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Abstract. In this paper, we propose a compound algorithm for the image restoration.

The algorithm is a convex combination of the ROF model and the LLT model with a

parameter function θ . The numerical experiments demonstrate that our compound al-

gorithm is efficient and preserves the main advantages of the two models. In particular,

the errors of the compound algorithm in L2 norm between the exact images and cor-

responding restored images are the smallest among the three models. For images with

strong noises, the restored images of the compound algorithm are the best in the cor-

responding restored images. The proposed algorithm combines the fixed point method,

an improved AMG method and the Krylov acceleration. It is found that the combination

of these methods is efficient and robust in the image restoration.
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1. Introduction

Image restoration is an important problem with numerous applications in both image

processing and medical problems. The image restoration is to recover original images from

noisy and blurred data. Mathematically, image restoration is to recover the true image u

from the observed image z by the formula

z = Ku+ n, (1.1)

where K is a known linear blurring operator and n is a Gaussian white noise.
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In recent years, many models for noise removal and deblurring are proposed and stud-

ied. One of the basic models is the total variation based restoration method proposed by

Rudin, Osher and Fatemi [18]. In this model, the following total variation minimization

problem is considered:

min
u

�
α

∫

Ω

|∇u| d xd y +
1

2
‖Ku− z‖2

L2

�
, (1.2)

where |∇u|=
Æ

u2
x + u2

y and α > 0 is the penalty parameter.

The corresponding Euler-Lagrange equation for (1.2) is

−α∇ ·
� ∇u

|∇u|

�
+ K∗(Ku− z) = 0, in Ω, (1.3)

where K∗ is the adjoint operator of K with respect to standard L2 inner product. This idea

gives a rigorous mathematical tool to introduce nonlinear diffusion filters in the image

restoration. Motivated by the total variation norm, many similar models of restoration are

proposed in literatures (see [2,3,6,12,13,15,22,23]).

In these papers, several papers (see [6, 12, 13, 15, 22, 23]) discuss the noise removal

methods by fourth-order partial differential equations. Especially, Lysaker, Lundervold and

Tai in [13] proposed a problem of second-order functional minimization by the formula

min
u

�
α

∫

Ω

|D2u| d xd y +
1

2
‖Ku− z‖2

L2

�
, (1.4)

where

|D2u| =
Æ

u2
x x + u2

x y + u2
y x + u2

y y .

The corresponding Euler-Lagrange equation for (1.4) is

α

�� ux x

|D2u|

�
x x
+
� ux y

|D2u|

�
y x
+
� uy x

|D2u|

�
x y
+
� uy y

|D2u|

�
y y

�
+K∗(Ku− z) = 0, in Ω. (1.5)

It is known that the higher-order PDEs can recover smoother surfaces. In dealing with

higher-order PDEs, a major challenge is to pursue the quality in (1.2) along jumps. How-

ever, it seems to be difficult to use one algorithm to preserve discontinuities in one part of

the image and simultaneously recover smooth signals in other parts. Hence, combining dif-

ferent algorithms remains a possible approach to improve the image restoration capability.

In [6,12,15], authors discuss the methods of combining both a lower- and a higher-order

PDE.

The ROF model (1.2) is known to be better than LLT model (1.4) when denoising and

identifying locations of discontinuities and amplitude of jumps. In another side, the LLT

model is better than ROF model in handling smooth signals and keeping small construc-

tions and shapes of the images. In [15], Lysaker and Tai use the convex combination of

the solutions of (1.2) and (1.4) to get better restoration images (see [15]).
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In this paper we propose a new combination algorithm of the model (1.2) and the

model (1.4) on the basis of idea of [15]. By analyzing underlying features in the interesting

image, we combine the formulae (1.2) and (1.4) with a variable parameter θ .

Section 2 of this paper describes the combination algorithm. The discretization formu-

lae of our model are given in Section 3. The algorithms of the denoising problems and

methods of accelerating convergence are discussed in Section 4. Section 5 is devoted to

numerical experiments. Finally, some conclusions are discussed in Section 6.

2. New combination algorithm

We consider a convex combination of the models (1.2) and (1.4):

min
u

�
α

�∫

Ω

θ |∇u| d xd y +

∫

Ω

(1− θ)|D2u| d xd y

�
+

1

2
‖Ku− z‖2

L2

�
, (2.1)

where θ is a variable parameter which will be given later.

The corresponding Euler-Lagrange equation for (2.1) is very complicated, because θ

is dependent with |∇u|. In this model, the θ is only a variable parameter and is applied

to control combination of the ROF model (1.2) and the LLT model (1.4). Therefore, we

present the following simplified iterative model:

min
us+1

�
α

�∫

Ω

θ s|∇us+1| d xd y +

∫

Ω

(1− θ s)|D2us+1| d xd y

�
+

1

2
‖Kus+1− z‖2

L2

�
, (2.2)

where initial guess u0 is given as the observed image z, then θ s, s = 0,1, · · · are computed

by us and new iterative value us+1 is solved from the minimization problem (2.2).

