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Abstract. This paper presents a coordinate gradient descent approach for minimizing

the sum of a smooth function and a nonseparable convex function. We find a search

direction by solving a subproblem obtained by a second-order approximation of the

smooth function and adding a separable convex function. Under a local Lipschitzian

error bound assumption, we show that the algorithm possesses global and local linear

convergence properties. We also give some numerical tests (including image recovery

examples) to illustrate the efficiency of the proposed method.
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1. Introduction

We consider a nonsmooth optimization problem of minimizing the sum of a smooth

function and a convex nonseparable function as follows.

min
x

Fc(x)
def
= f (x)+ cP(x), (1.1)

where c > 0, P : Rn → (−∞,∞] is proper, convex, lower semicontinuous (lsc) function,

and f is smooth (i.e., continuously differentiable) on an open subset of Rn containing

domP = {x |P(x) <∞}. In this paper, we assume that P is a nonseparable function in the

form P(x) := ‖Lx‖1, where L 6= I is preferred to be a sparse matrix. In particular, we focus

on a special case of (1.1) defined by

min
x

Fc(x)
def
= f (x)+ c‖Lx‖1, (1.2)
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where L is the first order or second order differentiation matrix. Problem (1.1) with

P(x) = ‖x‖1 and Problem (1.2) arise in many applications, including compressed sens-

ing [9,13,24], signal/image restoration [5,19,23], data mining/classification [3,14,21],

and parameter estimation [8,20].

There has been considerable discussion on the problem (1.1), see for instance [2, 6,

7, 11, 15]. If P is also smooth, then a coordinate gradient descent based on Armijo-type

rule was well developed for the unconditional minimization problem (1.1) in Karmanov

[10, pp. 190–196 and pp. 246–250], where the global convergence and geometrical

convergence are provided if Fc(x) is assumed to be strongly convex. Recently, Tseng and

Yun [22] gave a coordinate gradient descent method with stepsize chosen by an Armijo-

type rule for the problem (1.1) under the assumption that P is (block) separable, where

the coordinates are updated in either the Gauss-Seidel rule or the Gauss-Southwell-r rule

or the Gauss-Southwell-q rule. Moreover, the global convergence and linear convergence

for this method were established. However, the method cannot be employed to solve (1.2)

directly since P(x) = ‖Lx‖1 is no longer a (block) separable function.

Recently, various methods have been considered for image restoration / deblurring/

denoising problems with ℓ1-regularization, see for instance [5,17,19,23,25]. In particular,

Fu et al. [5] gave a primal-dual interior point method for solving the following optimization

problem with ℓ1 regularization:

min
x
‖Ax − b‖22 + c‖Lx‖1, (1.3)

where A is a linear blurring operator, x is the original true image, and b is the observed

blurred image. In each interior point iteration, the linear system is solved by a precondi-

tioned conjugate gradient method. However, the number of conjugate gradient iterations

are still large since the linear system is ill-conditioned and the performance of the precon-

ditioner depends on the support of the blurring function and on how fast such function

decays in spatial domain. Osher et al. [17,25] presented the Bregman iterative algorithm

for solving (1.3) with L being the identity matrix or the first order differentiation matrix.

In each Bregman iteration, we need to solve an unconstrained convex subproblem.

In this paper, we aim to provide a coordinate gradient descent method with stepsize

chosen by an Armijo-type rule to solve the problem (1.2) and (1.3) efficiently, especially

when the problem dimension is large. Our idea is to find a coordinate-wise search direction

by finding a minimum in a subproblem, which is obtained by a strictly convex quadratic

approximate of f and adding a separable function term (derived from P(x) = ‖Lx‖1).

Then, we update the current iterate in the direction of the coordinate-wise minimizer. We

will show that the coordinate-wise minimizer can be sufficient close to the coordinate-wise

minimizer of the subproblem of the sum of the same strictly convex quadratic approxi-

mate of f and P(x) = ‖Lx‖1 if the parameter c is small enough. This approach can be

implemented simply and is capable to solve large-scale problems. We show that our algo-

rithm converges globally if the coordinates are chosen by either the Gauss-Seidel rule or

the Gauss-Southwell-r rule or the Gauss-Southwell-q rule. Moreover, we prove that our

approach with Gauss-Southwell-q rule converges at least linearly based on a local Lips-
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chitzian error bound assumption. Numerical tests (including image recovery examples)

show the efficiency of the proposed method.

Throughout the paper, we use the following notations. Rn denotes the space of n-

dimensional real column vectors, and T denotes transpose. For any x ∈ Rn and nonempty

J ⊆N def
= {1, · · · , n}, x j denotes the j-th component of x , and ‖x‖p = (

∑n
j=1 |x j|p)1/p = 1

for 1 ≤ p ≤ ∞. For simplicity, we write ‖x‖ = ‖x‖2. For n× n real symmetric matrices

A and B, we write A � B (respectively, A ≻ B) to mean that A− B is positive semidefinite

(respectively, positive definite). AJJ = [Ai j]i, j∈J denotes the principal submatrix of A

indexed by J . λmin(A) and λmax(A) denote the minimum and maximum eigenvalues of

A. We denote by I the identity matrix and by 0n the n× n matrix of zero entries. Unless

otherwise specified, {x k} denotes the sequence x0, x1,· · · and, for any integer ℓ ≥ 0,

{x k+ℓ}K denotes a subsequence {x k+ℓ}k∈K with K ⊆ {0,1, · · · }.
The paper is organized as follows. In Section 2, we give a coordinate gradient descent

method for solving our problem. In Section 3, we establish the convergence of our method.

In Section 4 numerical examples are presented to illustrate the efficiency of our proposed

method and apply our approach to the image restoration problems in Section 5. Finally,

the concluding remarks are given in Section 6.

2. The coordinate gradient descent method

In this section, we present the coordinate gradient descent algorithm for solving the

problems (1.2) and (1.3). Since it is assumed that f is smooth, we will replace f by a

second-order approximation based on ∇ f (x) at x . Then we generate a search direction

d by a coordinate descent. In particular, given a nonempty index subset J ∈ N and a

symmetric matrix H ≻ 0n (approximating the Hessian ∇2 f (x)), we determine a search

direction d = dH(x ;J ) by

dH(x ;J ) def
= arg min

d

�
∇ f (x)T d +

1

2
dT Hd + c‖L(x + d)‖1 | d j = 0∀ j /∈ J

�
. (2.1)

Then, we compute the new iterate:

x+ := x +αd ,

where α > 0 is a stepsize. For simplicity, we select the stepsize α by the Armijo rule as

in [22].

We point out that dH(x ;J ) depends on H only through HJJ . It is still difficult to solve

(2.1) since ‖Lx‖1 is nonseparable. Therefore, it is desirable to find an approximation of

dH(x ;J ) via replacing ‖Lx‖1 in (2.1) by a separable convex function. In particular, for

the problem (1.2), we may approximate dH(x ;J ) by

d̃H(x ;J ) def
= arg min

d

�
∇ f (x)T d +

1

2
dT Hd + c‖L‖1‖x + d‖1 | d j = 0∀ j /∈ J

�
. (2.2)
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Remark 2.1. Suppose that H ≻ 0n is a diagonal matrix. It follows from (2.2) that the j-th

components of d̃H(x ;J ) is given by

d̃H(x ;J ) j = −mid{(∇ f (x) j − c‖L‖1)/H j j , x j, (∇ f (x) j + c‖L‖1)/H j j}, j ∈ J ,

where mid{e, f , g} means the median of the scalars e, f , g.

