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Abstract. In this paper, we propose a discrepancy rule-based method to automatically

choose the regularization parameters for total variation image restoration problems.

The regularization parameters are adjusted dynamically in each iteration. Numerical

results are shown to illustrate the performance of the proposed method.
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1. Introduction

Digital image deconvolution plays an important part in various areas of applied sci-

ences such as medical and astronomical imaging, and film restoration. The observed image

is often degraded by blurring operations and additive noise. The blurring of images is often

caused by a relative motion between the camera and the original scene, the defocusing of

the lens system, or atmospheric turbulence.

In digital image processing, images are represented by vectors and matrices. In this for-

mat, one-dimensional vectors express two-dimensional images. These vectors are formed

by stacking the image column by column. Without loss of generality, we assume that the

size of the image is n× n, but all discussions can be applied to images of size n×m. Hence

the original and observed images ft rue and g are expressed by the n2×1 vectors f t rue and

g respectively, and their relationship can be expressed as follows

g = H f t rue + n.

Here H is a blurring matrix and n is a vector of zero-mean Gaussian white noise with

variance σ2. The main aim of image deconvolution is to recover the image f from the

observed image g such that f ≈ f t rue.
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The challenge in image restoration is that it is an ill-posed problem. The simple ap-

proach of performing the inverse transformation to the observed image is not feasible since

either there doesn’t exist an inverse transformation or the inverse transformation is very ill-

conditioned; a small perturbation in the observed image can produce a large perturbation

in the restored image.

Regularization theory is often used to handle such ill-conditioned problems. One usual

approach is to determine the restored image by minimizing the following energy functional

min
f



H f − g


2

2
+ βR( f ), (1.1)

where β is called the regularization parameter andR is the regularization term. Numerous

expressions for R have been used in literature, such as Tikhonov regularization [12, 24],

Total variation (TV) regularization [22], Wavelet regularization [4,9,11], etc. The energy

functional is a weighted sum of the two terms. The first term is the data fitting term and the

second term is the regularization term which contains some prior information about the

original image to alleviate the problem of ill-conditioning. By adjusting the regularization

parameter, a compromise is achieved to suppress the noise and preserve the nature of the

original image. Usually, the regularization parameter β is determined by trial-and-error

method, the generalized cross validation method [12,13], discrepancy principle [17] or the

L-curve method [14]. Also, the regularization parameter can be regarded as the Lagrange

multiplier of the constrained minimization problem [3]

min
f
R( f )

subject to 

H f − g


2

2
= E[‖n‖22] = σ

2n2, (1.2)

where E[·] denotes the expectation operator. The variance σ2 of the noise can be estimated

using the median rule [16].

Applying deblurring and denoising independently is a relatively prevalent concept. Its

success is due to the facts that the methods are easy to implement, and solving large linear

systems is avoided. In [18, 21, 26], the authors proposed a two-step approach to recover

the image when a pilot image upilot is available. This approach can be formulated as the

following consecutive minimization problem:

Sα(upilot) = argmin f



H f − g


2

2
+α




R
�

f − upilot

�



2

2
,

Tβ(Sα(upilot)) = argminu

1

2



Sα(upilot)− u


2

2
+ βR(u).

where R is the regularization matrix, α and β are a regularization parameters. Usually, R

is the identity matrix, in which a minimum residual on f subject to a noise constraint is

sought, or R is the finite difference matrix, in which the smoothness of the restored image

is enhanced. The pilot image can be set to upilot = 0 or the restored image obtained by

other methods.
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In [15,25,27], the authors consider the case R being the identity matrix and developed

an iterative method. The iterative method is given as follows: starting an initial image u0,

which is served as a pilot image, the process can be done iteratively by using an image

uk−1 as a pilot image, i.e., f k = Sα(uk−1) and uk = Tβ( f k). This approach is equivalent

to using alternating minimization algorithm to the minimization problem

min
f ,u
J ( f , u),

where

J ( f , u) = ‖H f − g‖22 +α


 f − u


2

2
+ 2βR(u). (1.3)

In this approach, a trial-and-error method is commonly used to find the optimal regular-

ization parameters α and β such that the restored image u is visually appealing.