The corresponding Euler-Lagrange equation for (2.2) is

α

��
(
(1− θ s)us+1

x x

|D2us+1|
)x x + (

(1− θ s)us+1
x y

|D2us+1|
)y x + (

(1− θ s)us+1
y x

|D2us+1|
)x y + (

(1− θ s)us+1
y y

|D2us+1|
)y y

�

−
�
(
θ sus+1

x

|Dus+1|
)x + (

θ sus+1
y

|Dus+1|
)y

��
+ K∗(Kus+1− z) = 0, in (0,1)2, (2.3)

where

|D2u| =
Æ
(ux x)

2 + (ux y)
2+ (uy x )

2 + (uy y)
2,

|Du|=
Æ
(ux)

2+ (uy)
2.

In our convex combination, the second-order PDE is used when |∇u| is small or large.

Thus, the noise may be removed in the smooth region and edges can be detected in the

discontinuities. In the same time, the fourth-order PDE is applied when |∇u| is middle

such that the small constructions and shapes of the images are kept.
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3. Choice of the variable parameter θ

For the compound algorithm, the variable parameter θ is important. We choose broken

lines for the θ :

θ =





1, if |∇u|¶ C0 and |∇u|¾ C1,

Cd , if C0 + 5≤ |∇u| ≤ C1 − 5,

1−
(|∇u| − Cd)(1− Cd)

5
if C0 ≤ |∇u| ≤ C0 + 5,

1+
(|∇u| − C1)(1− Cd)

5
if C1 − 5≤ |∇u| ≤ C1.

(3.1)

The curve of θ are given in Fig. 1.

c0 c10

1

|∇  u|

θ

Figure 1: Curve of θ .
In computation, the parameters C0 = 0, and Cd = 0.1 are fixed. The parameter C1 is

taken as 40 for the most images and is properly modificated for some images.

Thus, the 4-th order equation is used mainly in middle domain of |∇u| such that the

smoothness of image can be kept. ROF model is applied when |∇u| is large or small. Thus,

denoising image has clear edges and noise can be removed efficiently.

4. Discretization formulae

The nonlinear partial differential equation (2.3) is applied to restorate the images.

Eq. (2.3) is discretized by the difference methods. The all terms of Eq. (2.3) are approxi-

mated by the corresponding divided central difference.

We use the average of adjacent values to give the values which are not restored on the
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grid:

us+1
i−1/2, j

=
1

2
(us+1

i, j
+ us+1

i−1, j
),

us+1
i+1/2, j+1/2

=
1

4
(us+1

i, j
+ us+1

i+1, j
+ us+1

i, j+1
+ us+1

i+1, j+1
),

(ui, j)x =
1

h
(ui, j+1 − ui, j), (ui, j) x̄ =

1

h
(ui, j − ui, j−1),

where ui, j is located in the center of cell, h denotes the step size of space and h= 1/I , I is

total number of points in one direction (x -direction or y-direction).

Thus, the discretized nonlinear algebraic system of equations can be written in the

form:

α

��
(
(1− θ s)(us+1

i, j
)x x̄

D
2(s+1)

i, j

)x x̄ + (
(1− θ s)(us+1

i, j
)x y

D
2(s+1)

i+1/2, j+1/2

) ȳ x̄ + (
(1− θ s)(us+1

i, j
)y x

D
2(s+1)

i+1/2, j+1/2

) x̄ ȳ

+ (
(1− θ s)(us+1

i, j
)y ȳ

D
2(s+1)

i, j

)y ȳ

�
−
�
(
θ s(us+1

i, j
)x

D
(s+1)

i+1/2, j

) x̄ + (
θ s(us+1

i, j
)y

D
(s+1)

i, j+1/2

) ȳ

��
+ K∗(Kus+1

i, j
− zi, j) = 0,

i = 1, · · · I , j = 1, · · · J (I = J), (4.1)

where

(D
2(s+1)

i, j
)2 =

1

h4(1− θ s
i, j
)2

��
(us+1

i, j
)x x̄

�2
+
�
(us+1

i, j
)y ȳ

�2

+ 2
�

us+1
i+1/2, j+1/2

+ us+1
i−1/2, j−1/2

− us+1
i−1/2, j+1/2

− us+1
i+1/2, j−1/2

�2�
, (4.2)

and

(D
(s+1)

i+1/2, j
)2

=
1

h2(θ s
i+1/2, j

)2

��
us+1

i+1, j
− us+1

i, j

�2
+

1

16

�
us+1

i+1, j+1
+ us+1

i, j+1
− us+1

i+1, j−1
− us+1

i, j−1

�2�
. (4.3)