On the closeness between d̃H(x ;J ) and dH(x ;J ), we establish the following result.

Proposition 2.1. Given x ∈ Rn, nonempty J ⊆N and H ≻ λI ≻ 0n. For the problem (1.2),

let d = dH(x ;J ) and d̃ = d̃H(x ;J ) be the solutions of (2.1) and (2.2), respectively. Then

‖d̃ − d‖ ≤ 2
p

n‖L‖1
λ

c. (2.3)

Proof. Let g = ∇ f (x). By the definition of d and d̃ and Fermat’s rule [18, Theorem

10.1],

d ∈ arg min
w
(g +Hd)T w + c‖L(x +w)‖1,

d̃ ∈ arg min
w
(g +Hd̃)T w + c‖L‖1‖(x +w)‖1.

Thus

(g +Hd)T d + c‖L(x + d)‖1 ≤ (g +Hd)T d̃ + c‖L(x + d̃)‖1,

(g +Hd̃)T d̃ + c‖L‖1‖(x + d̃)‖1 ≤ (g +Hd̃)T d + c‖L‖1‖(x + d)‖1.

Adding the above two inequalities and simplifying give rise to

(d̃ − d)T H(d̃ − d)

≤ c(‖L(x + d̃)‖1 −‖L(x + d)‖1) + c‖L‖1
�
‖(x + d)‖1−‖(x + d̃)‖1

�

≤ c‖L(d̃ − d)‖1+ c‖L‖1‖d̃ − d‖1
≤ 2c‖L‖1‖d̃ − d‖1 ≤ 2c

p
n‖L‖1‖d̃ − d‖.

It follows from H ≻ λI and (2.12) that

λ‖(d̃ − d)‖2 ≤ 2c
p

n‖L‖1‖d̃ − d‖.

Dividing both sides by λ‖(d̃ − d)‖ yields (2.3). �

Remark 2.2. From Proposition 2.1, we see that d̃H(x ;J ) is sufficiently close to dH(x ;J )
as the parameter c is small enough. Therefore, in practice, we may replace dH(x ;J ) by

d̃H(x ;J ) since it is easily computable.

Based on the convexity of the function ‖Lx‖1, we have the following descent lemma.
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Lemma 2.1. For any x ∈ Rn, nonempty J ⊆ N and H ≻ 0n, let d = dH(x ;J ) and

g =∇ f (x). Then

Fc(x +αd)≤ Fc(x)+α
�

gT d + c‖L(x + d)‖1 − c‖Lx‖1
�
+ o(α) ∀α ∈ (0,1], (2.4)

gT d + c‖L(x + d)‖1− c‖Lx‖1 ≤ −dT Hd . (2.5)

Proof. It follows from a similar proof in [22, Lemma 2.1]. �

Next, we state the coordinate gradient descent (CGD) method for solving (1.2) as

follows:

Algorithm 2.1. (CGD method)

Step 0. Give x0 ∈ Rn. Let k := 0.

Step 1. Choose a nonempty J k ⊆N and an Hk ≻ 0n.

Step 2. Solve (2.1) for dk = dHk (x k;J k) where x = x k,J = J k, H = Hk.

Step 3. Choose αk
init
> 0 and let αk be the largest element of {αk

init
β j} j=0,1,··· satisfying

Fc(x
k +αkdk)≤ Fc(x

k) +αkθ∆k, (2.6)

where 0< β < 1,0< θ < 1,0≤ γ < 1, and

∆k def
= ∇ f (x k)T dk+ γdkT

Hkdk + c‖L(x k + dk)‖1 − c‖Lx k‖1. (2.7)

Step 4. Define

x k+1 := x k +αkdk.

Then replace k by k+ 1 and go to Step 1.

In Algorithm 2.1, we need to choose an appropriate index subset J k. As in [22], we

may choose the index subset J k in a Gauss-Seidel manner. Based on the definition of L in

(1.2), let J 0, J 1,· · · cover 1,2, · · · , n for every s consecutive iterations, i.e.,

J k ∪J k+1 ∪ · · · ∪J k+s−1 = {1,2, · · · , n}, k = 0,1, · · · ,
where J k includes the linear indices corresponding to the nonzero entries of the row

vectors of the matrix L. We may also choose the index subset J k in a Gauss-Southwell-r

rule. That is, we select J k such that

‖dDk(x k;J k)‖∞ ≥ ν‖dDk(x k)‖∞,

where 0 < ν ≤ 1, Dk ≻ 0n is diagonal, and dD(x)
def
= dD(x ;N ). Finally, we can use the

Gauss-Southwell-q rule to choose the index subset J k, i.e.,

qDk(x k;J k)≤ ν qDk(x k), (2.8)
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where 0< ν ≤ 1, Dk ≻ 0n is diagonal and

qD(x ;J ) def
=

�
∇ f (x)T d +

1

2
dT Dd + c‖L(x + d)‖1− c‖Lx‖1

�

d=dD(x;J )
. (2.9)

Then qD(x ;J ) gives an estimate for the descent in Fc from x to x + dD(x ;J ). By Lemma

2.1, we have that

qD(x)
def
= qD(x ;N )≤ −1

2
dD(x)

T DdD(x)≤ 0.

Remark 2.3. We observe that it is still difficult to find the index subset J k satisfying

the condition (2.8) since ‖Lx‖1 is not separable. From Proposition 2.1, we know that

d̃D(x ;J )→ dD(x ;J ) as c → 0. Therefore, for the small c > 0, we can choose the index

subset J k such that

q̃D(x
k;J k)≤ µ q̃D(x

k) for some 0< µ ≤ 1, (2.10)

where

q̃D(x ;J ) def
=

�
∇ f (x)T d +

1

2
dT Dd + c‖L‖1(‖x + d‖1−‖x‖1)

�

d=d̃D(x;J )
(2.11)

and then check whether the condition (2.8) holds for the selectedJ k and dk = d̃Dk(x k;J k).

Then the CGD method with the Gauss-Southwell-r rule is very simple and can be used for

large-scale applications in signal/image restoration, etc. From the numerical experiments

in Sections 4 and 5, we can observe that it is very efficient to do so when the parameter c

come near to zero (but not necessarily too small).

Remark 2.4. In Step 2 of Algorithm 2.1, we need to solve (2.1) for dk = dHk(x k;J k).

By Proposition 2.1, we may approximate dHk (x k;J k) by d̃Hk(x k;J k) defined in (2.2) if

the parameter c is sufficiently small. The solution d̃Hk (x k;J k) to (2.2) has an explicit

expression if Hk ≻ 0n is diagonal, see Remark 2.1. From the numerical tests in Sections 4

and 5, one can see that d̃Hk(x k;J k) is an effective approximation to dHk(x k;J k) when c

is as small as practice-acceptable.

Finally, in Step 3 of Algorithm 2.1, we use the Armijo rule for choosing the stepsize αk.

In this step, we need only function evaluations. In practice, we can keep the number of

function evaluations small if αk
init

is chosen based on the previous stepsize αk−1.

We will see that all the above three rules yield global convergence of the CGD method

for the problem (1.1). We will also show that the CGD method with the Gauss-Southwell-q

rule gives rise to at least a linear convergence rate under a local Lipschitizian error bound

assumption.