In this paper, we consider the model (1.3) rather than (1.1), this model has two pa-

rameters that need to be specified. Thus, most existing works on parameter estimation for

Tikhonov-type models do not apply to the current setting. There are three components in

the deblurred image Sα( f ):

Sα( f ) = f t rue + n f +α
�

HT H +αI
�−1 �

u − f t rue

�
,

where n f = (H
T H + αI)−1H T n is the residual noise. The choice of α is very important

since the value of α determines how sensitive the solution of Sα( f ) is to the noise and how

close Sα( f ) is to the true image f t rue. Small values of α are desirable to minimize the loss

of image features during the first minimization step, but large values of α result in smaller

E[‖n f ‖
2
2] and thereby facilitate better estimation of image components via subsequent

denoise processing. Our approach is to use two discrepancy rules to determine the two

parameters.

The outline of this paper is as follows. In Section 2, we develop a discrepancy rule-

based method to calculate the regularization parameters adaptively in each iteration. In

Section 3, numerical examples are presented to demonstrate the performance of the pro-

posed method. Finally, concluding remarks are given in Section 4.

2. Adaptive deconvolution method

The main objective of this section is to propose a discrepancy rule-based method to

automatically choose the regularization parameters. Our idea is to choose a suitable value

of α such that the discrepancy e = H f − g satisfies

‖e‖2 = cnσ

for some constant c in each iteration. Since ‖e‖2 ≥ ‖(HH†−I)g‖2 = ‖(HH†−I)n‖2, where

H† is the pseudo inverse of H , the lower bound of c is given by c ≥ ‖(HH†− I)n‖2/(nσ).
If we follow the Morozov’s discrepancy rule, then we have c = 1. But we found empirically

that slightly adjusting the value of c according to the blurred signal-to-noise ratio (BSNR),
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which is defined as 10 log10(‖g‖
2
2/(n

2σ2)), can lead to better results. In this paper, we set

c = −0.006× BSNR+ 1.09, which is obtained by fitting experimental data with a straight

line.

Next we calculate the residual noise n f in f . For each fixed f , we propose to set the

regularization parameter β such that u satisfies the constraint



 f − u


2

2
= E[‖n f ‖

2
2].

An analytical expression determined for α and β is intractable. Our approach is, instead

of using constant regularization parameters α and β , to employ different regularization

parameters αk and βk in each iteration, which are based on the discrepancy rules.

The resulting algorithm is summarized as follows.

Algorithm 2.1. Framework

input g .

estimate σ from g using the median rule.

c = −0.006× BSNR+ 1.09.

M = cnσ.

initialize u.

while stopping criterion is not satisfied

compute α and f = Sα(u) such that


H f − g


2

2
= M2.

compute E[‖n f ‖
2
2] using (2.4).

compute β and u = Tβ( f ) such that


 f − u


2

2
= E[‖n f ‖

2
2].

end

return u.

2.1. Solution characteristics of f

In the iterative scheme, the first step is to perform the deblurring. The subproblem in

the first step can be written as

min
f
J ( f , u) =min

f
µ


H f − g


2

2
+


 f − u


2

2
, (2.1)

where µ = 1/α. We will consider the parameter µ rather than α. This replacement has

some advantages, which we will demonstrate below.

The minimization problem (2.1) has a closed-form solution

f =
�
µH T H + I
�−1 �

µH T g + u
�

. (2.2)

Notice that f is a function of µ and u. For convenience, we denote f (µ, u) as f when there

is no ambiguity. We remark that the coefficient matrix µH T H + I is always invertible even

if H T H is singular. Under the assumption of periodic boundary condition or symmetric
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point spread function and Neumann boundary condition, (2.2) is solved using three Fast

Fourier Transforms (FFT) in O (n2 log n) operations for an n-by-n restored image, see for

instance [19].

The following lemma can be obtained by directly computing the first and second deriva-

tives of K (µ, u) w.r.t. µ. Similar results can be found in [6,23].

Lemma 2.1. Let r = Hu − g and K (µ, u) = ‖H f (µ, u)− g‖22. Then K (µ, u) is a strictly

positive, and monotonically decreasing convex function of µ, and the equation

K (µ, u) = M2 (2.3)

has a unique solution µ ∈ (0,∞), for any M satisfying ‖r 0‖
2
2 ≤ M2 ≤ ‖r‖22, where r 0 denotes

the orthogonal projection of r onto the null space of HHT .

We remark the functionK (1/α, u) is in general non-convex. This is a reason for using

the parameter µ instead of α = 1/µ. A unique solution of µ is guaranteed by the strict

convexity ofK . Now we turn to computing the regularization parameter µ which satisfies

(2.3). Notice that the problem in (2.3) is nonlinear. We apply Newton method to solve the

problem (2.3).