In real computations, the numerical boundary conditions are important and should be cho-

sen carefully. We consider and compare many numerical boundary conditions in numerical

experiments. The following two boundary conditions with the truncation error of order 2

are simple and efficient for the image restoration:

1. Neumann boundary condition

u0, j = u1, j , ui,0 = ui,1, uI+1, j = uI , j, ui,J+1 = ui,J . (4.4)

2. Continuity boundary condition, which is an extrapolation formula of order 2

u−1, j = 3u1, j − 2u2, j , ui,−1 = 3ui,1 − 2ui,2,

uI+2, j = 3uI , j − 2uI−1, j, ui,J+2 = 3ui,J − 2ui,J−1.
(4.5)
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The system of algebraic equations is very complicated and strong nonlinear. Especially, the

denominators D
2(s+1)

i, j
and D

(s+1)

i+1/2, j
are possible to equal zero.

5. Algorithms of denoising problems and methods of accelerating

convergence

In this paper, we only consider denoising problems. Hence, the blurring operator K is

given as identity operator.

In order to avoid that the denominators equal to zero, the a small quantity β is added

to the terms D
4(s+1)

i, j
and D

2(s+1)

i+1/2, j
.

5.1. Fixed point method

The system of nonlinear equations (4.1), (4.4) and (4.5) is solved by the fixed point

method (see [20, 21]), i.e., the ui, j in all denominators take sth approximations values of

the solution. The computational formulae are

α

��
(
(1− θ s)(us+1

i, j
)x x̄

D
2(s)

i, j

)x x̄ + (
(1− θ s)(us+1

i, j
)x y

D
2(s)

i+1/2, j+1/2

) ȳ x̄ + (
(1− θ s)(us+1

i, j
)y x

D
2(s)

i+1/2, j+1/2

) x̄ ȳ

+ (
(1− θ s)(us+1

i, j
)y y

D
2(s)

i, j

) ȳ ȳ

�
−
�
(
θ s(us+1

i, j
)x

D
(s)

i+1/2, j

) x̄ + (
θ s(us+1

i, j
)y

D
(s)

i, j+1/2

) ȳ

��
+ K∗(Kus+1

i, j
− zi, j) = 0,

i = 1, · · · I , j = 1, · · · J (I = J). (5.1)

The equations (4.1) for new approximation us+1
i, j

are a linear algebraic system when the

values us
i, j

are known and are solved by our algebraic multigrid (AMG) method.

Thus, the equations (4.1) with the boundary conditions (4.4) and (4.5) are solved by

two-level iterations: (i) outer iteration of the fixed poind method from us
i, j

to us+1
i, j

; and (ii)

inner iteration of the AMG method to obtain us+1
i, j

when us
i, j are known.

The convergence of the fixed point method is slow. We apply Krylov subspace algorithm

to accelerate convergence of the nonlinear iteration (see [16]).

5.2. Basic algebraic multigrid (AMG) method

The AMG method is developed to solve large systems of linear equations using the

principles of usual multigrid method (see [8–10,19]). In the AMG method, there are two

phases: setup phase and solving phase.

Now, we describe our version of the AMG algorithm [10, 19] briefly. We consider the

following n× n system of linear equations

AU = F. (5.2)
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An AMG method breaks this equation into a sequence of smaller and smaller equations:

AmUm = F m, m = 1, · · · , M , where Am = (am
i, j)nm×nm

, Um = (um
1 ,um

2 , · · · ,um
nm
)T , and F m =

( f m
1 , f m

2 , · · · , f m
nm
)T , with n= n1 > n2 > · · · > nM , A1 = A, U1 = U , F1 = F . These equations

formally play the same role as the coarse grid equations in the GMG method.

In a standard multigrid process, one needs to define the coarse grids, the interpolation

operator Im
m+1, the restriction operator Im+1

m , and the coarse grid operator Am+1. With

these, at each level, a smoothing process, say Gauss-Seidel, is applied to the equation

AmUm = F m to find an approximate solution bUm. The high frequency errors of the residual

rm := F m − Am bUm are usually reduced in this smoothing process. The correction for low

frequency errors is approximated by the following procedure. First, the correction equation

Amem = rm is restricted to the next coarser grid by the restriction operator. The resulting

equation is solved to obtain the coarse grid correction em+1. This correction em+1 is then

interpolated back to level m by the interpolation operator to obtain approximate solution

em.

We shall adopt Galerkin type algorithm, where Im+1
m = (Im

m+1)
T and Am+1 = Im+1

m AmIm
m+1.