2.1. Properties of search direction

In this section, we shall discuss the properties of the search direction dH(x ;J ). These

properties can be employed for the proof of global convergence and local convergence rate

of the CGD method.
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On the sensitivity of dH(x ;J ) with respect to the quadratic coefficients H, we have the

following lemma. Since the proof is similar to that of Lemma 3 in [22], we omit it.

Lemma 2.2. For any x ∈ Rn, nonempty J ⊆ N , and H ≻ 0n, eH ≻ 0n, let d = dH(x ;J )
and ed = d eH(x ;J ). Then

‖d̃‖ ≤ 1

2

�
1+λmax(R)+
p

1− 2λmin(R)+λmax(R)
2
� λmax(HJJ )

λmin( eHJJ )
‖d‖,

where R= H
−1/2
JJ eHJJ H

−1/2
JJ . If HJ J ≻ eHJJ , then also

‖d‖ ≤
s
λmax(HJJ − eHJ J )
λmin(HJJ − eHJ J )

‖d̃‖.

The following result concerns stepsizes satisfying the Armijo descent condition (2.6),

which can be proved by following the similar proof lines of [22, Lemma 5 (b)].

Lemma 2.3. For any x ∈ Rn, H ≻ 0n, and nonempty J ⊆ N , let d = dH(x ;J ) and

g =∇ f (x). For any γ ∈ [0,1), let∆= gT d+γdT Hd+ c‖L(x+d)‖1− c‖Lx‖1. If f satisfies

‖∇ f (y)−∇ f (z)‖ ≤ ζ‖y − z‖ ∀ y, z ∈ Rn (2.12)

for some ζ > 0, and H � λI , where λ > 0, then the descent condition

Fc(x +αd)− Fc(x)≤ θα∆
is satisfied for any θ ∈ (0,1) whenever 0≤ α ≤min{1,2λ(1− θ + θγ)/ζ}.

3. Convergence analysis

In this section, we establish the global and linear convergence of Algorithm 2.1. As in

[22], we know that x ∈ Rn is called a stationary point of Fc if x ∈ domFc and F ′c(x ; d)≥ 0

for all d ∈ Rn.

Assumption 3.1. λI ≤ Hk ≤ λ̄I for all k, where 0< λ≤ λ̄.

By following similar arguments in [22, Theorem 1], we can show the following global

convergence of Algorithm 2.1.

Lemma 3.1. Let {x k}, {dk}, {Hk} be sequences generated by the CGD method under Assump-

tion 3.1, where infk α
k
init
> 0. Then the following results hold.

(a) {Fc(x
k)} is nonincreasing and ∆k given by (2.7) satisfies

−∆k ≥ (1− γ)dkT
Hkdk ≥ (1− γ)λ‖dk‖2 ∀k, (3.1)

Fc(x
k+1)− Fc(x

k)≤ θαk∆k ≤ 0 ∀k. (3.2)
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(b) If {x k}K is a convergent subsequence of {x k}, then {αk∆k} → 0 and {dk}K → 0. If in

addition δI ≤ Dk ≤ δ̄I for all k, where 0< δ ≤ δ̄, then {dDk(x k;J k)}K → 0.

(c) If {J k} is chosen by the Gauss-Southwell-q rule (2.8), δI ≤ Dk ≤ δ̄I for all k, where

0< δ ≤ δ̄, and either (1) ‖Lx‖1 is continuous on Rn or (2) infk α
k > 0 or (3) αk

init
= 1

for all k, then every cluster point of {x k} is a stationary point of Fc .

(d) If f satisfies (2.12) for some ζ ≥ 0, then infk α
k > 0. If limk→∞ Fc(x

k) > −∞ further-

more, then {∆k} → 0 and {dk} → 0.

Now we establish the convergence rate of the CGD method for {J k} chosen by the

Gauss-Southwell-q rule (2.8). We need the following assumption as in [22]. In the follow-

ing, X̄ denotes the set of stationary points of Fc and

dist(x , X̄ ) =min
x̄∈X̄
‖x − x̄‖ ∀x ∈ Rn.

Assumption 3.2. (a) X̄ 6= ; and, for any ξ ≥ minx Fc(x), there exist scalars τ > 0 and

ε > 0 such that

dist(x , X̄ )≤ τ‖dI(x)‖ whenever Fc(x)≤ ξ,‖dI (x)‖ ≤ ε.

(b) There exists a scalar δ > 0 such that

‖x − y‖ ≥ δ whenever x , y ∈ X̄ , Fc(x) 6= Fc(y).

On the asymptotic convergence rate of the CGD method under Assumption 3.2, we

have the following theorem. The proof technique is taken from [22] but noting the non-

separability of ‖Lx‖1.

Theorem 3.1. Assume that f satisfies (2.12) for some ζ ≥ 0. Let {x k}, {Hk}, {dk} be

sequences generated by the CGD method satisfying Assumption 3.1, where {J k} is chosen

by Gauss-Southwell-q rule (2.8) and δI ≤ Dk ≤ δ̄I for all k (0 ≤ δ ≤ δ̄). If Fc satisfies

Assumption 3.2 and supk α
k
init
≤ 1 and infk α

k
init
> 0, then either {Fc(x

k)} ↓ −∞ or {Fc(x
k)}

converges at least Q-linearly and {x k} converges at least R-linearly.

Proof. For each k = 0,1, · · · and dk = dHk(x k;J k), by (2.7)-(2.9), we have

∆k+

�
1

2
− γ
�

dkT
Hkdk = gkT

dk +
1

2
dkT

Hkdk+ c‖L(x k + dk)‖1 − c‖Lx k‖1

≤ gkT
d̃k +

1

2
(d̃k)T Hk d̃k + c‖L(x k + d̃k)‖1 − c‖Lx k‖1

≤ qDk(x k;J k) +
1

2
(d̃k)T (Hk − Dk)d̃k

≤ qDk(x k;J k) + (λ̄− δ)‖d̃k‖2, (3.3)
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where d̃k := dDk(x k;J k). For each k,

δ

λ̄
I � δ(Hk

J kJ k )
−1 � (Hk

J kJ k )
−1/2Dk

J kJ k(H
k

J kJ k)
−1/2 � δ̄(Hk

J kJ k)
−1 � δ̄

λ
I .

Then, by Lemma 2.2, we obtain

‖d̃k‖ ≤ 1+ δ̄/λ+
p

1− 2δ/λ̄+ (δ̄/λ)2

2

λ̄

δ
‖dk‖.

This, together with (3.3), implies that

∆k +

�
1

2
− γ
�

dkT
Hkdk ≤ qDk(x k;J k) +ω‖dk‖2, (3.4)

where ω is a constant depending on λ̄, λ, δ̄, and δ.

By Lemma 3.1 (a), {Fc(x
k)} is nonincreasing. Then either {Fc(x

k)} ↓ −∞ or

limk→∞ Fc(x
k) > −∞. Suppose the latter. Since infk α

k
init
> 0, Lemma 3.1 (d) implies

that infk α
k > 0, {∆k} → 0, and {dk} → 0. Since {Hk} is bounded by Assumption 3.1, by

(3.4), we get limk→∞ infqDk(x k;J k)≥ 0. By (2.9) and (2.5) in Lemma 2.1, we have that

qDk(x k)≤ −1

2
dDk(x k)T DkdDk(x k)≤ 0.

Also, using (2.8), we obtain {dDk(x k)} → 0.

