‖2

L2(∂Ω)
≤ C

∫ ∞

0

dρ

ρ2 + (z13/ǫ)
2
≤ Cǫ.

We infer,

‖vex t‖2L2(∂Ω)
≤ Cǫ5 thus ‖vex t‖2L2(0,T/ǫ2 ;L2(∂Ω))

≤ C Tǫ3. (4.10)

We now apply (3.7) to obtain that

‖v(x , t)‖2
L2(0,T/ǫ2 ;H1(Ω))

≤ C Tǫ2| logǫ|,

and changing variables yields

‖V (x , t)‖2
L2(0,T ;L2(Ω))

≤ ǫ4‖v(x , t)‖2
L2(0,T/ǫ2 ;L2(Ω))

≤ C Tǫ6| logǫ|,
‖∇x V (x , t)‖2

L2(0,T ;L2(Ω))
≤ ǫ2‖∇x v(x , t)‖2

L2(0,T/ǫ2 ;L2(Ω))
≤ C Tǫ4| logǫ|,

as desired. 2

5. The resulting expansion after multiplication by a test function and

integration on the surface plane

Suppose that the space dimension is 3. Let Φ be in L2(0, T ; H1(Ω)) such that

(∂t +∆)Φ = 0 in Ω× (0, T ), (5.1)

Φ(., T ) = 0. (5.2)

Let vǫ satisfy (3.8)-(3.13). We find by integration by parts and application of Theorem 3.2,

∫ T

0

∫

∂Ω

vǫ

� ∂Φ
∂ x3

+Φ
�

= ǫ3
m∑

j=1

� k j

k0

− 1
�∫ T

0

3∑

i=1

∂xi
u0(z j , t)

∫

B j

∇ψ j,i(x)∇Φ(z j, t) + R, (5.3)

where the remainder R is bounded by

|R| ≤ C Tǫ4 sup
D×(0,T)

|∇Φ|.
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A calculation shows that (
∫

B j
∇ψ j,i(x))i=1,··· ,3 can be replaced by the polarization ten-

sor M ( j) (depending only on B j and k j/k0 ) to obtain

∫ T

0

∫

∂Ω

vǫ

� ∂Φ
∂ x3

+Φ
�

= ǫ3
m∑

j=1

� k j

k0

− 1
�∫ T

0

∇u0(z j, t)M ( j)∇Φ(z j , t) + R. (5.4)

In the two-dimensional case, the cut off section appearing in formula (4.6) goes away by

integration on a bounded set. We obtain,

∫ T

0

∫

∂Ω

vǫ

� ∂Φ
∂ x2

+Φ
�

= ǫ2
m∑

j=1

� k j

k0

− 1
�∫ T

0

∇u0(z j, t)M ( j)∇Φ(z j , t) + R, (5.5)

for Φ satisfying (5.1)-(5.2), and where R is bounded by

|R| ≤ C Tǫ3| logǫ| 12 sup
D×(0,T)

|∇Φ|.

It is worth mentioning that the concept of the polarization tensor has been used in

various area such as the imaging of small anomalies and the effective medium theory. We

refer the reader to the recent book [6] for an extensive study of its properties.

We summarize in the following theorem our main results in this paper.

Theorem 5.1. (i) The following asymptotic expansions for the weighted boundary measure-

ments hold:

∫ T

0

∫

∂Ω

(uǫ − u0)
� ∂Φ
∂ xd

+Φ
�
= ǫd

m∑

j=1

� k j

k0

− 1
�∫ T

0

∇u0(z j, t)M ( j)∇Φ(z j , t)

+




O
�

Tǫ4 supD×(0,T) |∇Φ|
�

for d = 3,

O
�

Tǫ3| logǫ| 12 supD×(0,T) |∇Φ|
�

for d = 2.

