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Abstract. We give here an overview of the orbital-free density functional theory that
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1. Introduction

In modeling either atomic or molecular systems, the most common strategy relies on
approximate solutions of Schrödinger equations; and the so-called density functional the-
ory (DFT) has been established as one of the most widely used first-principles methods in
many fields. DFT may be dated back to 1927 [68, 74, 98, 113]. It was first realized by
Thomas [91] and Fermi [25] that the electronic structure of solids in their ground states
could be fully understood in terms of the electron density ρ alone. This fact, which gave
the origin to the DFT, was later formalized by Hohenberg and Kohn [44] in 1964. It was
proved in [44] that there exists a functional, E(ρ), of the electron density ρ of the system,
such that for any external potential Vex t , the exact ground state energy of the system is the
global minimum value of E(ρ), and the density ρ that minimizes E(ρ) is the exact ground
state density ρ0, namely

E(ρ0) =min

¨
E(ρ) : ρ ≥ 0,

∫

R
3

ρ = N

«
, (1.1)

∗Corresponding author. Email addresses: hj
hen�lse
.

.a
.
n (H. Chen), azhou�lse
.

.a
.
n
(A. Zhou)

http://www.global-sci.org/nmtma 1 c©2008 Global-Science Press



2 H. Chen and A. Zhou

where N is the number of the electrons and

E(ρ) = T (ρ) + Eee(ρ) +

∫

R
3

Vex tρ (1.2)

with T (ρ) the kinetic energy and Eee(ρ) the electron-electron interaction energy. The prob-
lem remains how to evaluate the kinetic energy T (ρ) and the electron-electron interaction
energy Eee(ρ), which is of surpassing difficulty. In 1965, Kohn and Sham [56] invented
an indirect approach to the kinetic energy, the so-called Kohn-Sham (KS) method. They
proposed introducing a set of N wavefunctions {ψi}Ni=1 and expressing the total energy of
the system as [56]

E(ρ) = Ts({ψi}) + EH(ρ)+ Exc(ρ)+

∫

R
3

Vex tρ, (1.3)

where Ts({ψi}) is the exact kinetic energy of the system of non-interacting electrons with
density ρ:

Ts({ψi}) =
1

2

N∑

i=1

∫

R
3

|∇ψi|2, ρ =

N∑

i=1

|ψi|2. (1.4)

Other terms in the right hand of (1.3) are the Hartree energy, the exchange-correlation
energy and the external potential energy, respectively. The Hartree energy describes the
repulsion Coulomb interactions between electrons

EH(ρ) =
1

2

∫

R
3

∫

R
3

ρ(x)ρ(y)

|x − y| . (1.5)

The exchange-correlation energy Exc(ρ) introduces corrections to the energy that derive
from using the non-interacting electron approximation for the Hatree and kinetic energies.
Although the expression for the total energy in (1.3) is exact, Exc(ρ) is unknown. For
a system with slow varying density, we can make the local density approximation (LDA)
[55]:

Exc(ρ) =

∫

R
3

ǫxc(ρ)ρ, (1.6)

where ǫxc(ρ) is the exchange-correlation energy per particle of a uniform electron gas of
density ρ. The last term in (1.3), i.e., the integral term, represents the effect of an external
potential. For a simple many-particle system without any electric and magnetic potentials,
the external potential can be expressed by

Vex t(r) = −
M∑

α=1

Zα

|r − Rα|
, (1.7)
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where M is the number of the atoms, Zα is the charge of the αth atom and Rα is the position
of the αth atom. It is apparent that there are singularities at the locations of the nuclei.
And it is also observed that the strong Coulomb potential of the nucleus and the effects
of the tightly bound core electrons could be replaced by an effective ionic potential acting
on the valence electrons. In what follows we consider ρ to be the density of the valence
electrons only. The core electrons and the nuclei are treated as unit which interacts with
the valence electrons through Vex t , which usually is the pseudopotential.

The computation of the Kohn-Sham kinetic energy functional requires the calculation
of the N non-interacting electron orbitals. By traditional variational methods, solving the
problem (1.1) is equivalent to solving a nonlinear eigenvalue problem with N independent-
particle eigenstates in R3. The computational cost scales O (N3) with the size of the system
N by the traditional self-consistent matrix diagonalization techniques, which is due to the
diagonalization process. Currently, this is not viable for large systems with thousands of
atoms. To reduce the computational cost, a number of linear scaling methods are then
proposed. The linear scaling methods are of two types: orbital-based and orbital-free
methods.

1.1. Orbital-based methods

There are mainly three orbital-based (OB) linear scaling methods which have deep
roots in physics [36, 70]: divide and conquer method, fermi operator expansion method,
and density matrix minimization method. These linear scaling methods all basically ex-
ploit the general principle of locality or “nearsightedness" [54] for quantum many-particle
systems: that the properties at one point can be considered independent of what happens
at distant points. Note that in insulator, electrons are localized, even in metal, the total
charge density is a superposition of the atomic charge densities with reasonable accuracy,
where the linear scaling methods can be exploited.