By Lemma 2.2 with H = Dk and H̃ = I ,

‖dI(x
k)‖ ≤ 1+ 1/δ+

p
1− 2/δ̄+ (1/δ)2

2
δ̄ ‖dDk(x k)‖ ∀k. (3.5)

Thus {dI(x
k)} → 0. Since {Fc(x

k)} is nonincreasing, it follows that Fc(x
k) ≤ Fc(x

0) and

‖dI(x
k)‖ ≤ ε for all k ≥ some k̄. Then, by Assumption 3.2 (a), we get

‖x k − x̄ k‖ ≤ τ‖dI(x
k)‖ ∀k ≥ k̄, (3.6)

where τ > 0 and x̄ k ∈ X̄ satisfies ‖x k − x̄ k| = dist(x k, X̄ ). Since {dI (x
k)} → 0, this implies

that {x k − x̄ k} → 0. Since {x k+1 − x k} = {αkdk} → 0, this and Assumption 3.2 (b) imply

that { x̄ k} eventually settles down at some isocost surface of Fc , i.e., there exist an index

k̂ ≥ k̄ and a scalar v̄ such that

Fc( x̄
k) = v̄ ∀k ≥ k̂. (3.7)

Fix any index k with k ≥ k̂. Since x̄ k is a stationary point of Fc , we obtain

∇ f ( x̄ k)T (x k− x̄ k) + c‖Lx k‖1 − c‖L x̄ k‖1 ≥ 0.

By the Mean Value Theorem, there exists some ψk lying on the line segment joining x k

with x̄ k such that

f (x k)− f ( x̄ k) =∇ f (ψk)T (x k− x̄ k).
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Since x k, x̄ k ∈ Rn, so does ψk. Combing these two relations and using (3.7), we get

v̄ − Fc(x
k)≤
�
∇ f ( x̄ k)−∇ f (ψk)

�T
(x k − x̄ k)

≤ ‖∇ f ( x̄ k)−∇ f (ψk)‖‖x k− x̄ k‖
≤ ζ‖x k − x̄ k‖2,

where the last inequality uses (2.12), the convexity of Rn, and ‖ψk − x̄ k‖ ≤ ‖x k − x̄ k‖.
This together with {x k − x̄ k} → 0 shows that

lim inf
k→∞

Fc(x
k)≥ v̄. (3.8)

Fix any k ≥ k̂. Letting J = J k, we have

Fc(x
k+1)− v̄

= f (x k+1) + c‖L(x k+1)‖1 − f ( x̄ k)− c‖L x̄ k‖1
=∇ f ( x̃ k)T (x k+1− x̄ k) + c‖L(x k+1)‖1 − c‖L x̄ k‖1
= (∇ f ( x̃ k)− gk)T (x k+1− x̄ k)− (Dkdk)T (x k+1− x̄ k) + γk,

where the Mean Value Theorem with x̃ k a point lying on the segment joining x k+1 with

x̄ k, and

γk = (g
k + Dkdk)T (x k+1− x̄ k) + c‖L(x k+1)‖1 − c‖L x̄ k‖1

= (gk + Dkdk)T (x k − x̄ k) +αk(gk + Dkdk)T dk + c‖L(x k+1)‖1 − c‖L x̄ k‖1
≤ (gk + Dkdk)T (x k − x̄ k) +αkc‖Lx k‖1 −αkc‖L(x k + dk)‖1
+ c‖L(x k+1)‖1 − c‖L x̄ k‖1

= (gk + Dkdk)T (x k − x̄ k) +αkc‖Lx k‖1 −αkc‖L(x k + dk)‖1
+ c‖L
�
αk(x k+ dk) + (1−αk)x k

�
‖1 − c‖L x̄ k‖1

≤ (gk + Dkdk)T (x k − x̄ k) +αkc‖Lx k‖1 −αkc‖L(x k + dk)‖1
+αkc‖L(x k + dk)‖1+ (1−αk)c‖Lx k‖1− c‖L x̄ k‖1

= (gk + Dkdk)T (x k − x̄ k) + c‖Lx k‖1 − c‖L x̄ k‖1
= (Dkdk)T (x k− x̄ k)− 1

2

�
DkdDk(x k)
�T
(x k− x̄ k)

+

�
gk +

1

2
DkdDk(x k)

�T
(x k− x̄ k)− c‖L x̄ k‖1 + c‖Lx k‖1.

In the second step above, we used x k+1 − x̄ k = x k − x̄ k + αkdk; the third step uses (2.5)

in Lemma 2.1 (applied to x k, Dk, and J k); the fifth step uses the convexity of ‖Lx‖1,

αk ≤ αk
init
≤ 1.
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Combining the above results, we obtain

Fc(x
k+1)− v̄

≤ ζ‖ x̃ k − x k‖‖x k+1− x̄ k‖+ δ̄‖dk‖‖x k+1− x̄ k‖+ δ̄‖dk‖‖x k − x̄ k‖
+

1

2
δ̄‖dDk(x k)‖‖x k − x̄ k‖− qDk(x k), (3.9)

where (2.12), 0n ≺ Dk � δ̄I and (2.9) have been used.

By the inequalities ‖ x̃ k − x k‖ ≤ ‖x k+1 − x k‖ + ‖x k − x̄ k‖, ‖x k+1 − x̄ k‖ ≤ ‖x k+1 −
x k‖+ ‖x k − x̄ k‖, and ‖x k+1− x k‖ = αk‖dk‖, we observe from (3.6) and Dk ≻ 0n that the

right-hand side of (3.9) is bounded above by

C1

�
‖dk‖+ ‖dDk(x k)‖+ ‖dI (x

k)‖
�2 − qDk(x k) (3.10)

for all k ≥ k̂, where C1 > 0 is some constant depending on ζ, τ, δ̄ only. By (3.5), the

quantity in (3.10) is bounded above by

C2‖dk‖2 + C2‖dDk(x k)‖2 − qDk(x k) (3.11)

for all k ≥ k̂, where C2 > 0 is some constant depending on ζ, τ, δ, δ̄ only.

By (3.1), we have

λ‖dk‖2 ≤ dkT
Hkdk ≤ − 1

1− γ∆
k ∀k. (3.12)

By (2.9) and Dk � δI ,

qDk(x k)≤ −1

2
dDk(x k)T DkdDk(x k)≤ −δ

2
‖dDk(x k)‖2 ∀k.

Thus, the quantity in (3.11) is bounded above by

C3

�
−∆k − qDk(x k)

�
(3.13)

for all k ≥ k̂, where C3 > 0 is some constant depending on ζ, τ, λ, δ, δ̄, γ only.

By (2.8), we have

qDk(x k;J k)≤ νqDk(x k). (3.14)

By (3.4) and (3.12),

−qDk(x k;J k)≤ −∆k +

�
γ− 1

2

�
dkT

Hkdk +ω‖dk‖2

≤ −∆k −max

�
0,γ− 1

2

�
1

1− γ∆
k − ω

λ(1− γ)∆
k. (3.15)

Combining (3.14) and (3.15), the quantity in (3.13) is bounded above by

−C4∆
k (3.16)
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for all k ≥ k̂, where C4 > 0 is some constant depending on ζ, τ, λ, λ̄, δ, δ̄, γ, ν only.