We consider periodic boundary condition. As mentioned before, the matrix H can be

diagonalized using Fast Fourier Transform. Let Ĥ(s, t) be the ((s− 1)n+ t)-th eigenvalue

of H and b· be the 2-D discrete Fourier transform defined as

bf (s, t) =
∑

j,k

f ( j, k)e−
2πi

n (s j+tk).

Now, we consider the discrepancy e = H f − g . Substituting (2.2) into the discrepancy,

we have

e = H
�
µH T H + I
�−1 �

µHT g + u
�
− g .

Using the identity

µH
�
µH T H + I
�−1

H T − I = −
�
µHHT + I
�−1

and noticing that r = Hu − g , we obtain

e =
�
µHH T + I
�−1

r .

Therefore, K (µ, u) and ∂

∂ µ
K (µ, u) are given by

K (µ, u) = ‖e‖22 =
∑

s,t

|br(s, t)|2
�
µ
�� bH(s, t)
��2 + 1
�2

and

∂

∂ µ
K (µ, u) = −2
∑

s,t

�� bH(s, t)br(s, t)
��2

�
µ
�� bH(s, t)
��2 + 1
�3 .
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Under the assumption of symmetric point spread function and Neumann boundary

condition, the discussion is very similar to the above. While in other cases, by using the

Lanczos bidiagonalization and Gauss quadrature approach in [6], we can determine an

approximate solution of the regularization parameter µ.

2.2. Analysis of the error

The regularization parameter µ is determined by the constant M . The analysis of the

error in f (µ, u) can tell how to determine the constant M .

The error between the deblurred image and the original image is given by

f − f t rue =
�
µHT H + I
�−1 �

µHT
�
H f t rue +n
�
+ u
�
− f t rue

=
�
µHT H + I
�−1 �

µHT n + u − f t rue

�

= n f + δ f ,

where

n f = µ
�
µHH T + I
�−1

H T n, δ f =
�
µHT H + I
�−1 �

u − f t rue

�

denote the residual noise and distortion error in f , respectively. Hence E[‖n f ‖
2
2] is given

by

E[‖n f ‖
2
2] = σ

2
∑

s,t

|Ĥ(s, t)|2
�
|Ĥ(s, t)|2 + 1/µ

�2 . (2.4)

And the distortion error is given by

‖δ f ‖22 =
∑

s,t

|û(s, t)− bft rue(s, t)|2
�
µ|Ĥ(s, t)|2 + 1
�2 .

Notice that we treat u and f t rue as fixed constants, therefore the mean squared error

(MSE) is given by

E[‖ f − f t rue‖
2
2] = E[‖n f ‖

2
2] + ‖δ f ‖22.

Taking the first derivative with respect to µ in E[‖n f ‖
2
2] and ‖δ f ‖22 yields

∂

∂ µ
E[‖n f ‖

2
2] = 2σ2
∑

s,t

µ|Ĥ(s, t)|2
�
µ|Ĥ(s, t)|2 + 1
�3

and
∂

∂ µ
‖δ f ‖22 = −2
∑

s,t

|Ĥ(s, t)|2|û(s, t)− f̂ture(s, t)|2
�
µ|Ĥ(s, t)|2 + 1
�3 .

We conclude that E[‖n f ‖
2
2] is a strictly positive, and monotonically increasing function

of µ for µ > 0 and that E[‖n f ‖
2
2] = 0 when µ = 0. Similarly, we conclude that the

distortion error is a positive and monotonically decreasing function of µ for µ > 0 and that

‖δ f ‖22 = ‖u − f t rue‖
2
2 when µ = 0 and ‖δ f ‖22 = 0 when µ =∞. Thus the total error is a

coercive function of µ. This suggests that some intermediate value of µ will minimize the

total error.
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2.3. Total variation penalty

Since TV minimization can preserve sharp edges while reducing the noise and other

oscillations in the reconstruction, Rudin, Osher and Fatemi [22] proposed to use TV regu-

larization to solve image denoising problems. In this subsection, we use total variation as

a penalty term. The total variation denoising model is formulated as

min
u

1

2



 f − u


2

2
+λ‖u‖T V . (2.5)

Here ‖ · ‖T V is the discrete TV norm. While we focus on total variation regularization

algorithm, all discussions can be applied to other regularization functions too. The problem

in (2.5) can be solved by many TV denoising methods such as Chambolle’s projection

algorithm [7], semismooth Newton’s method [20], multilevel optimization method [8]

and graph-based optimization method [10]. In this paper, we employ the Chambolle’s

projection algorithm in the denoising step for its simplicity and efficiency. This algorithm

can be used to compute the minimizer of (2.5) and the parameter β simultaneously by

using the constraint that ‖ f − u‖22 = E[‖n f ‖
2
2] and setting λ= µβ .