(ii) The following inner expansions hold. We have in the two-dimensional case




uǫ − u0 + ǫ

m∑

j=1

2∑

i=1

∂xi
u0(z j , t)ψ j,i

� x − z j

ǫ

�
ρ(ǫx)





L2(0,T ;H1(Ω))

≤ C T
1

2 ǫ2| logǫ| 12 ,



34 H. Ammari, A. Kozhemyak and D. Volkov

where ρ ∈ C∞(R2) is such that ρ(x) = 1 if |x | ≤ 1,ρ(x) = 0 if |x | ≥ 2, while in three

dimensions




uǫ − u0 + ǫ

m∑

j=1

2∑

i=1

∂xi
u0(z j, t)ψ j,i

� x − z j

ǫ

�



L2(0,T ;H1(Ω))

≤ C T
1

2 ǫ
5

2 .

The weighted boundary measurements will be used in the next section to design non-

iterative algorithms for detecting the anomalies from boundary measurements while the

inner expansions form the basis of the reconstruction method from ultrasonic thermal

measurements. The inner expansions allow to reconstruct the anomalies with much bet-

ter spatial and contrast resolutions than the weighted measurements which only gives the

location and of some geometric features of the anomaly. In fact, the inner expansions

uniquely characterize the shape and the thermal conductivity of the anomaly. In contrast,

the asymptotic expansions of the weighted measurements show that, from an imaging

point of view, the location and the polarization tensor of the anomaly are the only quanti-

ties that can be determined from boundary measurements.

6. Examples of applications

6.1. Active temperature imaging

In this section we examine the two dimensional case (d = 2), and assume that all the

anomalies are disks. These assumptions are made only for ease of exposition: other cases

can be worked out equally well. In particular, if the anomalies have non trivial shapes, the

only complication stems from the polarization tensor which is no longer proportional to

the identity matrix. Accordingly, the analysis becomes slightly more involved in that case.

However, in that case too, anomalies can be detected and their polarization tensors can be

estimated.

Choose uex t = δt=0δy for some point y ∈ ∂Ω and uini t = 0 in Ω. The unperturbed

solution corresponds to u0(x , t) = G2(x , y, t). Choose Φ(x , t) = G2(x , y ′, T − t), where

y ′ ∈ ∂Ω. The asymptotic formula for the weighted boundary measurements yields

(uǫ − u0)(y
′, T ) ≈ 2ǫ2

m∑

j=1

(k j/k0 − 1)
|B j |

1+ k j/k0

∫ T

0

∇G2(z j , y, t) · ∇G2(z j , y ′, T − t)d t.

Let now y, y ′ ∈ {y1, · · · , yn}, where y1, · · · , yn are source points on ∂Ω. Define the matrix

A= {Al l ′}nl ,l ′=1
by

Al l ′ := 2ǫ2
m∑

j=1

(k j/k0 − 1)
|B j |

1+ k j/k0

∫ T

0

∇G2(z j , yl , t) · ∇G2(z j , yl ′, T − t)d t.

For z ∈ Ω, we define the real symmetric matrix C by

C :=

�∫ T

0

∇G2(z, yl , t) · ∇G2(z, yl ′ , T − t)d t

�

l ,l ′=1,··· ,n
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and we rewrite C in terms of its eigenvectors

C =

p∑

l=1

vl(z)v
∗
l (z)

for some p ≤ n, where v∗
l

denotes the transpose of vl . By exactly the same arguments as

those in [4], the following characterization of the range of the matrix A holds:

vl(z) ∈ Range(A) ∀l ∈ {1, · · · , p} iff z ∈ {z1, · · · , zm},
for all sufficiently large number of source points n. Let the singular value decomposition

(SVD) of the matrix A be defined by A= UΣV ∗. Let Usignal denote the first columns of U

that provide a basis for the column space of A and Unoise the rest of the matrix U which

provides a basis for the left null space of A. From the characterization of the range of A, a

test point z coincides with one of the locations z j if and only if P(vl(z)) = 0, where

P = I − UsignalU
∗
signal

is the orthogonal projection onto the null space of A. Thus we can form an image of the

locations {z j}mj=1
by plotting, at each z in a box search, the quantities

Wl(z) :=
1

||P(vl(z))||
for l = 1, · · · , p.