Therefore, the right-hand side of (3.9) is bounded above by −C4∆
k for all k ≥ k̂. This,

together with (3.2), (3.9), and infk α
k > 0 yields

Fc(x
k+1− v̄)≤ C5(Fc(x

k)− Fc(x
k+1)) ∀k ≥ k̂,

where C5 = C4/(θ infk α
k). Upon rearranging terms and using (3.8), we get

0≤ Fc(x
k+1)− v̄ ≤ C5

1+ C5

(Fc(x
k)− v̄) ∀k ≥ k̂,

and so {Fc(x
k)} converges to v̄ at least Q-linearly.

Finally, by (3.2), (3.12), and x k+1− x k = αkdk, we obtain

θ(1− γ)λ‖x
k+1− x k‖2
αk

≤ Fc(x
k)− Fc(x

k+1) ∀k ≥ k̂.

It follows that

‖x k+1− x k‖ ≤
È

supk α
k

θ(1− γ)λ(Fc(x
k)− Fc(x

k+1)) ∀k ≥ k̂.

Since {Fc(x
k)− Fc(x

k+1)} → 0 at least R-linearly and supk α
k ≤ 1, {x k} converges at least

R-linearly. �

4. Numerical results

In this section, we will present some numerical tests to illustrate the efficiency of Al-

gorithm 2.1. All runs are carried out in MATLAB 7.6 running on a notebook PC of 2.5 GHz

Intel(R) Core(TM)2 Duo CPU. We implement the CGD Algorithm 2.1 to solve the following

minimization problems with ℓ1-regularization:

min
x

Fc(x)
def
= f (x)+ c‖Lx‖1, (4.1)

where the matrix L is given by

L =




1 −1

1 −1
...

. . .

1 −1



∈ R(n−1)×n (4.2)

or

L =




2 −1

−1 2 −1
...

. . .
. . .

−1 2 −1

−1 2



∈ Rn×n. (4.3)
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tions.
Name n Description

BT 1000 Broyden tridiagonal function, nonconvex, with sparse Hessian

BAL 1000 Brown almost-linear function, nonconvex, with dense Hessian

TRIG 1000 Trigonometric function, nonconvex, with dense Hessian

LR1 1000 f (x) =
n∑

i=1

�
i

�
n∑

j=1

j x j

�
− 1

�2
, convex, with dense Hessian

LFR 1000 f (x) =
n∑

i=1

�
x i − 2

n+1

n∑
j=1

x j − 1

�2
+

�
2

n+1

n∑
j=1

x j + 1

�2
,

strongly convex, with dense Hessian

For the function f in (4.1), we choose several nonconvex and convex test functions

with n = 1000 from the set of nonlinear least square functions used by Moré et al. [16].

These functions are shown in Table 1.

In our experiments, we choose the diagonal Hessian approximation

Hk = diag
�

min{max{∇2 f (x k) j j , 10−2}, 109}
�

j=1,··· ,n ,

for Problem (4.1). When∇2 f is ill-conditioned, the Armijo descent condition (2.6) eventu-

ally cannot be satisfied by any αk > 0 due to cancelation error in the function evaluations.

Also, in MATLAB 7.6, floating point substraction is accurate up to 15 digits only. In these

cases, no further progress is possible so we exit the method when (2.6) remains unsatisfied

after αk reaches 10−15.

To use the CGD approach to solve our problems, we need to solve (2.1), which is not

separable and then poses the computational challenges, especially for large-scale cases.

By Remark 2.4, d̃H(x ;J ) defined in (2.2) is a good approximation to dH(x ;J ) defined

in (2.1) if c is close to zero. Thus we can replace dH(x ;J ) by d̃H(x ;J ) in practice. In

addition, since the Hessian approximation H ≻ 0n is chosen to be diagonal, d̃H(x ;J ) is

given explicitly, see Remark 2.1.

On the other hand, the index subset J k is chosen by either (i) the Gauss-Seidel rule,

where J k cycles through {1,2}, {2,3},· · · ,{n−1, n} in that order for B as in (4.2) (for B as in

(4.3), J k cycles through {1,2,3}, {2,3,4},· · · ,{n−2, n−1, n}) or (ii) the Gauss-Southwell-r

rule (Dk = Hk)

J k =
¦

j | |d̃Dk(x k; j)| ≥ νk‖d̃Dk(x k)‖∞
©

, νk+1 =





max{10−4,νk/10} if αk > 10−3,

min{0.9,50νk} if αk < 10−6,

νk else

(4.4)
(initially ν0 = 0.5) or (iii) the Gauss-Southwell-q rule

J k =

§
j | q̃Dk (xk; j) ≤ νk min

i
q̃Dk (xk; i)

ª
, νk+1 =





max{10−4,νk/10} if αk > 10−3,

min{0.9,50νk} if αk < 10−6,

νk else

(4.5)
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al results for the test fun
tions ( "*" means that CGD exited due to an Armijo stepsizerea
hing 10−15 and "‡" means that ν k+1 =max{10−5,ν k/10} if αk ≥ 10−3).
L is set to be (4.2)

Name c Rule (i) Rule (ii) Rule (iii)it./obj./
pu. it./obj./
pu. it./obj./
pu.
BT 1 3991/11.5906/4.8 1/0.74036/0.08 ‡8/0.73116/0.1

0.1 6986/11.1572/8.0 1/0.04722/0.1 ‡16/0.04722/0.1

0.01 6986/13.5325/8.0 1/0.00433/0.1 ‡25/0.00433/0.1

0.001 6986/13.8458/8.0 1/0.00043/0.2 ‡36/0.00043/0.2

BAL 1 5/122887/0.6 5/0.00135/0.5 5/0.00135/0.5

0.1 5/122659/0.5 5/0.00018/0.4 5/0.00018/0.4

0.01 5/122637/0.5 5/0.00001/0.5 5/0.00001/0.4

0.001 5/122634/0.6 5/0.00000/0.4 5/0.00000/0.4

TRIG 1 *1/0.00008/0.3 1/0.00000/0.3 1/0.00000/0.2

0.1 *1/0.00008/0.4 1/0.00000/0.3 1/0.00000/0.2

0.01 *1/0.00008/0.4 1/0.00000/0.2 1/0.00000/0.3

0.001 *1/0.00008/0.2 1/0.00000/0.3 1/0.00000/0.3

LR1 1 14/224236/0.5 7/978562/0.7 5/254.1/0.5

0.1 14/22648/0.6 7/978558/0.6 5/251.2/0.6

0.01 14/2489/0.5 7/6285090.8 5/251.0/0.6

0.001 14/473/0.5 7/628509/0.7 5/250.9/0.7

LFR 1 999/1005/9.9 1/1001/0.08 1/1001/0.03

0.1 999/15.2/9.7 1/11/0.05 1/11/0.06

0.01 999/5.1/9.3 1/1.1/0.03 1/1.1/0.02

0.001 999/5.0/9.2 1/1.0/0.05 1/1.0/0.03

(initially µ0 = 0.5) satisfying (2.8) with d = d̃(x ;J ) for some 0< µ ≤ 1, where q̃D(x ;J )
is defined by (2.11). The Gauss-Southwell-q rule is based on Remark 2.3.

For simplicity, in Algorithm 2.1, we set θ = 0.1, β = 0.5, γ = 0, α0
init
= 1, and α0

init
=

min{αk−1/β , 1} for all k ≥ 1. The stopping tolerance for Algorithm 2.1 is set to be

‖x k+1− x k‖ ≤ 10−4.

Now, we report the performance of Algorithm 2.1 using the rules (i), (ii) and (iii).