Thus, we will only need to define the coarse grids and interpolation operators. We follow

the approach in [10, 19] to define the grid Ωm and its coarse grid Cm. The grid Ωm is

regarded as the indices {1, · · · , nm} of the unknowns em
j

, 1 ≤ j ≤ nm. The coarse grid Cm

is a subset of Ωm. The grid Ωm+1 is nothing but a re-indexing of Cm. We denote Ωm − Cm

by F m, the fine grid. Criteria to determine Cm will be discussed later.

The interpolation operator Im
m+1 maps data on Ωm+1 to data on Ωm. Namely, for i ∈ Cm,

the datum em
i

is taken to be the datum on the corresponding index on Ωm+1; while for

i ∈ F m, em
i

is interpolated from data on Cm. Roughly speaking, this interpolation formula

is derived so that the i th equation

am
i,ie

m
i +
∑

j∈N m
i

am
i, je

m
j = rm

i ≈ 0 (5.3)

is almost satisfied. Here,

N m
i =
n

j ∈ Ωm | am
i, j 6= 0, j 6= i
o

,

which can be thought as the neighbors of i.

In order to solve (5.3) approximately, we classify the neighbors of the point i into two

classes. A point j ∈ N m
i is said to be strongly connected to i if

| am
i, j |≥ θ ·max

k 6=i
| am

i,k |

for some fixed 0 < θ ≤ 1, and weakly connected if otherwise. We denote the collection

of these neighboring points by Sm
i (strong) and W m

i (weak), respectively. We also denote

Cm
⋂

Sm
i by Cm

i . Our goal is to derive an interpolation formula

em
i =
∑

j∈Cm
i

ωi, je
m
j , for i ∈ F m
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so that the i th correction equation is almost satisfied:

am
i,ie

m
i +
∑

j∈N m
i

am
i, je

m
j = 0. (5.4)

Note that N m
i
= Sm

i
∪W m

i
= (Sm

i
∩ Cm) ∪ (Sm

i
∩ F m) ∪W m

i
. The issue here is how to

approximate em
j

with j ∈ Sm
i
∩ F m or j ∈ W m

i
in terms of ei or em

k
with k ∈ Cm

i
. Before

going to the discussion of this issue, let us describe how to choose the coarse grid Cm for a

moment.

The coarse grid Cm is chosen such that the following criteria are satisfied:

(C1) For each point i ∈ F m, every point j ∈ Sm
i is either in Cm

i or strongly connected to

at least one point in Cm
i (i.e. Sm

j ∩ Cm
i 6= ϕ).

(C2) Cm should be the maximal subset of all points with the property that any two

points in Cm are not strongly connected to each other.

Condition (C1) ensures that for i ∈ F m, em
i

can be constructed from the values em
k

with k ∈ Cm
i

with certain accuracy. Condition (C2) means that Cm is chosen as smaller as

possible to gain efficiency. In general, it is difficult to construct Cm to satisfy (C2) strictly.

Ruge and Stüben [19] provided an O (nm) algorithm to construct the coarse grid Cm which

is small enough and leads to linear computational complexity of the overall algorithm

practically.

Let us go back to the issue: how to approximate em
j with j ∈ Sm

i ∩ F m or j ∈ W m
i in

terms of em
i or em

k
with k ∈ Cm

i ? For j ∈W m
i , we may simply approximate em

j by

em
j = em

i , (5.5)

based on the smoothness of em which we do expect. For j ∈ Sm
i ∩ F m, we look into the j th

equation:

am
j, je

m
j +
∑

k∈Cm
i
∩N m

j

am
j,kem

k + · · · ≈ 0.

The part “· · · ” is secondary error and thus negligible. A natural approximation of em
j

is the

following average formula:

em
j =
∑

k∈Cm
i
∩N m

j

gm
j,k

em
k

, gm
j,k
=

|am
j,k
|
∑

ℓ∈Cm
i
∩N m

j

|am
j,ℓ|

. (5.6)

The condition (C1) (i.e. Cm
i
∩ Sm

j
6= ϕ) guarantees that

∑
k∈Cm

i
|am

j,k
| is not too small. The

above interpolation formula was given by J. Ruge and K. Stüben [19].

An improved interpolation formula using some geometric assumptions was proposed

in [10]. It further uses an average or extrapolation of formulae (5.5) and (5.6), depending

on the “relative locations” of points j, i and {k|k ∈ Cm
i ∩ Sm

j }. These “geometric” assump-

tions are as below.
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(G1) Elements in N m
i are the neighbors of a point i in Ωm. Further, the larger the

quantity |am
i, j| is, the closer the point j is to the point i.

(G2) If am
i, j
< 0 or |am

i, j
| is small, we say that the error between i and j is geometrically

smooth. Otherwise, we call it geometrically oscillating. Here, we have normalized

ai,i > 0.