The resulting plot will have large peaks at the locations of z j , j = 1, · · · , m.

The matrix A is known from measurements of (uǫ − u0)(y
′, T ), where u0(x , t) =

G2(x , y, t) and y, y ′ ∈ {y1, · · · , yn}.
Other choices for heating are possible. For example, we can place the heat source in

the upper half space by choosing

uex t(x , t) =
1

t

�
exp
�
− |x − y|2

4t

�
+
∂

∂ x2

exp
�
− |x − y|2

4t

��
for x ∈ ∂Ω,

and y ∈ R2 \Ω. Then we take

Φ(x , t) =
1

(T − t)
exp
�
− |x − y|2

4(T − t)

�
,

for y ′ ∈ R2 \Ω and uini t = 0 in Ω. Set y, y ′ ∈ {y1, · · · , yn}, where yl ∈ R2 \Ω. Construct

the matrix A from the weighted measurements

∫ T

0

∫

∂Ω

(uǫ − u0)
� ∂Φ
∂ xd

+Φ
�

.

The same imaging algorithm applies when vl(z) is constructed from the decomposition of

the matrix �∫ T

0

∇G(z, yl , t) · ∇G(z, yl ′ , T − t)d t

�

l ,l ′=1,··· ,n
,
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tion of anomalies.
where

G(z, y, t) =
1

t
exp
�
− |z− y|2

4t

�
.

Because of the singularity of G2 on the boundary ∂Ω, the second choice of heating is

easier to implement numerically.

In the following example, two anomalies of radius 0.3 and 0.1 and conductivities 2 and

5 are placed at (−2,−1.5) and (2.5,−2.5), respectively. We set T = 1 and the conductivity

of the background equals to 0.1. We choose n= 10 heat sources placed at the same x2 > 0

and at x l
1 = −5+10(l− 1)/9, l = 1, · · · , 10. The next two figures show the reconstructions

without and with noise.

In Fig. 1, we see clearly the presence of two anomalies. However, the one on the right,

which is also deeper, is not as well rendered as the one on the left.
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tion in the presen
e of 1% (on the left) and 5% (on the right) of noise.
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6.2. Passive temperature imaging

This appears to be a harder problem as no forcing can be imposed. The process is

passive and driven by cooling. Choose uini t in the form eαx3 , α > 0 and uex t linear in time

to simulate cooling: uex t(x , t) = 1+α− β t, for x ∈ ∂Ω.

The unperturbed solution u0(x , t) has the following form:

u0(x1, · · · , xd , t) =

0∫

−∞

euini t(ξd)eG1(xd ,ξd , t)dξd +

t∫

0

euex t(s)eG2(xd , t − s)ds, (6.1)

where eG1(xd ,ξd , t) is given by

eG1(xd ,ξd , t) =
1p
4πt

�
e−

(xd−ξd )
2

4t + e−
(xd+ξd )

2

4t − 2

+∞∫

0

e−
(xd+ξd−η)2

4t
−ηdη

�
, (6.2)

and eG2(xd , t) = eG1(xd , 0, t).

It is easy to see that the gradient of unperturbed solution u0 has only one nontrivial

component:

∇xu0(x , t) =




0
...

0∫

−∞
euini t(ξd)

∂ eG1

∂ xd
(xd ,ξd , t)dξd +

t∫

0

euex t(s)
∂ eG2

∂ xd
(xd , t − s)ds




. (6.3)

Suppose for the sake of simplicity that d = 2 and all the anomalies are disks. For

y = (y1, y2) in the upper half-space, choose

Φ(x , t) = Φ(x , y, t, T ) :=
1

(T − t)
exp
�
− |x − y|2

4(T − t)

�
,

as in the above section. For j = 1, · · · , m, write z j = (z
(1)

j
, z
(2)

j
). We see from Theorem 5.1

that for fixed y2 the functional

IΦ(T ) :=

∫ T

0

∫

∂Ω

(uǫ − u0)
� ∂Φ
∂ xd

+Φ
�

has extrema for y1 = z
(1)

j
, j = 1, · · · , m.