The contents of the locality or “nearsightedness" principle are the decay properties of
the density matrix and the Wannier functions. All the three linear scaling methods take
advantages of the decay of the density matrix with distance and truncate it at some point.
Even though there are long range Coulomb forces, there are various methods to sum the
long range forces in time ∝ N .

• Divide and conquer method: The first orbital-based linear scaling method was pro-
posed by Yang [111] in 1991, which is based directly upon the argument that the
interior of a large region depends only weakly upon the boundary conditions. The
procedure termed “divide and conquer" [111] is to divide a large system into small
subsystems, whose size is Nsmal l. Each subsystem is called central region, and all
regions around the central region are called buffer regions. The size of buffer de-
termines the length of localization. For each of these systems one can solve for the
electronic eigenstates using ordinary O (N3) methods. For each small system, one
must add buffer regions of size Nbuf f er large enough so that the density and the
energy in the original small subsystem converge and are independent of the buffer
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termination. The solution for the density and other properties is then kept only for
the interior of each small region.

In many ways, the “divide and conquer" approach is a counterpart of using supercells.
Although there is wasted computational effort, the approach is attractive because it
uses standard methods and there is much experience in extracting information from
small systems with well-chosen terminations. Using traditional methods, the cost is
of O (Nsmal l+Nbuf f er)

3 for each subsystem, which may be prohibitive, especially for
three dimensional systems where Nbuf f er may need to be very large. Nevertheless,
the method is O (N) essentially for large enough systems and it may be particularly
applicable for long linear molecules with large energy gaps.

• Fermi operator expansion method: The Fermi operator expansion method [37] is the
most direct method to calculate the density matrix. It exploits the decay properties
of the density matrix and of the Wannier functions to obtain the linear scaling meth-
ods for very large systems. The density matrix at zero temperature is a projection
operator which projects onto the space of the occupied particle wavefunctions. We
define the density matrix in r representation by [57,70]

F (r, r ′) =
∑

i

ψ∗i (r)niψi(r
′), r, r ′ ∈ R3, (1.8)

where the atomic orbits {ψi} are used and {ni} are occupation numbers. KnowingF
one has therefore the complete information about the quantum mechanical system.
One can either create a set of vectors that will span the space by applying F to N

linearly independent vectors, or calculate the total energy directly from the density
matrix in a discretized version. The density matrix F can be defined as a matrix
functional of the HamiltonianH :

F = f (H ).
The function f is the Fermi distribution

f (x) =
1

1+ e(x−µ)/(kB T)
,

where µ is the chemical potential, T the temperature, and kB Boltzmann’s constant.

As was pointed out that the density matrix is a projection matrix that projects onto
the space of the occupied independent particle orbitals. The problem in the content
of O (N) algorithms is consequently to find a prescription to construct the density
matrix to this system, namely to calculate the density matrix directly as a matrix
functional of H avoiding any reference to orbitals. In a localized basis set both H
and F are sparse. The basic linear algebraic operations involving H and F such as
matrix times vector multiplications can therefore be done with linear scaling.

A simple computational functional representation has been proposed by Goedecker
and Colombo [37] in 1994, a polynomial Fermi operator expansion. The simple
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minded polynomial representation

F ≈ p(H ) = c0 I + c1H + c2H 2 + · · ·+ cnH n

is numerically unstable. The Fermi operator expansion method approximates f by a
Chebyshev polynomial expansion T , which is to compute

F ∼ f (H )∼ T (H ) = c0

2
I +

npl∑

j=1

c j T j(H ),

where npl is the degree of the polynomial needed to represent the Fermi distribution,
and T j(H ) is the Chebyshev polynomial:

T0(H ) = I ,

T1(H ) =H ,

T j+1(H ) = 2H T j(H )− T j−1(H ).

The linear scaling of computing band structure energy can be obtained by “nearsight-
edness" of T j(H ). For the kth column of the matrix T j(H ), there is a localization
region, which is centered at the atom to which the kth basis belongs. Therefore, a
truncated HamiltonianH can be used to obtain the band-structure energy EBS:

EBS =
∑

k

∑

l

(T (H ))klHlk = Tr(T (H )H ),

where Tr(M ) andMkl denote the trace and the (k, l)th entry of a density matrix
M , respectively [74]. Notice that the trace can not be used in numerical calculation
because of a truncated Hamiltonian, although for simplicity it is still written as the
trace.

The key idea of the Fermi operator expansion is that all operations can be done by
repeated applications of H to basis function, which amounts to repeated multipli-
cation of a matrix and a vector. At each step one of the localized basis functions is
treated. The Chebyshev expansion method can be a very efficient procedure if the
basis set is small, e.g., in tight-binding models, where npl is only a factor larger than
N .