Let us define the discrete gradient operator ∇ : Rn2

→ R2n2

by

(∇u)r,s =
�
(∇xu)r,s , (∇yu)r,s

�

with (∇x u)r,s = ur+1,s − ur,s and (∇yu)r,s = ur,s+1 − ur,s for r, s = 1, · · · , n. We use the

reflective boundary condition such that u0,s = u1,s, un+1,s = un,s, ur,0 = ur,1 and ur,n+1 =

ur,n. Here ur,s refers to the ((r − 1)n+ s)th entry of the vector u (it is the (r, s)th pixel

location of the image). The discrete TV of f is defined by

‖u‖T V =
∑

1≤r,s≤n

��(∇u)r,s
��=
∑

1≤r,s≤n

q��(∇x u)r,s
��2 +
��(∇yu)r,s
��2.

Here | · | is the Euclidean norm in R2.

Lemma 2.2 ([7]). Let q(λ) = ‖u − f ‖2 where u = u(λ) is the solution of (2.5), then q(λ)

maps [0,∞) onto [0,‖ f −



f
�
‖2]. Here



f
�

denotes the average value of the pixel fi, j . It is

non-decreasing, while the function λ 7→ q(λ)/λ is non-increasing.

According to Lemma 2.2, there exists a unique λ such that

q(λ)2 = ‖u − f ‖22 = E[‖n f ‖
2
2]

provided that q(λ) ∈ [0,‖ f −



f
�
‖2]. An algorithm to find u was proposed in [7]. It was

proven in [7] that such a scheme converges to the desired solution. Here, we restate the

algorithm in our context. The tolerance ε is set to 10−4.
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Algorithm 2.2. Constrained total variation method to find β

ConstrainedTV_Method( f ,µ)

set j = 0, β0 = 1.

compute C =
p

E[‖n f ‖
2
2
] by using (2.4).

compute the minimizer u = u(µβ0) of (2.5).

set φ0 = ‖ f − u‖2.

while |φ j − C | ≤ ε
j = j+ 1.

β j =
C

φ j−1
β j−1.

compute the minimizer u = u(µβ j) of (2.5).

φ j = ‖ f − u‖2.

end

return u and β j.

2.4. Relation to other works

Recent years have witnessed a growing interest in the research of image restoration and

a lot of fast algorithms have been independently proposed and analyzed. Figueiredo and

Nowak studied the expectation minimization framework for wavelet based deconvolution

in [11]. Daubechies, Defrise and De Mol studied an optimization transfer approach in [9].

Bect et al. studied a projection based l1 unified variational framework in [2], etc. These

algorithms have used iterative methods, in which an image denoising scheme is applied

in combination with Tikhonov method during the iterations. The basic idea is to suppress

the residual noise between iterations. Though these algorithms used different approaches,

they have a common iterative scheme as

uk+1 = Tβ
�

uk −λkHT
�
Huk − g
��

(2.6)

for k = 0,1, · · · , starting from an initial guess u0. Here the parameter λk is positive and

serves as the step size at iteration k.

Now we examine our iterative scheme,

(
f k+1 =
�
µHT H + I
�−1 �

µHT g + uk

�
,

uk+1 = Tµβ ( f k+1).

Introducing a matrix P = (H T H +µ−1I)−1 and noticing that

�
µHT H + I
�−1 �

µHT g + uk

�
= uk − PHT
�
Huk − g
�

,

we can rewrite our iterative scheme as

uk+1 = Tµβ
�

uk − PHT
�
Huk − g
��

. (2.7)
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We notice that there is a difference between (2.6) and (2.7). (2.7) can be regarded as the

version replacing λkI in (2.6) with P, which gives an entirely different algorithm. (2.6)

converges to the solution of the minimization problem in (1.1), whereas (2.7) converges

to the solution of the minimization problem in (1.3). The matrix P can be regarded as a

preconditioner to accelerate the convergence speed.