Tables 2-3 display the number of CGD iterations, the final objective function value, and

the CPU time (in seconds) for four different values of c. From Tables 2 and 3, we observe

that Rules (ii) and (iii) behaviors better than Rule (i) for the test functions BT, BAL, TRIG,

and LFR. However, for the test function LR1 whose Hessian are far from being diagonally

dominant, Rules (ii) and (iii) are slower than Rule (i) in CPU time but Rule (iii) performs

better than Rules (i) and (ii) in minimizing the objective function value.

5. Application to image restoration

In this section, we apply the CGD algorithm to image restoration examples.
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al results for the test fun
tions ("*" means that CGD exited due to an Armijo stepsizerea
hing 10−15.
L is set to be (4.3)

Name c Rule (i) Rule (ii) Rule (iii)it./obj./
pu. it./obj./
pu. it./obj./
pu.
BT 1 1997/11.9552/2.7 *6/4.7574/0.02 *8/3.5911/0.02

0.1 3994/10.3078/4.8 14/0.10141/0.03 36/0.13934/0.2

0.01 5990/10.1676/7.3 23/0.00996/0.2 90/0.01118/0.4

0.001 7973/10.1573/9.1 32/0.00099/0.1 150/0.00101/0.5

BAL 1 16/122307/1.5 6/2.0055/0.6 6/2.0055/0.7

0.1 17/120820/1.5 5/0.20033/0.5 5/0.20033/0.4

0.01 17/120671/1.5 5/0.02003/0.5 5/0.02003/0.5

0.001 17/120657/1.6 5/0.00200/0.5 5/0.00200/0.3

TRIG 1 *1/0.00208/0.4 1/0.00000/0.3 1/0.00000/0.3

0.1 *1/0.00028/0.4 1/0.00000/0.3 1/0.00000/0.2

0.01 *1/0.00001/0.4 1/0.00000/0.3 1/0.00000/0.3

0.001 2/0.00009/0.4 1/0.00000/0.3 1/0.00000/0.3

LR1 1 12/415602/0.4 7/978567/0.8 5/257.6/0.5

0.1 12/41795/0.4 7/978558/0.7 5/251.6/0.6

0.01 12/4414/0.4 7/784234/0.7 5/251.0/0.5

0.001 13/676/0.4 7/628509/0.9 5/250.9/0.5

LFR 1 997/1007/9.5 1/1001/0.1 1/1001/0.1

0.1 997/45.5/9.5 1/41.2/0.06 1/41.2/0.06

0.01 997/5.5/9.3 1/1.4/0.02 1/1.4/0.05

0.001 997/5.0/9.7 1/1.0/0.03 1/1.0/0.03

Example 1. We test the 128×128 Cameraman image (See Fig. 1(a)). The blurring function

is given by

a(y, z) = exp[−0.5 ∗ (y2 + z2)].

The observed image is represented by the vector of the form of b = Ax∗+ η, where A is a

BTTB matrix and x∗ is a vector formed by row ordering the original image.

We use Algorithm 2.1 to solve the following minimization problem with ℓ1-regularization:

min
x

Fc(x)
def
= ‖Ax − b‖22 + c‖Lx‖1, (5.1)

where L is given as in (4.2) or (4.3).

Fu et al. [5] provided a primal-dual interior point method for image restoration by solv-

ing (5.1). In each interior point iteration, we need to solve a ill-conditioned linear system.

Osher et al. [17, 25] gave the Bregman iterative algorithm for solving (5.1) with L being

the identity matrix or the first order differentiation matrix. In each Bregman iteration, we

need to solve an unconstrained convex subproblem. For our algorithm, if we choose a diag-

onal matrix H ≻ 0n and the parameter c is sufficiently small, then, by Proposition 2.1, the

search direction = dH(x ;J ) in (2.1) may be approximated by d̃H(x ;J ) defined in (2.2),

which is easy to solve, see Remark 2.1. In addition, from Section 4, the index subset J can
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(g) Restored ImageFigure 1: Original, observed, initial guess, and restored images of Cameraman for L as in (4.2) (left)and (4.3) (right).
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al results for the image restoration ("*" means that the 
ondition (2.8) is not satis�ed).
L is set to be (4.2)

c Rule (i) Rule (ii) Rule (iii)it./hd./ obj./ 
pu./res0./res*. it./hd./ obj./ 
pu./res0./res*. it./hd./ obj./
pu./res0./res*.
0.1 81/6.0/734265/131/0.0892/0.0888 170/0.49/19591/266/0.0892/0.0489 *20/3.95/33616/32.9/0.0891/0.0648

0.01 81/6.2/724597/131/0.0891/0.0887 170/0.51/6574/266/0.0892/0.0491 *131/0.65/7405/215/0.0892/0.0513

0.001 81/6.3/723219/131/0.0892/0.0888 169/0.52/5291/275/0.0892/0.0493 171/0.52/5277/278/0.0892/0.0492

0.0001 81/6.2/723265/134/0.0892/0.0888 170/0.54/5282/277/0.0891/0.0492 171/0.53/5133/277/0.0892/0.0494

L is set to be (4.3)

c Rule (i) Rule (ii) Rule (iii)it./hd./ obj./ 
pu./res0./res*. it./hd./ obj./ 
pu./res0./res*. it./hd./ obj./
pu./res0./res*.
0.1 208/7.4/724955/341/0.0891/0.0885 170/0.53/22096/274/0.0891/0.0489 *21/3.81/33322/34.2/0.0891/0.0647

0.01 209/6.0/715157/335/0.0891/0.0885 169/0.52/6743/271/0.0893/0.0492 *136/0.67/7318/221/0.0892/0.0512

0.001 209/6.1/714234/336/0.0891/0.0885 170/0.54/5450/279/0.0891/0.0491 170/0.55/5364/277/0.0892/0.0494

0.0001 209/5.9/714008/335/0.0892/0.0886 170/0.52/5219/271/0.0891/0.0492 171/0.51/5133/281/0.0892/0.0493

be chosen by Rules (i), (ii), or (iii) which is easy to check. Also, the main computational

cost of our algorithm lies in the computations of ∇ f (x) and function evaluations Fc(x)

(which is needed in the Armijo rule). This requires the matrix-vector products Ax and AT x

which can be computed by fast transforms. In the following, we present some numerical

tests to show that our approach is effective for image restoration.

In our tests, the noise η is set to Gaussian white noise with noise-to-signal ratio of 40

dB. We also set the initial guess image x0 to be the solution of the following linear equation

(c0 I + A∗A)x0 = A∗b, (5.2)

where c0 is a suitable parameter. For simplicity, we fix c0 = 0.05 and solve the above

linear equation by the PCG method with the block-circulant preconditioner as in [12]. In

the PCG method, we use the zero vector as the initial point and the stopping criteria is

‖r i‖2/‖A∗b‖2 ≤ 10−7, where r i is the residual after i iterations.

In our experiments, we choose the diagonal Hessian approximation

Hk = diag
�

min{max{∇2 f (x k) j j , 10−2}, 109}
�

j=1,··· ,n ,

for Problem (5.1) with f (x) = ‖Ax− b‖22. For simplicity, in Algorithm 2.1, the index subset

J k is chosen by Rules (i), (ii), or (iii), the other parameters are set as in Section 4. In our

numerical tests, we terminate Algorithm 2.1 when

‖x k+1− x k‖/‖b‖ ≤ 10−4

and the maximal number of CGD iterations is less than 500.