• Density matrix minimization method: Minimization is one of the basic approaches in
traditional electronic structure algorithms. Since the energy can always be written
in terms of the density matrix, we can define and minimize a grand potential Ω in
terms of the density matrix F .

Li et al. [63] showed how to use a minimization method to drive the density matrix
to its proper T = 0 form in 1993. The starting point is the “McWeeny purification"
idea [71]: If F is an approximate trial density matrix with eigenvalues between 0
and 1, then the matrix 3F 2 − 2F 3 is always an improved approximation to the
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density matrix with eigenvalues closer to 0 or 1. This can be illustrated by the
function y = 3x2 − 2x3. It is easy to see that for x < 1/2, y < x , the occupation is
closer to 0, whereas for x > 1/2, y > x , the occupation is closer to 1.

However, if one iterates the matrix using the purification equation

Ω = Tr(FH )→ Tr
�
(3F 2− 2F 3)H

�

alone, there is no reason for the eigenvectors to correspond to the lowest energy
states. In order to make a functional which yields the proper idempotent density
matrix when the total energy is minimized, one can shift the Hamiltonian to obtain
the modified “purified" form

Ω = Tr
�F (H −µI)
�→ Tr
�
(3F 2− 2F 3)(H −µI)

�
, (1.9)

where the term µI is to ensure that Tr(F ) equals the number of the electrons.†

Since Ω is a minimum for the true density matrix, this functional can be minimized
by iterative methods such as the conjugate-gradient method. Any matrix satisfying
the physical conditions can be used as a starting point. The O (N) algorithm can
be obtained by implying the locality or “nearsightedness" properties of the density
matrix.

A principle difficulty with this method is that it requires explicit operations of mul-
tiplying matrices which are of the size of the basis Nbasis. Thus it is appropriate for
small bases such as in tight-binding, but not for large bases such as plane waves.

1.2. Orbital-free methods

In the spirit of the Thomas-Fermi (TF) approach, it is desirable to approximate the
kinetic energy by a functional of the density alone, free of orbitals. Based on the TF type
kinetic energy approximations, another group of linear scaling methods are then proposed,
which is the so-called orbital-free density functional Theory (OF-DFT). The details of the
OF-DFT methods will be discussed in the following sections.

Although the study on OF-DFT has a much longer history than that on the Kohn-Sham
type DFT (KS-DFT), it had not yet become a mainstream quantum mechanical method until
recent years. It is noted that computational cost of the OF-DFT method scales essentially
as O (N) while that of the KS-DFT method scales as O (N3). The major obstacle of applying

†The diagonal part of F (r, r ′) is just the electron density [57,70,74]

ρ(r) =
∑

i

ψ∗
i
(r)niψ(r) =F (r, r), r ∈ R3,

from which it is seen that

Tr(F ) =
∫

R
3

F (r, r)dr =

∫

R
3

ρ(r)dr

equals the number of the electrons.
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OF-DFT lies in the lack of a transferable kinetic energy density functional (KEDF) and
an accurate local pseudopotentials to calculate the kinetic energy. However, the OF-DFT
approach has many advantages over the KS-DFT methods, for instance

• The number of degrees of freedom is reduced.

• Without any orbital dependence, the complication and cost associated with orbital
manipulation, including orbital orthonormalization and orbital localization (for lin-
ear scaling implementations) are avoided.

• For metals, the need for Brillouin-zone (k-point) sampling of the wavefunction is
completely eliminated.

• The utilization of the fast Fourier transformation in solving the orbital-free model is
essentially linear scaling with respect to the system size.

It should be pointed out that all above positive features will be realized only if one knows
all functionals in (1.3) solely in terms of the density. Comparing to the high quality of
exchange-correlation energy density functional, OF-KEDF’s are still lacking accuracy and
transferability for all kinds of systems. Only recently, better designed OF-KEDF’s have
begun to appear, along with highly efficient numerical implementations for large scale
simulations [38, 101]. Orbital-free models thus permit to simulate much larger systems
than Kohn-Sham models at the cost of a loss of accuracy.

The remainder of this paper is arranged as follows: In the coming two sections, typical
kinetic energy functionals and exchange-correlation corrections are introduced, respec-
tively. In Section 4, a couple of pseudopotentials used in orbital-free methods are ad-
dressed. In Section 5, some more details about the numerical implementations of orbital-
free methods are discussed. Finally, some concluding remarks and future prospects are
presented.

2. Kinetic energy functional approximation

To make OF-DFT methods practical in calculations, an accurate formulation of the ki-
netic energy as well as the potential energy contributions in terms of the electron density
should be made. To this end, making direct approximations for T (ρ) invests a great effort
in developing orbital-free density functional theory.

2.1. Thomas-Fermi model

The first direct approximation for T (ρ) is the TF model, which is exact for a uniform
system:

TT F (ρ) = CT F

∫
ρ

5
3 , (2.1)

where

CT F =
3

10
(3π2)

2
3 .
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The TF model is derived from the local implementation of a uniform free electron gas
model and is known to be exact when the number of electrons tends to infinity.