To verify the validity the asymptotic expansion in Theorem 5.1, we compare the val-

ues of IΦ(T ) as a function of y1 computed directly with those given by the asymptotic

formula. Here y2 = 0.1 and T = 0.1. Fig. 3 shows these comparisons for an inclusion

located at (−2,−1.5) with different radius (0.005,0.01,0.1 and 0.2) and different thermal
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Figure 3: Validation of the asymptoti
 expansion formula for in
lusions with di�erent radius and thermal
ondu
tivities. From top to bottom, from left to right: the radius of the in
lusion is 0.005, 0.01, 0.1and 0.2. In ea
h �gure, the 
ondu
tivities are from the top to the bottom: 1.5, 2, 3, and 4.
conductivities 1.5,2,3 and 4. The approximation error gets larger with the radius of the

anomaly.

As we can see from Fig. 3, the first order of magnitude given by the asymptotic ex-

pansion formula is valid for the anomalies of radius 0.005 and 0.01. In contrast, for the

anomalies of radius 0.1 and 0.2 there is a significant error.

It is verified on Fig. 4 that the extrema of IΦ(T ) correspond to the x1 components of

the locations of the anomalies.

Once the x1 components, z1
j
, j = 1, · · · , m, are found, in order to recover the x2 com-

ponents we minimize over z2
j
< 0, j = 1, · · · , m, the following functional

����IΦ(T )− ǫ2
m∑

j=1

(k j/k0 − 1)

∫ T

0

∇u0((z
1
j , z2

j ), t)M ( j)∇Φ((z1
j , z2

j ), t)d t

����.
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Figure 4: Re
onstru
tion of the anomalies.
6.3. Ultrasonic temperature imaging

The idea behind ultrasonic temperature imaging hinges on measuring local tempera-

ture near anomalies. The aim is to reconstruct anomalies with higher spatial and contrast

resolution as compared to those obtained from boundary measurements alone. Theorem

5.1 expresses that the following approximation is valid

(uǫ − u0)(x , t)≈ −ǫ
2∑

i=1

∂xi
u0(z j0

, t)ψ j,i

� x − z j0

ǫ

�
,

for |x − z j0
| = O (ǫ). Fix ω to be a window around the anomaly j0. To reconstruct the

shape and the thermal conductivity of this anomaly, a natural way to proceed would be to

minimize over ǫB and k the functional

∫ T

0

∫

ω

����(uǫ − u0)(x , t) + ǫ

2∑

i=1

∂xi
u0(z j0

, t)ψ j,i

� x − z j0

ǫ

�����
2

d xd t.

Standard regularization techniques may help for solving this optimization problem. See

[3].

7. Concluding remarks

In this paper, starting from a realistic half space model for thermal imaging, we have

developed a mathematical asymptotic analysis well suited for the design of reconstruction

algorithms. Based on rigorously derived asymptotic estimates, after obtaining an approx-

imation for the temperature profile, we were able to design noniterative detection algo-

rithms. We have then presented numerical simulations to test them. These algorithms

are based on either heating generated by point sources on the surface of the medium, or
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cooling of the medium modeled by a uniform convective condition on the surface. Both

these algorithms can be applied to medical thermal imaging. Since they are solely based

on observing quantities which are only "singular" at the locations of the anomalies, we can

claim that these algorithms are not overly sensitive to observation noise. See [5] for a

general discussion of sensitivity to noise for this type of reconstruction algorithm.

We have also touched upon the subject of ultrasonic temperature imaging used for

guiding in the course of thermal ablation therapy. Related optimization algorithms will be

the subject of forthcoming work.
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Appendix

We derive Eqs. (4.3)-(4.5) from (4.2), if f2 is in L2((0, T )×R) and

lim
ǫ→0

∫

0≤s≤ǫ

∫

|y|≤ǫ
| f2(x + y, t − s)− f2(x , t)|d yds = 0. (A.1)

Eq. (4.3) is clear by dominated convergence. Eq. (4.5) can be obtained for any x2 < 0 by

applying Cauchy Schwartz inequality and letting t tend to 0.