Our numerical results are included in Table 4, where it., obj., hd., 
pu., res0.
and res*. stand for the number of the CGD iterations, the final objective value, the value

‖HkdHk (x k)‖∞ at the final iteration, the cpu time (in seconds), and the relative residuals

‖x k−x∗‖/‖x∗‖ at the starting point x0 and at the final iterate of our algorithm, respectively.

From Table 4, it is obvious that Rules (ii) and (iii) perform typically better than Rule

(i) in terms of reducing the objective function value and the relative residual. However, as

the parameter c is larger, Algorithm 2.1 with Rules (iii) may stop before the convergence

since d̃D(x ;J ) may be far away from dD(x ;J ). This agrees with our prediction.
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Figure 2: Convergen
e history of the CGD method for Problem (5.1). (a) L as in (4.2); (b) L as in(4.3).
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Figure 3: The obje
tive fun
tion value Fc(x
k) versus the number of the CGD iterations for Problem(5.1). (a) L as in (4.2); (b) L as in (4.3).

Fig. 1 shows the original, observed, initial guess, and restored images of Cameraman

for Rule (iii) with c = 0.001.

To further illustrate the performance of the proposed method, in Figs. 2 and 3, we

display the convergence history of Algorithm 2.1 for different rules with c = 0.001. We

see from Fig. 2 that the proposed algorithm with Rules (ii) and (iii) works more efficiently.

Also, we plot the natural logarithm of the objective function value versus the number of

CGD iterations in Fig. 3 for different rules with c = 0.001. From Fig. 3, we can observe that

the objective function value with Rule (i) is almost unchanged while the objective function

value with Rules (ii) and (iii) decreases very fast. This shows that, the direction d̃D(x ;J )
is a feasible approximation to dD(x ;J ), especially when c is small.

Example 2. We consider the image deblurring problem. Let x ∈ Rn be the underlying
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image. Then the observed blurred image b ∈ Rn is given by

b = Ax +η, (5.3)

where η ∈ Rn is a vector of noise and A ∈ Rn×n is a linear blurring operator, see for

instance [5].

We solve (5.3) in a tight frame domain. Let F be an n×m matrix whose column vectors

form a tight frame in Rn, i.e., F F T = I . Moreover, we suppose that the original image x

has a sparse approximation under F . Thus (5.3) turns into

b = AFu+η.

Then the underlying solution is given by x = Fu.

For the purpose of demonstration, the tight frame F is generated from the piecewise

linear B-spline framelet and the coarsest decomposition level is set to be 4. The three filters

are given by

h0 =
1

4
[1,2,1], h1 =

p
2

4
[1,0,−1], h2 =

1

4
[−1,2,−1].

Furthermore, the matrix F is the reconstruction operator and F T is the decomposition

operator of underlying tight framelet system, see [4] for the generation of the matrix F .

We apply the CGD algorithm to solve the following minimization problem:

min
u

Fc(u)
def
= ‖AFu− b‖22 + c1‖LFu‖1 + c2‖u‖1, (5.4)

where c1, c2 > 0 and L is given as in (4.2) or (4.3). Similarly, the index subset J k is chosen

by Rules (i), (ii), and (iii) in Section 4 with x k = uk and f (u) := ‖AFu− b‖22, where the

approximate search direction d̃D(u;J ) is defined by

d̃D(u;J ) def
= arg min

d

�
∇ f (u)T d +

1

2
dT Dd + (c1‖B‖1‖F‖2 + c2)‖u+ d‖1 | d j = 0∀ j /∈ J

�
, (5.5)

and q̃(u) is given by

q̃D(u;J ) def
=

�
∇ f (u)T d +

1

2
dT Dd + (c1‖B‖1‖F‖2 + c2)(‖u+ d‖1 −‖u‖1)

�

d=d̃D(u;J )
.

(5.6)

The other parameters in Algorithm 2.1 are set as in Section 4.

Remark 5.1. Following the similar proof of Proposition 2.1 in Section 2, we can also show

that, for D � δI ≻ 0n,

‖d̃D(u;J )− dD(u;J )‖ ≤ 2
p

n

δ
(‖L‖1‖F‖2c1 + c2).

This shows that d̃D(x ;J )→ dD(x ;J ) as c1, c2→ 0.
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al results for the 256×256 Cameraman image 
onvolved by a 15×15 Gaussian kernelof σb = 2 and 
ontaminated by a Gaussian white noise of varian
e σ2 ("*" means that the 
ondition(2.8) is not satis�ed).
σ = 2 and L is set to be (4.2)

c1 c2 Rule (i) Rule (ii) Rule (iii)it./ nz./ obj./
pu./res0./res*. it./ nz./ obj./
pu./res0./res*. it./ nz./ obj./
pu./res0./res*.
1 1 153/479/1.1e9/264/1/0.999 237/153326/1.1e7/517/1/0.134 *66/264107/1.2e7/240/1/0.146

0.1 0.1 153/2142/1.1e9/265/1/0.999 85/817471/1.7e6/190/1/0.132 84/679553/1.7e6/310/1/0.132

0.001 0.1 153/2736/1.1e9/265/1/0.999 82/1223976/1.7e6/187/1/0.132 82/927371/1.7e6/300/1/0.132

0.0001 0.01 153/4249/1.1e9/264/1/0.999 82/1916809/6.2e5/186/1/0.132 83/1226224/6.3e5/306/1/0.131

0.001 0.001 153/4753/1.1e9/265/1/0.999 82/2059906/5.1e5/189/1/0.131 83/1273851/5.1e5/309/1/0.132

σ = 2 and L is set to be (4.3)

c1 c2 Rule (i) Rule (ii) Rule (iii)it./ nz./ obj./
pu./res0./res*. it./ nz./ obj./
pu./res0./res*. it./ nz./ obj./
pu./res0./res*.
1 1 500/1253/1.1e9/863/1/0.997 297/106844/1.1e7/637/1/0.142 *68/193909/1.3e7/240/1/0.154

0.1 0.1 500/6710/1.1e9/870/1/0.997 92/622699/1.7e6/204/1/0.132 89/552058/1.7e6/316/1/0.132

0.001 0.1 500/10281/1.1e9/867/1/0.997 81/1216652/1.7e6/184/1/0.132 82/923758/1.7e6/299/1/0.132

0.0001 0.01 500/14772/1.1e9/869/1/0.997 82/1914421/6.2e5/188/1/0.132 82/1230000/6.3e5/301/1/0.132

0.001 0.001 500/15396/1.1e9/873/1/0.997 82/2018360/5.2e5/189/1/0.132 83/1264086/5.1e5/304/1/0.131

In our numerical tests, the noise η is set to be a Gaussian white noise of variance σ2.

The initial guess is given by u0 = 0. As in [7], we choose Dk = ρk I , where

ρk =

¨
100, k ≤ 10,

20, k > 10.

For our problem, Algorithm 2.1 is stopped when

‖uk+1 − uk‖/‖b‖ ≤ 5.0× 10−4

and the maximal number of CGD iterations is set to be 500.