Roughly speaking,“geometrically,” the average location of points in Cm ∩ Sm
i
∩ Sm

j
is

somewhere between i and j. Therefore the error em
j

can be approximated more accurately

by an extrapolation formula using ei and
∑

k∈Cm
i
∩Sm

j
g j,kem

k
. More precisely, let us define

ζm
i, j =

−
∑

k∈Cm
i
∩N m

j

am
j,k

∑

k∈Cm
i
∩N m

j

| am
j,k |

, ηm
i, j =

| am
i, j |

1

|Cm
i
∩ N m

j
|

∑

k∈Cm
i
∩N m

j

| am
j,k |

.

The quantity ζm
i, j indicates whether there is a large negative entry am

j,k
for k ∈ Cm

i ∩ N m
j .

When ζ ≥ 1/2 and am
i, j
< 0, it can be shown that the errors between the point i and the

point j are geometrically smooth. The quantity ηm
i, j

roughly gives the “inverse ratio” of

the distance between j and i to the average distance between the point j and the points in

Cm
i ∩N m

j . If ηm
i, j < 3/4, we think the “average location” of the points in Cm

i ∩N j, denoted by

k̄ j,i, is closer to j than that of i. That is, k̄ j,i lies between i and j, and thus, an extrapolation

formula for e j in terms of ei and
∑

k∈Cm
i
∩N m

j
g j,kem

k
can be applied. When ηm

i, j > 2, we think

i is closer to j than that of k̄ j,i . In this case, we use an interpolation formula instead.

Otherwise, we think k̄ j,i is very close to j and we should just use the average formula∑
k∈Cm

i
∩N m

j
g j,kem

k
to approximate e j.

In summary, we use the following “geometric” interpolation formulae.

(1) For j ∈ Sm
i ∩ F m, we have

em
j =





2
∑

k∈Cm
i

gm
j,k

em
k
− em

i
, if ηm

i, j
< 3/4,ζi, j ≥ 1/2 and am

i, j
< 0,

1

2
(
∑

k∈Cm
i

gm
j,k

em
k
+ em

i
), if ηm

i, j
> 2,ζm

i, j
≥ 1/2 and am

i, j
< 0,∑

k∈Cm
i

gm
j,k

em
k

, otherwise.

(5.7)

(2) For j ∈W m
i

, we have

em
j =





em
i , if Cm

i ∩ Sm
j = ϕ, am

i, j < 0,

−em
i , if Cm

i ∩ Sm
j = ϕ, am

i, j > 0,

2
∑

k∈Cm
i

gm
j,k

em
k
− em

i , if Cm
i ∩ Sm

j 6= ϕ, ζm
i, j ≥ 1/2 and am

i, j < 0,∑
k∈Cm

i
gm

j,k
em

k
, otherwise.

(5.8)
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The convergence proof for this improved AMG method was given in [8] when Am is

symmetric positive definite. Many numerical examples also support the improvement of

this “geometric” interpolation formula [10].

5.3. Krylov acceleration

Usually, the Krylov subspace method is applied in solving systems of linear equations.

In [16], Oosterlee and Washio use the Krylov subspace method to solve nonlinear problem.

We have used the Krylov subspace method in image denoising and deblurring problems

(see [7, 11]). In this paper, the Krylov subspace method is applied to accelerate conver-

gence of the fixed point method.

First, we choose two parameters K̄ and s, with K̄ ≤ s. The Krylov subspace acceleration

is performed after every s steps of fixed point iterations as the follows. For integer n > 0,

let

Unew = Uns +

K̄∑

k=1

ηk(U
ns+1−k − Uns−k). (5.9)

where the coefficients ηk are chosen such that the residual Rnew for Unew is minimum in

L2 norm, i.e.,

min
η1,··· ,ηK̄

(||Rnew||2L2
). (5.10)

The minimization problem can be equivalent to a system of linear equations for the

η,η, · · · ,ηK̄ , which is solved to get the coefficients η,η, · · · ,ηK̄ . Then, We reset Uns to

be Unew.

In this paper, we combine the fixed point method, AMG method and the Krylov sub-

space method to solve the nonlinear equations (5.1).

6. Discussion on computation

In this section, we discuss some details related to the computations.

6.1. Normalized residual

An important issue in image restorations is to choose a quantity to measure the quality

of improvement. It is used as a stopping criterion for the fixed point iteration. Usually,

the residual of the system (5.1) is chosen. But, the diffusion coefficient is very large in

smooth region and is relatively small in region where u is less smooth. The ratio between

maximum and minimum diagonal entries is more than 106. Hence, a normalization is

needed.

In this paper, we use D−1(Re) as the normalized residual. Here, (Re) is the residual of

the system (5.1) and D is the corresponding diagonal matrix of system. A normalization

will cure this imbalance. Numerical experiments below demonstrate that this quantity is

able to measure the improvement of the denoising process. From now on, we shall denote

this normalized residual by Re.