Although the TF model is simple in computation, it is only exact for free-electron gas.
The formulation (2.1) has the following drawbacks:
• At the nucleus of the atom the density is incorrectly predicted to be infinite.

• No molecular system is stable relative to dissociation into constituent fragments.

• The electronic charge density does not exhibit shell structure in any form. The den-
sity does not decay exponentially in the classically forbidden region.

• The total energies predicted for atomic systems give at best an order of magnitude
estimate, and can not be relied on for quantitative calculations.

2.2. The Thomas-Fermi-von Weizsäcker model

The limitations of the TF model have motivated a number of developments leading
to systematic improvement of the TF kinetic energy functional. The first improvement
to the functional was proposed by von Weizsäcker [96] in 1935, which incorporated the
inhomogeneity of the electron density as a gradient correction about the uniform gas. The
total kinetic energy is rewritten by

TT FλW (ρ) = TT F (ρ)+λTW (ρ), (2.2)

where the von-Weizsäcker correction term TW is given by

TW (ρ) =
1

8

∫ |∇ρ|2
ρ

. (2.3)

The value of the parameter λ is either determined empirically for getting good atomic
energies or obtained by some semiclassical arguments. For example, it has been found that
λ = 1 which is the original von Weizsäcker value works best in the case of rapidly varying
densities. For slowly varying densities, the conventional gradient expansion with λ = 1

9
yields improved results, which has been shown to give the correct second order gradient
expansion correction [110] to the TF functional. The value like λ = 1

5
has been found

empirically by Tomishima and Yonei [92] which predicts rather accurate atomic ground
state energy for a wide range of atoms.

The TT FλW functional is exact for the ground state of a system with one or two electrons
or in systems where one-electron wavefunctions have no overlap. However, the linear
response (LR) behavior [82, 98] is still incorrect. It has been established that the correct
LR behavior is the key point to
• reproducing the atomic shell structure;

• reproducing the near-neighbor oscillations and the asymptotic Friedel oscillations in
the density for solid metals;

• permitting a much better flexibility for the density functionals to adjust to any local
environment and chemical changes.

So further LR based corrections are needed to incorporate the LR behavior into the design
of better OF-KEDF’s.
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2.3. Linear response correction model

The kinetic energy models above do not satisfy the exact LR behavior in the homoge-
neous limit and the simple local gradient correction used can not reproduce the oscillatory
atomic shell structure. A modification of the kinetic energy functional which is a some-
what different combination of the TF term TT F and the gradient correction given by von
Weizsäcker TW has been suggested as follows:

T (ρ) = F(N)TT F (ρ)+ TW (ρ), (2.4)

where N is the number of electrons and the factor F(N) is

F(N) =

�
1− 2

N

��
1− A1

N1/3
+

A2

N2/3

�

with optimized parameter values A1 and A2. This kinetic energy functional is known to
describe the response properties of the electron gas well and has yielded very good polar-
izabilities for various atomic systems [40]. It also provides an excellent representation of
the kinetic energy of atoms [33,34].

However, since only a truly nonlocal KEDF can satisfy the exact LR condition, we have
to modify the kinetic energy by the nonlocal terms completely determined by the require-
ment that linear response is exactly satisfied.

In 1994, Perrot proposed another functional by adding a term to the TF and the von
Weizsäker functional with an integration kernel Kα(r− r ′) to incorporate the correct linear
response [81]:

T (ρ) = TT F (ρ)+ TW (ρ) +

∫

R
3

∫

R
3

drdr ′P(r)Kα(r − r ′)P(r ′), (2.5)

where

P(r) =
6

5

ρα+υ△ρ
ρ

�
ρ

5
6 −ρ

5
6
α

�

with υ = 5p
32

and ρα the average electron density. This functional has the correct scaling
for ρα→ 0, incorporates the proper linear response for perturbations both small and large.

The correction term of the TF and the von Weizsäker functional can also be formed by
Wang and Teter [97]. The Wang-Teter kinetic energy is determined by

TW T (ρ) = TT F (ρ)+ TW (ρ) + FW T (ρ), (2.6)

where

FW T (ρ) = −
32CT F

25

∫

R
3

ρ
5
3 +

4CT F

5

∫

R
3

ρ
5
6 KW T ∗ρ

5
6 . (2.7)
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The convolution kernel KW T is given in Fourier space in terms of the Lindhard susceptibility
function, which is already available for a nearly free electron gas system [98]:

ÕKW T (η) =

�
1

2
+

1−η2

4η
ln |1+η

1−η |
�−1

− 3η2 +
3

5
.