Now, we report the performance of Algorithm 2.1 with Rule (i), (ii), or (iii). Table 5

contains the numerical results for the 256× 256 Cameraman image convolved by a 15×
15 Gaussian kernel with σb = 2 (generated by the MATLAB-provided function fspe
ial(`Gaussian',15,2)) and contaminated by a Gaussian white noise of variance σ = 2 for

different values of c1 and c2, where it., obj., 
pu., res0. and res*. are defined as

above and nz. denotes the number of nonzero entries in the solution (an entry is regarded

to be nonzero if its absolute value exceeds 10−6). From Table 5, it is obvious that Algorithm

2.1 with Rules (ii) and (iii) performs more efficiently in terms of the objective function,

the cpu time, and the relative residual. On the other hand, the solution to Problem (5.4)

becomes more sparse if the values of c1 and c2 is growing larger. However, Algorithm 2.1

with Rule (iii) may stop as the parameters c1 and c2 is larger. This shows that the direction

d̃D(x ;J ) may deviate from dD(x ;J ) when c1, c2 is too large, see Remark 5.1.

Table 6 lists the ratios (%) of between the number of nonzero entries (nz.) and the

total number of entries (n.) in the solution obtained by Algorithm 2.1 for the 256× 256

Cameraman image convolved by a 15×15 Gaussian kernel with σb = 2 and contaminated

by a Gaussian white noise of variance σ = 2 for different values of c1 and c2. Here r1. =
nz1.

n.
× 100, r2. = nz2.

n.
× 100, and r3. = nz3.

n.
× 100 r2., where nz1., nz2. and nz3.

denote the number of nonzero entries in the solution when its entries larger than 10−4,

10−5, and 10−6, respectively.
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al results for the 256×256 Cameraman image 
onvolved by a 15×15 Gaussian kernelof σb = 2 and 
ontaminated by a Gaussian white noise of varian
e σ2 ("*" means that the 
ondition(2.8) is not satis�ed).
σ = 2 and L is set to be (4.2)

c1 c2 Rule (i) Rule (ii) Rule (iii)r1./ r2./r3. (%) r1./ r2./r3. (%) r1./ r2./r3. (%)

1 1 0.0221/0.0221/0.0221 7.0739/7.0823/7.0896 12.2093/12.2117/12.2120

0.1 0.1 0.0990/0.0990/0.0990 37.7247/37.7735/37.7988 31.4124/31.4209/31.4217

0.001 0.1 0.1262/0.1265/0.1265 56.4570/56.5484/56.5951 42.8772/42.8802/42.8805

0.0001 0.01 0.1932/0.1961/0.1965 88.4682/88.5923/88.6309 56.6983/56.6990/56.6991

0.001 0.001 0.2147/0.2190/0.2198 95.1364/95.2305/95.2475 58.9009/58.9012/58.9013

σ = 2 and L is set to be (4.3)

c1 c2 Rule (i) Rule (ii) Rule (iii)r1./ r2./r3. (%) r1./ r2./r3. (%) r1./ r2./r3. (%)

1 1 0.0579/0.0579/0.0579 4.9320/4.9371/4.9403 8.9642/8.9658/8.9661

0.1 0.1 0.3099/0.3103/0.3103 28.7400/28.7716/28.7928 25.5146/25.5252/25.5265

0.001 0.1 0.4745/0.4753/0.4754 56.1263/56.2103/56.2565 42.7092/42.7129/42.7134

0.0001 0.01 0.6778/0.6823/0.6830 88.3593/88.4825/88.5204 56.8730/56.8737/56.8737

0.001 0.001 0.7044/0.7109/0.7119 93.1963/93.3025/93.3265 58.4493/58.4497/58.4498

(a) Noise σ = 2 (b) using (4.2) c1 = c2 = 1.0 (c) using (4.3) c1 = c2 = 1.0

(d) Noise σ = 2 (e) using (4.2) c1 = c2 = 0.1 (f) using (4.3) c1 = c2 = 0.1Figure 4: Noisy blurred (left) and deblurred images (
enter and right) of Cameraman 
onvolved by a
15× 15 Gaussian kernel of σb = 2 and 
ontaminated by a Gaussian noise of varian
e σ2.

Fig. 4 shows the results of the noisy blurred image and deblurred image for the 256×
256 Cameraman image by Algorithm 2.1 with Rule (iii) for c1 = c2 = 1.0 (see Figs. 4(a),

(b), (c) ) and c1 = c2 = 0.1 (see Figs. 4(d), (e), (f) ), where the blurring kernels are a



398 Z.-J. Bai, M. K. Ng and L. Qi

(a) Noise σ = 2 (b) using (4.2) (c) using (4.3)

(d) Noise σ = 5 (e) using (4.2) (f) using (4.3)

(g) Noise σ = 10 (h) using (4.2) (i) using (4.3)Figure 5: Noisy blurred (left) and deblurred images (
enter and right) of Cameraman 
onvolved by a
15× 15 Gaussian kernel of σb = 2 and 
ontaminated by a Gaussian noise of varian
e σ2.
15× 15 Gaussian kernel with σb = 2. We observe Fig. 4 that the restored image becomes

worse when the value of c1 and c2 is larger.

Figs. 5-6 display the results of the noisy blurred image and deblurred image for the

256× 256 Cameraman and 260× 260 Bridge images by Algorithm 2.1 with Rule (iii) for

c1 = c2 = 0.001, where the blurring kernels are a 15×15 Gaussian kernel with σb = 2 and

a 7×7 disk kernel (generated by the MATLAB-provided function fspe
ial (`disk',3)).

From Figs. 5-6, it is easy to see that Algorithm 2.1 with Rule (iii) is very effective. It is also

shown that the algorithm is robust to noise, since it still gives good restored images when

the noise is as high as σ = 10.
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(a) Noise σ = 2 (b) using (4.2) (c) using (4.3)

(d) Noise σ = 5 (e) using (4.2) (f) using (4.3)

(g) Noise σ = 10 (h) using (4.2) (i) using (4.3)Figure 6: Noisy blurred (left) and deblurred images (
enter and right) of Bridge a 7×7 disk kernel and
ontaminated by a Gaussian white noise of varian
e σ2.
To further illustrate the performance of the proposed method, in Figs. 7 and 8, we,

respectively, plot the convergence history of Algorithm 2.1 and the natural logarithm of

the objective function value for the 256× 256 Cameraman image convolved by a 15× 15

Gaussian kernel with σb = 2 and contaminated by a Gaussian white noise of variance

σ = 2 with c1 = c2 = 0.001. From Fig. 7, we observe that the proposed algorithm with

Rules (ii) and (iii) works more efficiently. Fig. 8 shows that the objective function value

with Rule (i) is almost unchanged while the objective function value with Rules (ii) and (iii)

decreases very fast. This indicates that the direction d̃D(u;J ) is a effective approximation

to dD(u;J ) when both c1 and c2 are small.
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Figure 7: Convergen
e history of the CGD method for Problem (5.4). (a) L as in (4.2); (b) L as in(4.3).
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Figure 8: The obje
tive fun
tion value Fc(u
k) versus the number of the CGD iterations for Problem(5.4). (a) L as in (4.2); (b) L as in (4.3).

6. Concluding remarks

In conclusion, we have proposed an efficient coordinate gradient descent algorithm for

solving the nonsmooth nonseparable minimization problems. We find the search direction

from a subproblem obtained by a second-order approximation of the smooth function and

adding a separable convex function. We show that our algorithm converges globally if the

coordinates are chosen by either the Gauss-Seidel rule or the Gauss-Southwell-r rule or

the Gauss-Southwell-q rule. We also prove that our approach with the Gauss-Southwell-q

rule converges at least linearly based on a local Lipschitzian error bound assumption. We

report some numerical tests to demonstrate the efficiency of the proposed method.
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