A Compound Algorithm of Denoising using PDEs 363

6.2. Inner iteration of AMG method

When the us
i, j

are obtained, the linear system (4.1) with boundary conditions (4.4) and

(4.5) is a linear algebraic system. But, the system (4.1), (4.4) and (4.5) does not possess

diagonal dominance, because the terms of partial differentials of the order 4.

In computation, the AMG method is efficient to solve the system (4.1), (4.4) and (4.5).

The convergence factor of V-cycle of the AMG method is about 0.07. Therefore, in each

outer iteration of fixed point, only one V-cycle of the AMG method is applied for solving

the corresponding linear system. There is no need to have more iteration because the

dominant error is from the outer iteration.

6.3. Improvement of the fixed point method by the Krylov acceleration

The slow convergence of the fixed point iteration can further be improved by the Krylov

acceleration method. In the application of Krylov acceleration, we choose the parameter

s = 4, i.e., we apply the Krylov acceleration every four fixed point iterations. The parameter

K is taken to be 2, i.e., Krylov subspace algorithm with two parameters α1 and α2 is

applied.

The numerical computation demonstrates that the total number of iterations is reduced

to about 30%. The overhead is low, because only simple algebraic operations are needed.

The results demonstrate that the Krylov acceleration method is very efficient to accelerate

the convergence of our fixed point method.

6.4. Stopping criterion

The stopping criterion for the fixed point iteration in this paper is a relative decrease

of the residual by a factor of ǫ, namely,

‖ReN‖L2

‖Re0‖L2

≤ ǫ. (6.1)

It is necessary to adjust the stopping criterion according to noisy level and the initial

residual. The reason is that quantity of the restoration images depends on proper number

of iteration. Some of the noises is kept in the restoration images if the number of iterations

is too small. Some of small structures in the images are smeared if the number of iterations

is too large.

In general, ǫ is taken as 5.0 ∗ 10−3 ∼ 10−4. The ǫ is smaller for images with the strong

noise, because the initial residuals are larger in this case. When the noise is weaker or

initial residual is smaller, ǫ is taken as 5.0 ∗ 10−3.

In our computation, the stopping tolerance ǫ = 2.0 ∗ 10−4 ∼ 5.0 ∗ 10−3, when the

compound algorithm is applied. For ROF model, ǫ = 10−4, because convergence is fast.

For the 4-th order model, ǫ = 5 ∗ 10−4 ∼ 10−4, because denoising needs lager number of

iteration and convergence is slow. The general principle is that the tolerance ǫ is chosen

such that denoising images have high quality.
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6.5. Signal-to-noise ratio (SNRT)

For an exact image u and the observed image z, the SNRT is computed by

SNRT =
||u− u||L2

||(z− u)− (z − u)||L2

,

where

u=
1

|Ω|

∫

Ω

ud xd y

and |Ω| denoted the area of the domain Ω.

The variance of Gaussian noise σ will be listed in our tables, because the variance is

an important index and SNRT has many different definitions.

7. Numerical experiments

In the numerical experiments below, we take the blur operator K to be the identity

matrix. First, two benchmark images are considered here [3, 5]. Then, several practical

images are denoised. In all images, each pixel has value in [0,255].

In computation, the parameter β = 10−24 is taken, and value of α is dependent with

intensity of noise and model. For ROF model, α = 0.2∼ 1.2. The values of α are between

0.001 and 1.0 for 4-th order model. The compound model has the smaller values of α than

ones of ROF model, and α = 0.2∼ 1.1. A Gaussian distribution with mean 0 and variance

σ is added to the original images.

In numerical experiments, we compare results of the equation of order 2, (1.3) and the

equation of order 4, (1.5) with the ones of new compound equation (2.3).

In all tables to be presented in this section, N denotes number of iteration of the fixed

point method, Err2 and Err0 denote errors in L2 and L∞ norm between exact image and

restored image, respectively. CPU time is the computational time required to satisfy given

residual condition (5.1).

All computation is done in a PC computer of model "Lenovo" with double cores and

2.33 GHz.

7.1. Two benchmark images

First, we test the denoising problems for the two benchmark images, the original im-

ages are given in Fig. 2. The resolution of these images are 256*256.

7.1.1. The image of two intensities with weak noise

The results of the equation of order 2, (1.3) and the equation of order 4, (1.5) and the

new compound equation (2.3) are given in Table 1.

The noising image, restorated image of model of the second-order equation, restorated

image of model of the fourth-order equation, and restorated image of model of the com-

pound equation for the image of two intensities are shown in Fig. 3.
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250Figure 2: Original images: two 
olors (left), four 
olors (right).
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250Figure 3: Noising image (up left), restored image of model of the se
ond-order equation (up right),restored image of model of the fourth-order equation (down left), and restored image of model of the
ompound equation (down right) for the image of two intensities, and σ = 10, SNRT= 6.66.
7.1.2. The image of two intensities with strong noise

Now, we consider a denoising problem with strong noise for the image of two intensities.