Furthermore, there exists an important group of KEDF’s based on linear response theory
which contain the Wang-Teter model. These functionals take the form

Ts(ρ) = TT F (ρ) + TW (ρ) + TK(ρ), (2.8)

where the kernel term TK(ρ) is expressed as

TK(ρ) = CT F

∫

R
3

∫

R
3

ρα(r)ω(r, r ′)ρβ(r ′)drdr ′. (2.9)

Obviously different functionals of this class are determined by the constants α and β and
the kernel function ω. A standard treatment based on the linear response of the noninter-
acting electron gas leads to a simple expression in reciprocal space for ω when it is taken
to be density-independent. It is shown in [98] that the choice

α =
5+
p

5

6
, β =

5−p5

6

or

α =
5−p5

6
, β =

5+
p

5

6

was optimal for the density-independent kernel.
The latter improvements were recently developed by Wang, Govind and Carter (WGC)

[99], who generalize (2.9) to density-dependent kernels. These KEDF’s will be denoted
by WGC-DI and WGC-DD for the density independent and density-dependent kernel func-
tionals, respectively.

Another kind of approximation for kinetic energy functionals has been proposed by
Ludena group, within the local scaling transformation version of the DFT [69]. The theory
seeks to develop well-defined procedures for the construction of N -representable density
functionals, expressed in terms of one particle density. It turns out that these functionals
then necessarily depend upon the number of particles N and on the symmetry of the sys-
tem. A few applications to single atom and clusters implemented by Kanhere et al. [51]
have shown promising results.

The KEDF’s mentioned above indicate that the field is alive and in future one should
hope to obtain more accurate kinetic energy functionals for orbital-free molecular structure
calculations.
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3. Exchange-correlation corrections

As the same as the KS method, the exchange-correlation correction expressed as a
functional, Exc(ρ), of the density ρ is also a crucial quantity in the orbital-free methods
for the kinetic energy and the Hartree energy terms in (1.3).

The first obvious exchange-correlation correction to the basic TF theory, which adds
an exchange term to the total energy carries the name Thomas-Fermi-Dirac (TFD) [22] in
1930. But this model can actually be worse [74] because the most important correction
to TF theory is the inclusion of the cusp condition near the nucleus, which makes the
electronic density finite there. The cusp term may arise from a gradient correction term.
However, the exchange-correlation corrections work especially well combined with the LR-
based kinetic energy models described above.

To particularize the exchange-correction energy term in (1.6), we introduce a sim-
ple approximation of Exc(ρ) by LDA which assumes that the exchange-correlation energy
functional is purely local. It consists in taking

E LDA
xc (ρ) =

∫

R
3

ρǫLDA
xc (ρ) =

∫

R
3

ρ
�
ǫLDA

x (ρ) + ǫLDA
c (ρ)
�

, (3.1)

where ǫLDA
xc is the exchange-correlation energy per particle in a uniform electron gas of

density ρ. Several parameterizations exist for the exchange-correlation energy of a homo-
geneous electron gas, all of which lead to similar total energy results. One of the widely
used interpolation formulas is [80]

ǫLDA
x (ρ) = −3

4

�
3ρ

π

� 1
3

,

ǫLDA
c (ρ) =

¨
0.0311 ln rs − 0.0480+ 0.0020rs ln rs − 0.0116rs if rs < 1,

−0.1423/(1+ 1.0529
p

rs + 0.3334rs) if rs ≥ 1,

where rs =
�

3
4πρ

� 1
3 .

There are additional improvements of the exchange-correlation functional. The first
step consists in introducing spin dependent densities ρ+(x) and ρ−(x) in order to discrim-
inate between spin-up and spin-down electrons and in building local spin density approx-
imation (LSDA). Then the exchange-correlation functional can be expressed in the form
of

E LSDA
xc (ρ+,ρ−) =

∫

R
3

ρǫLSDA
xc (ρ+,ρ−). (3.2)

From a theoretical point of view, there is no need to introduce explicit spin dependence in
the picture. The reason why LSDA usually gives better results than LDA is that the spin-
dependent approximate local exchange-correlation functionals are better than the spin-
independent ones.
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The second step is to take into account density inhomogeneities in the evaluation of
Exc via a local expansion of the exchange-correlation energy density in terms of ρ± and
∇ρ± as follows:

EGGA
xc (ρ+,ρ−) =

∫

R
3

f (ρ+,ρ−,∇ρ+,∇ρ−), (3.3)

which is the so-called GGA expression. The acronym GGA stands for Generalized Gradient
Approximation. The most commonly used two representatives of this category are the
exchange-correlation energy of Perdew and Wang [79] in 1986 and Perdew, Burke, and
Ernzerhof [78] in 1996. Both of them are non-empirical in the sense that the determination
of the function f does not use any experimental data. They are based on a fine analysis of
the so-called exchange-correlation hole [78].

There are also some further improvements of the exchange-correlation functionals
which involve dependence on the Kohn-Sham density matrix [7] or orbital-dependent
interactions [4, 5]. However, this kind of functions may not be available in OF-DFT
model which is independent of the wavefunctions. The construction of more sophisti-
cated exchange-correlation functionals which are able to describe fine phenomena such as
hydrogen bonding of van der Waals forces, is still an active field of research.