To obtain (4.4), first assume that f2 is equal to the constant 1 in the neighborhood of

(x1, t) defined by |ξ1− x1| < η, |s− t| < η. We observe the following, due to the boundary

condition for G2 away from singularities,

lim
x2→0
(∂x2
·+·)

�∫∫

X

f2(ξ1, s)G2(x1, x2,ξ1, t − s)dξ1ds

�
= 0,

where X is the complement in (0, t)×R of (t − η, t) × (x1 − η, x1 + η). Next we set for

x2 < 0, u = ξ1 − x1, r = s− t. We want to determine

lim
x2→0
(∂x2
·+·)

 ∫ η

0

∫ η

−η
G2(u, x2, 0, r)dudr

!
.

Note that

G2(u, x2, 0, r)

=
1

4
e
− u2

4r

�
2 e

x2
2

4r + 2
p
πe−x2+r

p
r

�
erf

�
1

2

−x2+ 2 rp
r

�
− 1

��
π−1r−1.

Integrating the above equation with respect to u gives
∫ η

−η
G2(u, x2, 0, r)du= e

x2
2

4r erf

�
η

2
p

r

�
1p
π

1p
r

+ e−x2+rerf

�−x2+ 2 r

2
p

r

�
erf

�
η

2
p

r

�
− e−x2+rerf

�
η

2
p

r

�
.
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We can let x2 tend to zero in the latter expression, since dominated convergence can be

applied. Next, since

∂x2
G2(u, x2, 0, r) =

1

4π
e

u2

4r

�
− x2e

x2
2

4r r−2

− 2
p
πe−x2+r r−1/2

�
erf
�−x2+ 2 r

2
p

r

�− 1
�
− 2 e−x2+r e

(−x2+2 r)2

4r r−1

�
,

we notice that ∂x2
G2(u, x2, 0, r) is the sum of three terms, the most singular is of order

r−2, the other two are of order, respectively, r−1 and r−1/2. Starting with the most singular

term, integrating in u,

∫ η

−η

1

4π
e

u2

4r (−x2)e
x2

2

4r r−2du= −1

2
x2e

x2
2

4r erf

�
η

2
p

r

�
1p
π

r−3/2.

To proceed with the integration in r, we make the substitution r = s−2 x2
2 to obtain the

integral

∫ ∞

x2
2/η

2

−e−1/4 s2

erf

�
sη

2x2

�
1p
π

ds.

By dominated convergence, the latter has the limit, as x2 < 0 approaches 0,

∫ ∞

0

e−1/4 s2 1p
π

ds,

which is equal to 1. We now examine the two terms from ∂x2
G2(u, x2, 0, r), of lower order

in r. Integrating in u,

∫ η

−η

1

4π
e

u2

4r

�
− 2
p
πe−x2+r r−1/2

�
erf
�−x2+ 2 r

2
p

r

�− 1
�
− 2 e−x2+r e

(−x2+2 r)2

4r r−1

�
du

= e−x2+rerf

�−x2+ 2 r

2
p

r

�
erf

�
η

2
p

r

�
− e−x2+rerf

�
η

2
p

r

�
− e

x2
2

4r erf

�
η

2
p

r

�
1p
πr

.

We can let x2 tend to zero in the latter expression, since dominated convergence can be

applied. In conclusion,

lim
x2→0
(∂x2
·+·)

�∫ t

0

∫ ∞

−∞
f2(ξ1, s)G2(x1, x2,ξ1, t − s)dξ1ds

�
= 1,

if f2 is equal to the constant 1 in some neighborhood of (x1, t). The more general case can

then be obtained by playing with inequalities, starting from estimate (A.1).
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