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Abstract. For an arbitrary tensor (multi-index array) with linear constraints at each

direction, it is proved that the factors of any minimal canonical tensor approximation to

this tensor satisfy the same linear constraints for the corresponding directions.
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1. Introduction

Linear constraints define many important classes of structured matrices (Toeplitz, Han-

kel, various sparse matrices of special patterns etc.). A combination of Toeplitz and tensor

structures was first considered in [3]. The common case of linear constraints along with

tensor approximations of two-level matrices was first studied in [6]. Some estimates of

tensor ranks were suggested in [2, 10, 11]. The interest to tensor approximations in com-

bination with linear constraints is well justified by their role as a base for construction of

fast algorithms in difficult cases, a good example is a superfast algorithm for approximate

inversion of two-level Toeplitz matrices recently proposed in [7].

A matrix A of order n = p1p2 can be viewed as a matrix composed of blocks ai j of size

p2 × p2, where the indices i, j run from 1 to p = p1. In particular, A can be of the form

A= Ar =

r
∑

t=1

Ut ⊗ Vt , (1.1)

where Ut and Vt are matrices of order p1 and p2, respectively, and ⊗ denotes the tensor

(Kronecker) product of matrices:

U ⊗ V =







u11V · · · u1pV

· · · · · · · · ·
up1V · · · uppV






.
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We denote by T r = Tr(p1, p2) the set of all matrices of the form (1.1) with real (for

definiteness) entries for fixed values of r and p1, p2, and we are especially interested in

approximations

A≈ Ar ∈ Tr

that minimize the Frobenius norm ||A−Ar ||F (the square root of the sum of squared entries

in modulus). If ||A− B||F > ||A−Ar ||F for all B ∈ Tk with k < r and ||A− B||F ≥ ||A−Ar ||F
for all B ∈ Tr , then the minimizer matrix Ar will be called the minimal approximation of

tensor rank r.

Let us assume that the blocks ai j of a matrix A satisfy linear constraints

p
∑

i=1

p
∑

j=1

ci jai j = 0 (1.2)

with some fixed scalar coefficients ci j . For this case in [6] it was discovered and proved

that the entries of each of the matrices Ut of any minimal approximation Ar are subject

to the same constraints (1.2). It follows, for instance, that if A is a block Toeplitz matrix

(every block ai j is a function of i − j) then each of the matrices Ut is a Toeplitz matrix.

Similarly, if each of the blocks ai j is a Toeplitz matrix then each of the matrices Vt ought to

be Toeplitz.

In this paper we want to figure out to which extent the result of [6] can be generalized

to the case of tensor approximations with an arbitrary fixed number of factors:

Ar =

r
∑

t=1

Ut ⊗ Vt ⊗ · · · ⊗Wt . (1.3)

Let the number of factors in every summand be equal to s and the orders of matrices

Ut , Vt , · · · ,Wt be p = p1, p2, · · · , ps, respectively. Then the order of Ar is n = p1p2 · · · ps.

Denote the set of all matrices of the form (1.3) by T s
r = T

s
r (p1, p2, · · · , ps). For this case

matrices Ar are used as approximations for a given matrix A of order n= p1p2 · · · ps.

The matrix A can be considered as a block matrix consisting of the blocks ai j, 1≤ i, j ≤
p = p1. We will prove that from the viewpoint of preservation of linear constraints the

case of arbitrary s is analogous to the case s = 2: if the equations (1.2) are valid then the

minimality of approximation implies that the same relationships (1.2) hold true for each

of the matrices Ut .

One essential difference is still there. Suppose that A ∈ Trmax
and A /∈ Tr whenever

r < rmax. Then for s = 2 the minimal approximation is constructed via the singular value

decomposition (SVD) for any 1 ≤ r ≤ rmax, whereas in the case s > 2 there could be some

values 1 < r < rmax for which a minimal approximation of tensor rank r does not exist

(cf. [5]). Moreover, there are no generalizations of the SVD to the case s > 2 that keep all

the properties of this decomposition in the case s = 2 (some partial generalizations can be

found in [1,9]), and therefore, some other techniques are needed.
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2. Minimal decompositions of tensors

It is convenient to reformulate our questions in the terms of approximation of tensors

(multi-index arrays). Instead of a matrix A we consider an array of dimension s (tensor)

A= [Ai j···k], where the indices i, j, · · · , k take the values from finite sets I , J , · · · , K . Once

the sets I , J , · · · , K are fixed, we can define the sum of tensors and the multiplication of a

tensor by a scalar in a natural way enabling us to consider the set of tensors as a linear

space.

The set of arrays Ar of the special form

(Ar)i j···k =

r
∑

t=1

Ui t Vj t · · ·Wkt , i ∈ I , j ∈ J , · · · , k ∈ K ,

will be denoted by Tr . Since the array Ar is determined by matrices

U = [Ui t], V = [v j t], · · · , W = [Wkt],

we shall write (due to Kruskal [4])

Ar = [U , V, · · · ,W ] =
r
∑

t=1

Ut ⊗ Vt ⊗ · · · ⊗Wt (2.1)

and say that Ar is the sum of tensor products of one-dimensional arrays (tensors)

Ut , Vt , · · · ,Wt . We keep the same notation as in (1.3), but the ordering in which the en-

tries of Ut , Vt , · · · ,Wt are indexed is not prescribed and actually does not matter when this

notation is used.

A decomposition of an array A of the form

A=

r
∑

t=1

Ut ⊗ Vt ⊗ · · · ⊗Wt (2.2)

is called minimal decomposition of tensor rank r if A∈ Tr but A /∈ Tm for any m < r.