3. Numerical Results

In this section, numerical results are presented to demonstrate the performance of

the proposed algorithm for parameter estimation. The results are compared with those

obtained by Bayesian approaches in [1, 5]. Bioucas-Dias et al. [5] adopted majorization-

minimization approach to estimate the original image and the regularization parameter

which is assumed to follow the Jeffeys’ distribution. Babacan et al. [1] considered the

Gamma distribution for the hyperiors of the regularization parameter. For simplicity, we

call the approach of Bioucas-Dias et al. [5] as BFO and the approach of Babacan et al. [1]

as BMA.

The Improved Signal-to-Noise Ratio (ISNR) is used to measure the quality of theTable 1: Gaussian blur with varian
e 9.
Lena Cameraman Shepp-Logan

BSNR (dB) Method ISNR (dB) ISNR (dB) ISNR (dB)

20 BFO [5] 2.99 2.21 4.24

BMA [1] 2.87 1.72 1.85

Proposed 3.27 2.59 5.45

30 BFO [5] 3.82 3.59 7.21

BMA [1] 3.87 2.63 4.31

Proposed 3.83 3.58 7.40

40 BFO [5] 4.41 5.78 10.27

BMA [1] 4.78 3.39 6.69

Proposed 5.74 5.90 11.19Table 2: 9× 9 uniform blur.
Lena Cameraman Shepp-Logan

BSNR (dB) Method ISNR (dB) ISNR (dB) ISNR (dB)

20 BFO [5] 4.05 3.27 6.25

BMA [1] 3.72 2.42 3.01

Proposed 4.36 3.80 6.93

30 BFO [5] 5.43 5.69 10.49

BMA [1] 5.89 5.41 7.77

Proposed 5.96 5.75 11.28

40 BFO [5] 6.22 8.46 16.39

BMA [1] 8.42 8.57 13.69

Proposed 8.34 8.59 17.10
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Figure 1: α,β and ISNR vs. the iteration of the Cameraman image for di�erent noise levels. The imageis degraded by a Gaussian blur with varian
e 9.
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Figure 2: α,β and ISNR vs. the iteration of the Cameraman image for di�erent noise levels. The imageis blurred by a uniform blur with size 9× 9.
restoration results. It is defined as

ISNR = 10 log10

�
‖g − f t rue‖

2
2/‖u − f t rue‖

2
2

�
,

where u is the estimated image, f t rue is the original clean image. The stopping criterion is

set to

‖uk+1− uk‖2/‖uk‖2 < 1× 10−4

and the maximum number of iterations is set to 100. We experiment with three noise

levels, corresponding to BSNR of 20, 30 and 40dB. The variance σ2 is estimated using the

median rule [16]. The Lena, Cameraman and Shepp-Logan phantom images are used in the

tests. The initial image u0 is chosen as u0 = 0.

As mentioned above, the regularization parameter α= 1/µ is chosen such that ‖H f −
g‖2 = cnσ. The smaller the value c, the smaller the distortion error and the larger the

expectation of ‖n f ‖
2
2. Since the smaller the BSNR in the observed image, the larger the

variance of the noise, we choose the parameter c according to BSNR. For a smaller BSNR,

we choose a larger c. The parameter c is set to c = −0.006× BSNR + 1.09, which is

obtained by fitting experimental data with a linear model.

In the first set of experiments, the images were degraded by a Gaussian blur with vari-

ance 9 and white Gaussian noise. The ISNR values are shown in Table 1. When the noise

level is set to 30dB, the ISNRs of the restored image obtained by the proposed algorithm

and BFO are about the same. For the other levels, the ISNR of the restored images obtained
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by the proposed algorithm are better than those obtained by the BFO method and the BMA

method. The plots of α,β and ISNR vs. the iteration of the Cameraman image are shown

in Fig. 1. We observe that the regularization parameters stabilize after about 20 iterations.

In the second set of experiments, we restore blurred images degraded by a uniform blur

with size 9× 9 and white Gaussian noise. The degraded images have a BSNR of 20, 30,

40dB respectively. The ISNR values are shown in Table 2. The plots of α,β and ISNR vs.

the iteration of the Cameraman image are shown Fig. 2. We observe that the regularization

parameters again stabilize after about 20 iterations. Our experimental results show that

the ISNRs obtained by the proposed method are competitive to the tested methods.

4. Conclusion

In this paper, we have extended the first author’s recent work on decoupling of de-

blurring and denoising steps in the restoration process. In particular, we have adopted a

discrepancy rule-based method to automatically choose the regularization parameters in

each iteration. Numerical results were used to demonstrate the performance of proposed

method. The ISNRs obtained by the proposed method are competitive with the tested

methods.
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