The results and figures of the three models are in Table 2 and Fig. 4.



366 Q.-S. Chang, X.-C. Tai and L.-L. XingTable 1: Computational results for the image of two intensities and σ = 10, SNRT= 6.66.
Model ǫ N Err2 Err0 CPU time

Equation of order 2 1.0−3 6 3.46 107.41 2.37

Equation of order 4 1.0−3 12 9.92 109.83 8.74

Compound equation 1.0−3 11 3.08 96.23 7.31Table 2: Computational results for the image of two intensities, and σ = 65, SNRT= 1.02.
Model ǫ N Err2 Err0 CPU time

Equation of order 2 2 ∗ 1.0−4 9 9.54 133.16 3.64

Equation of order 4 2 ∗ 1.0−4 24 15.42 118.36 18.10

Compound equation 2 ∗ 1.0−4 23 7.76 126.24 13.48
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250Figure 4: Noising image (up left), restored image of model of the se
ond-order equation (up right),restored image of model of the fourth-order equation (down left), and restored image of model of the
ompound equation (down right) for the image of two intensities, and σ = 65, SNRT= 1.02.
7.1.3. The image of four colors with weak noise

A denoising problem with weak noise for the image of four colors is considered in this

subsection. The computational results and figures of the three models are in Table 3 and

Fig. 5.
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olors, and σ = 10, SNRT= 3.50.
Model ǫ N Err2 Err0 CPU time

Equation of order 2 1.0−3 5 1.76 58.81 1.95

Equation of order 4 1.0−3 10 5.74 88.55 7.04

Compound equation 1.0−3 8 1.58 51.33 5.17Table 4: Computational results for the image of four 
olors, and σ = 40, SNRT= 0.87.
Model ǫ N Err2 Err0 CPU time

Equation of order 2 5.01.0−4 8 5.34 117.42 3.13

Equation of order 4 5 ∗ 1.0−4 25 6.87 91.57 18.04

Compound equation 5 ∗ 1.0−4 10 3.87 84.13 5.54
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250Figure 5: Noising image (up left), restored image of model of the se
ond-order equation (up right),restored image of model of the fourth-order equation (down left), and restored image of model of the
ompound equation (down right) for the image of four 
olors, and σ = 10, SNRT= 3.50.
7.1.4. The image of four colors with strong noise

A denoising problem with stronger noise for the image of four colors is considered. The

computational results and figures of the three models are in Table 4 and Fig. 6.

From the two benchmark images, we know that all three models can restored the
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250Figure 6: Noising image (up left), restored image of model of the se
ond-order equation (up right),restored image of model of the fourth-order equation (down left), and restored image of model of the
ompound equation (down right) for the image of four 
olors, and σ = 40, SNRT= 0.87.
noising images when the noise is weak.

For images with strong noise, the ROF model may remove noise very well, but, smear

sharp angles. The model of 4-th order equation can keep sharp angles, but, is difficult to

remove stronger noise.

IN summary, the new compound algorithm has advantages of the two models, i.e., it

can remove stronger noise and keep sharp angles.

7.2. Lena face image

Now, we consider the denoising problems for Lena face image. The Lena face image

has been considered in many papers and its original image is given in Fig. 7. The resolution

of this image is 51*51.

In the Lane face image, the parameter C1 = 255 is used, because there is no strong

discontinuity in this image.

In Fig. 7, we also plot the contour for image of Lena face.
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ontour of Lena fa
e (right).
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50Figure 8: Noising image (up left), restored image of model of the se
ond-order equation (up right),restored image of model of the fourth-order equation (down left), and restored image of model of the
ompound equation (down right) for the image of Lena fa
e, and σ = 13, SNRT= 3.26.
7.2.1. The image of Lena face with weak noise

The Lena face image with weak noise has been considered in [15], p.13. The results of the

three models are given in Table 5 and Fig. 8. The contour for recovered images of Lena

face is presented in Fig. 9.
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50Figure 9: The plot of the 
ontour for image of Lena fa
e and σ = 13, SNRT= 3.26. Noising image(up left), restored image of model of the se
ond-order equation (up right), restored image of model ofthe fourth-order equation (down left), and restored image of model of the 
ompound equation (downright). Table 5: Computational results for the image of Lena fa
e and σ = 13, SNRT= 3.26.
Model ǫ N Err2 Err0 CPU time