Lemma 2.1. Any tensor possesses a minimal decomposition.

Proof. Any tensor can be expressed in the form (2.2) with some number of summands r.

Among all those decompositions we can obviously find one with minimal possible number

of summands. �

Lemma 2.2. If a decomposition (2.2) is minimal for a tensor A, then the tensors

Vt ⊗ · · · ⊗Wt , 1≤ t ≤ r,

are linearly independent.
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Proof. From contrary, assume for definiteness that

Vj1 · · ·Wk1 =

r
∑

t=2

αt Vj t · · ·Wkt .

Then

Ai j···k =

r
∑

t=2

(Ui t +αt Ui1)Vj t · · ·Wkt .

Hence, A∈ Tr−1, which contradicts the minimality of decomposition (2.2). �

Theorem 2.1. Assume that a tensor A satisfies linear constraints

∑

i∈I

ciAi j···k = 0, j ∈ J , · · · , k ∈ K , (2.3)

and possesses a minimal decomposition (2.2). Then

∑

i∈I

ciUi t = 0, 1≤ t ≤ r. (2.4)

Proof. According to (2.3) and (2.2) we find

r
∑

t=1

 

∑

i∈I

ciUi t

!

Vj t · · ·Wkt = 0.

By Lemma 2.2 the tensors Vt ⊗ · · · ⊗Wt are linearly independent, and the equations (2.4)

follow from the fact that a zero linear combination of these tensors must have zero coeffi-

cients. �

Note that the indices i, j, · · · , k are equal “in rights”, and so Lemma 2.2 and Theo-

rem 2.1 are valid when we consider summation in any of these indices. It stems, for

example, that if an s-level Toeplitz (cf. [8, 12]) matrix A = Ar is written as a sum of r

tensor (Kronecker) products of the form (1.3) with the number of factors s and if (1.3) is

its minimal decomposition then each of the matrices Ut , Vt , · · · ,Wt is a Toeplitz matrix.

Remark that all assertions of this section are valid for tensors with entries from an

arbitrary field.

3. Minimal approximations of tensors

By definition,

||A||F =







∑

i∈I

∑

j∈J

· · ·
∑

k∈K

|Ai j···k|
2







1/2

.

For a given array A, an array Ar ∈ Tr is called minimal approximation of tensor rank r if

||A−Am||F ≥ ||A−Ar ||F for all m≤ r and ||A−Am||F > ||A−Ar ||F for all m< r.
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Lemma 3.1. Given a matrixA and a matrix G with r linearly independent columns, assume

that a matrix F with r columns is such that for any matrix P with r columns

||A − FG⊤||F ≤ ||A − PG⊤||F .

Then F =A Z for some matrix Z.

Proof. Let us write

F =A Z +H,

where H is uniquely defined by the condition

A ∗H = 0.

Then

||A − FG⊤||2F = ||(A −A ZG⊤)−HG⊤||2F = ||A −A ZG⊤||2F + ||HG⊤||2F .

It remains to observe that linear independent columns of G cause us to conclude that the

equation ||HG⊤||F = 0 takes place if and only if H = 0. �

Theorem 3.1. Let a tensor A satisfy linear constraints (2.3) and a tensor Ar of the form (2.1)

be its minimal approximation of tensor rank r. Then the linear constraints (2.4) are valid

and the tensor Ar satisfies the same linear constraints (2.3).

Proof. Build up a matrix A from the elements Ai j···k arranging them so that the index

i points to rows while the columns are marked by the multi-index

ν = ( j, · · · , k).

Further, let Ar = [U , V, · · · ,W ] be a minimal decomposition of tensor Ar . Let G be a matrix

in which the column t contains the entries of the tensor Vj t · · ·Wkt , the row position being

defined by the same multi-index ν = ( j, · · · , k). Then, as is readily seen,

||A−Ar ||F = ||A − UG⊤||F .

By Lemma 2.2 the columns of G are linearly independent. Therefore, we may apply

Lemma 3.1 for the matrices A , F = U and G. In the end we obtain

U =A Z .

In chime with (2.3) we have
∑

i∈I

ciAiν = 0.

It follows that
∑

i∈I

ciUi t =
∑

ν

 

∑

i∈I

ciAiν

!

Zν t = 0, 1≤ t ≤ r,

which completes the proof. �
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Corollary 3.1. Assume that a matrix Ar is a minimal tensor approximation of the form (1.3)

for an s-level matrix A whose blocks satisfy linear constraints (1.2). Then the entries of the

matrices Ut from (1.3) satisfy the same linear constraints (1.2).

Remark that the results obtained are valid for linear constraints defined by summation

in any of indices i, j, · · · , k. For example, if we consider summation in indices j and k then

linear constraints for the original tensor are maintained for the tensors Vt and Wt for all t.

In conclusion, we would like to stress a nice practical value of our results. Assume that

a d-level Toeplitz matrix A with the level sizes all equal to n is approximated by a matrix Ar

of the form (1.3) where the matrices Ut , Vt , · · · , Wt are of order n. If the best possible r-

term approximation exists and r is minimal possible value for the achieved approximation

accuracy, then Theorem 3.1 states that the matrices Ut , Vt , · · · , Wt are Toeplitz. Hence, all

these matrices are determined by (2n−1)r parameters, instead of n2r parameters, and the

whole approximation problem for A reduces exactly to the same approximation problem

for a d-dimensional array of size (2n− 1)× · · · × (2n− 1).
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