4. Pseudopotentials for OF-DFT model

Solving the kinetic energy problem does not, however, mean that full OF-DFT calcula-
tions are immediately possible. The other terms in (1.3) should be considered.

The interactions between nuclei and electrons represented by the last term in (1.3)
are described by pseudopotential. The pseudopotential removes the core electrons and re-
places them and, the strong ionic potential by a weaker pseudopotential. Note that OF-DFT
methods are purely based on the density, the lack of orbitals requires that the pseudopo-
tential must be independent of angular momentum character, but a function of the radius
only. Most modern pseudopotentials such as norm-conserving or ultra-soft pseudopoten-
tial contain several angular momentum contributions. They are described nonlocally and
can not be used in the OF methods. Hence, local pseudopotentials (LPS) are needed.

For example, in the crystal electronic structure calculation by plane wave basis, the
valence electron-ion interaction can be written as

Eex t(ρ) =

∫
Vex tρ,

where ρ(r) is the valence density at the point r and Vex t is the electron-ion interaction
potential

Vex t(r) =

∫
vps(|r − r ′|)
∑

i

δ(r ′− Ri)dr ′ =
∫

e−ik·rS(k)vps(k)dk

with vps(r) the pseudopotential for one atom, Ri the position of the ith ion, and S(k) the
“structure factor"

∑
i eik·Ri .



Orbital-Free Density Functional Theory for Molecular Structure Calculations 13

A more particular pseudopotential called Goodwin-Needs-Heine (GNH) pseudopoten-
tial which describes the electron-ion interactions was introduced in [39] in 1990. The
pseudopotential for a single atom can be formulated as

Va(r̃) =
2

π

∫ ∞

0

sin(r̃ t)

r̃ t

�
(Z − AR) cos(Rt) + A

sin(Rt)

t

�
e−(t/Rc )

6
d t, (4.1)

where Z is the valence, the parameters Rc, A and R are given in [39] and r̃ is the distance
between the electrons and the ion. Once the pseudopotential for a single atom is computed,
the pseudopotential for a system with Na atoms located at {Ri}Na

i=1 can be evaluated as

Vex t(r) =

Na∑

i=1

Va(|r − Ri|). (4.2)

Although the empirical local pseudopotentials such as (4.1) have been used, the most
widely used way to treat the problem of the lack of accurate transferable local pseudopo-
tentials is to construct suitable pseudopotentials from first-principles (ab initio pseudopo-
tential), on the basis of KS all-electron calculations on atoms [16,100,102,116].

The Hohenberg-Kohn theorem, which states that the external potential is one-to-one
mapped to the ground state electron density, is exploited. By employing a scheme for
inverting the KS equations due to Wang and Parr [100], the KS effective potential Ve f f can
be iteratively solved until it reproduces a target density. We start from the KS equation

�
−1

2
△+ Ve f f

�
φi = ǫiφi,

which leads to an exact expression for the local KS effective potential

Ve f f =

ρ+

occ.∑

i

fiφ
∗
i (

1

2
△)φi/ǫi

ρ
, (4.3)

where

ρ =

occ.∑

i

fiφi , ρ =

occ.∑

i

fiφi

ǫi

,

and fi is the occupation number of the orbital φi . Note that from the KS iteration process

�
−1

2
△+ V n−1

e f f

�
φn

i = ǫ
n
i φ

n
i , (4.4)

we have an approximation for the local potential in an iterative form:

V n
e f f = V n−1

e f f
+
ρ−ρn

ρn . (4.5)
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And one of the widely used ab initio pseudopotential for bulk environment is then pro-
posed in [116]. Based on the Wang-Parr approach for the local potential, a global LPS for
the entire system can be derived from Ve f f . This global LPS is then further decomposed to
obtain an atom-centered LPS. It is shown that the LPS derived from bulk environments is
substantially more transferable than those derived from atoms alone [116].

In conclusion, since the valence orbitals are usually slowly varying and fewer basis
functions are needed to approach the model limit, the use of local pseudopotentials can re-
duce the computational cost remarkably. Moreover, the accuracy for the recently proposed
non-local LR-based OF-DFT methods can be improved because the resulting pseudopoten-
tial is weaker, and hence is more applicable in the LR regime, where the theory is designed
to be accurate.

5. Numerical discretizations

Now that each term in (1.2) has been explicated, especially the theoretical foundation
for the OF-KEDF’s has been laid, the energy functional in minimization problem (1.1) can
be formulated clearly in terms of the density functional. Mathematically, the total energy
functional can be minimized in the admissible class

A=

¨
ρ ≥ 0 :

∫

R
3

ρ = N , ρ−
1
2∇ρ ∈ L2(R

3)

«
, (5.1)

where L2(R
3) represents the set of square integrable functions. And it is not so easy to

obtain either existence or uniqueness of the minimization solution (see, e.g., [8,14,57,58,
64,65] and references cited therein).