Equation of order 2 3.0−3 6 7.25 38.04 0.09

Equation of order 4 3 ∗ 1.0−3 8 8.32 62.62 0.23

Compound equation 3 ∗ 1.0−3 7 6.58 45.23 0.18Table 6: Computational results for the image of Lena fa
e and σ = 40, SNRT= 1.05.
Model ǫ N Err2 Err0 CPU time

Equation of order 2 5 ∗ 1.0−4 9 13.33 72.78 0.14

Equation of order 4 5 ∗ 1.0−4 31 13.21 65.59 0.79

Compound equation 5 ∗ 1.0−4 22 12.31 84.98 0.59

7.2.2. The image of Lena face with strong noise

Now, we consider a denoising problem with strong noise for the image of Lena face. The

results and figures of the three models are in Table 6 and Fig. 10. The contour for recovered

images of Lena face is presented in Fig. 11.
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50Figure 10: Noising image (up left), restored image of model of the se
ond-order equation (up right),restored image of model of the fourth-order equation (down left), and restored image of model of the
ompound equation (down right) for the image of Lena fa
e, and σ = 40, SNRT= 1.05.
From this example, we know that the denoising image is block-type for ROF model. The

LLT model can keep smoothness of face very well and restored results are satisfactory. The

restored image of the compound model is most closed original image. Especially, it is clear

from the contour images at nose and left position that restored images of the compound

model and the LLT model are good.

7.3. Image of squares and round

Now, we consider the denoising problems for the image of squares and round. Its

original image is given in Fig. 12. The resolution of this image is 150*150.

7.3.1. The image of squares and round with weak noise

The image of squares and round with σ=10 has been considered in [14], p. 5. The results

of the three models are given in Table 7 and Fig. 13.
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50Figure 11: The plot of the 
ontour for image of Lena fa
e, and σ = 40, SNRT= 1.05. Noising image(up left), restored image of model of the se
ond-order equation (up right), restored image of model ofthe fourth-order equation (down left), and restored image of model of the 
ompound equation (downright).
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140Figure 12: Original image of squares and round.
7.3.2. The image of squares and round with strong noise

The results of the three models are given in Table 8 and Fig. 14.

In this noising problem, we consider large variance σ=95. It is clear from previous
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140Figure 13: Noising image (up left), restored image of model of the se
ond-order equation (up right),restored image of model of the fourth-order equation (down left), and restored image of model of the
ompound equation (down right) for the image of squares and round, and σ = 10, SNRT= 10.28.Table 7: Computational results for the image of squares and round and σ = 10, SNRT= 10.28.
Model ǫ N Err2 Err0 CPU time

Equation of order 2 1.0−3 7 5.32 56.82 0.88

Equation of order 4 1.0−3 9 11.85 98.92 2.14

Compound equation 1.0−3 11 4.91 51.83 2.35Table 8: Computational results for the image of squares and round and σ = 95, SNRT= 1.08.
Model ǫ N Err2 Err0 CPU time

Equation of order 2 5 ∗ 1.0−4 8 22.06 200.96 1.06

Equation of order 4 5 ∗ 1.0−4 26 27.18 142.32 6.28

Compound equation 5 ∗ 1.0−4 10 17.60 189.58 1.85

results that the model of 4-th order equation has the smallest errors in L∞ (i.e., "err0") and

can keep shapes of small constructions in the images when noise is strong.

The compound algorithm is better than ROF model and model of LLT. The new com-

pound algorithm can keep the small constructions and remove noise very well.
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140Figure 14: Noising image (up left), restored image of model of the se
ond-order equation (up right),restored image of model of the fourth-order equation (down left), and restored image of model of the
ompound equation (down right) for the image of squares and round, and σ = 95, SNRT= 1.08.
8. Conclusion

The ROF model is a basic model for restoration problems, which can remove strong

noise efficiently and keep edges very clearly. The CPU time of denoising for ROF model is

the smallest in the three models.

We note from the tables that the errors of the LLT model in L∞ are the smallest in the

three models when noise is strong. The results demonstrate that the LLT model can handle

smooth signals and keep small constructions and shapes of the images, especially, shapes

of corners. From the figures, we know that the LLT model may remove noise and obtain

satisfactory restorated images when the noise is weaker. For the Lena face images, the LLT

model give smoother restored results.

In the compound model, the parameters C0 = 0, and Cd = 0.1 are fixed. The parameter

C1 is dependent with discontinuity of the images and is taken as 30–255.

In conclusion, numerical experiments demonstrate that our compound algorithm is

efficient and better than the models of the ROF and LLT for the noising images. The

new algorithm preserves the main advantages of the ROF model and LLT model, in the

sense that it can remove noise and keep small constructions and shapes of the images
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very well. In all tables, the errors of the compound model between the exact images and

corresponding restored images in L2 norm are the smallest among the three models. For

the denoising problems, the restored images of the compound algorithm are the best in the

corresponding restored images.
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