As in the case of the KS problem, there are mainly two types of approaches to solve
the minimization problem (1.1) numerically, the direct minimization method and the vari-
ational optimization method. Here we will introduce these two methods respectively in
addition to the Car-Parrinello dynamic method.

5.1. Direct minimization method

We will first introduce the method that searches the electronic state that minimizes the
total energy functional (1.1) under the constraint (5.1) directly.

The simplest approach is the steepest-descent method, which moves the initial point in
the negative gradient direction. Though the steepest-descent method is simple to imple-
ment, it is a well known poor minimization algorithm especially when the region around
the minimum forms a long narrow valley.

The most widely used method for the energy minimization is the conjugate-gradient
method. Such a method for the KS problem is well developed in plane wave ab initio

modeling of semi-conductor material system [77,90]. Indeed, it is an efficient method for
the OF method, too. Starting from an initial guess, a conjugate-gradient algorithm for a
numerical optimization problem usually involves three steps:
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• Step 1: Calculate the steepest descent vector;

• Step 2: Construct the conjugate-gradient vector;

• Step 3: Update the optimization variables by moving along the conjugate vector
direction for a certain distance that is determined either by an exact line search or
by approximations. Note that the normalization constraint is imposed at each step
for optimization [49].

The conjugate-gradient algorithm for OF calculation is very close to the band-by-band
direct minimization conjugate-gradient method used in Kohn-Sham calculations [48, 90].
There is however one critical difference. In the KS calculation, one might orthogonalize
the steepest vectors and conjugate-gradient vectors to other bands in every iteration step,
where the computational cost scales O (N3). In contrast, there is no orthogonalization
process in the OF method described above which dramatically reduces the computation
efforts [49]. And it is found to be more stable and accurate by this conjugate-gradient
method compared with the conventional variational method.

Note that there are many other efficient numerical ways for minimization problems
with constraints, such as Truncated-Newton methods [21, 66, 73] and projected gradient
methods [9,61,84]. These tools can also be applied to the electronic structure calculations
by OF methods. In practice, currently, the minimization problems are often discretized by
plane wave methods. Nonetheless, finite difference and finite element methods can also
be used in the minimization discretization (see, e.g., [30, 32, 109] and references cited
therein).

5.2. Variational method

In this subsection, we will introduce the conventional variational method. Given the
total energy in (1.2), one can write down a general density functional L(ρ) for a system
with a fixed number of electrons N :

L(ρ) = E(ρ)−µ
�∫

R
3

ρ− N

�
, (5.2)

where µ is a Lagrange multiplier. L(ρ) will be minimized with respect to ρ to determine
the ground state of the system:

δL(ρ)

δρ
= 0, (5.3)

which leads to

δT (ρ)

δρ
+ Ve f f = µ. (5.4)

In (5.4), Ve f f = Vne + VH + Vxc , where Vne denotes the static total electron-ion potential,
VH is the Hartree potential of the electrons, and Vxc is the exchange-correlation potential

Vxc =
δExc(ρ)

δρ
. (5.5)
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Now we can obtain the electron density ρ of the system by solving (5.4) under the con-
straint (5.1). However, one would rather work with a new variational variable ϕ satisfying
ρ = ϕ2 to ensure a positive ρ during the entire minimization process. Another advantage
of using ϕ instead of ρ is that the presence of ρ in the denominator in the kinetic energy
(2.3) can result in numerical instabilities [30].

Using the TF-von Weizsäcker (TFvW) kinetic energy functional (2.3) where λ = 1, a
more regular expression for the energy can be obtained. Noting that

δTW (ρ)

δρ
=

1

8

|∇ρ|2
ρ2 −

1

4

∇2ρ

ρ

and

1

8

|∇ρ|2
ρ2 =

1

2

|∇pρ|2
ρ

,

from which we can obtain that

δTW (ρ)

δρ
= −1

2

∇2pρ
p
ρ

. (5.6)

Thus, one can easily reach the Thomas-Fermi-Hohenberg-Kohn (TF-HK) equation in a fully
equivalent quasi-orbital form [98]

�
−1

2
∇2 +

δTT F (ρ)

δρ
+ V KS

e f f

�
ϕ = µϕ. (5.7)

Note that in the conventional equation,
p
ρ is used instead of ϕ. However, this ϕ

function is more general than the
p
ρ formulation, because ϕ behaves truly like an orbital,

with positive and negative regions, while
p
ρ is semipositive everywhere. Some theorems

presented in [30] promise that the two minimization problems over
p
ρ and ϕ are coinci-

dental and they have the same energy minimum. Therefore, the constraint ϕ ≥ 0 does not
affect the Euler-Lagrange equation.

It is also important to notice that (5.7) can closely resemble (2.4), (2.5) or (2.6). The
KEDF forms we got in Section 2.3 are to be used to derive the other forms of the TF-HK
equations. Note that the OF TF-HK equations have the same form as the KS equations, but
much simplified since there is only one “orbital" to be solved. As in the KS equation, this
nonlinear eigenvalue problem has to be solved in a self-consistent way.

The procedure requires an initial guess for the electronic charge density, from which
the Hartree potential and the exchange-correlation potential can be calculated. The Hamil-
tonian matrices must be constructed and diagonalized to obtain the eigenstate ϕ. This
eigenstate will normally generate a different charge density to construct the electronic po-
tentials, and hence a new Hamiltonian matrix can be constructed using the new electronic
potentials. The eigenstate of the new Hamiltonian is then obtained, and the process is
repeated until the solutions are self-consistent. In practice the new electronic charge den-
sity is taken to be a combination of the electronic charge densities generated by the old
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Initial guess

ρ

?

Calculate the effective potential

Veff = Vext + VHatree(ρ) + Vxc

?

Solve the TF-HK equation
(

− 1
2∇

2 + δTT F (ρ)
δρ

+ V KS
eff

)

ϕ = µϕ

?

Calculate the electron density

ρnew = αρold + β|ϕ|2

?
©

©
©

©
©

©

H
H

H
H

H
H

©
©

©
©

©
©

H
H

H
H

H
H Self-consistent?

?
Yes

No

-

Output quantities

Charge density, energy, forces, stress, etc.Figure 1: Self-
onsistent loop for TF-HK equation.
and the new eigenstate, since this speeds the convergence to self-consistency. The whole
self-consistent procedure are summarized in the flow chart in Fig. 1.

Among the numerical discretization methods used in the self-consistent loop to solve
(5.7), the most widely used methods are the linear combination of atomic orbitals (LCAO)–
usually Gaussian-type orbitals (GTO), plane waves (PW), finite differences (FD), and finite
elements (FE). Of these methods, the FD and FE methods are the most recent and less
common. In a FD method, the kinetic energy Laplacian operator is evaluated from values
of the function as a set of grid points. And there are a number of working FD algorithms
applied to the electronic structure calculation which involve full “ab initio" self-consistent
process [18,19,53,60,95]. In contrast, the FE method forms a localized basis in which the
variational calculations can be done, unlike the FD method which simply approximates the
Laplacian. Examples of the strictly localized basis for the electronic structure calculations
are piecewise linear functions [1, 85], piecewise cubic functions [75, 76], a B-spline basis
[41], and piecewise third-order polynomials [94].

General fully 3D grid-based electronic structure representation using the FD and FE
methods as approximate numerical schemes for partial differential equations have started
being used in the last decades only. However, the FD and FE approaches have already
shown to be an efficient tool in a substantial number of large scale electronic structure
calculations. There are many reasons why the FD and FE methods for electronic structure
calculation are robust.
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• In recent years, large parallel supercomputers have become an essential tool in first-
principles molecular dynamics simulations. In a real space approach, all the expen-
sive operations can be done locally to compute matrix elements between wavefunc-
tions. And the local contributions can be summed up after being computed on every
processing element.

• Since arbitrary boundary conditions are available, the real space methods can treat
a model that corresponds to the actual experiment. In addition, simulation in which
an electric or magnetic field is applied is possible.

• Since all of the calculations are carried out in real space, it is easy to incorporate the
orbital localized in a finite region which is required for the O (N) calculation.

• Another key element in the development of efficient grid-based real space ap-
proaches is the multigrid method. The real space large scale ab initio calculations
involve large sparse matrices and multigrid methods, either as solvers or as precon-
ditioners, allow to design very efficient scalable algorithms.

• Other advantages of FD and FE methods over PW approaches include the use of local
mesh refinements. As a result, adaptive computational algorithms may be devised.

Indeed, electronic structure calculations using the FE discretizations have been successfully
applied to many problems, including clusters and other finite systems (see, e.g., [6,20,24,
31, 32, 62, 67, 75, 76, 85, 86, 93, 94, 104, 112] and references cited therein). Recently, in
particular, some mathematical analysis of finite dimensional approximations for the ground
state solution of a molecular system have been presented on the TFvW-type setting, and
several convergence and upper error bounds of the approximations have been obtained
in [113], which provided a mathematical justification of finite dimensional approximations
in both the directly minimizing method and the variational method.

5.3. Car-Parrinello method

The Car-Parrinello molecular dynamics (MD) method stands out as one of the most
efficient methods for computing the properties of materials for electronic equations, which
can be also used in the OF-DFT methods [52]. The approach by Car and Parinello [11,12]
combines MD and DFT into one unified algorithm for electronic states, self-consistency
and nuclear movement. In this scheme, nuclear and electronic dynamics are considered
together so that the ionic and electronic degrees of freedom are relaxed simultaneously.
Altogether, there are four obvious advances of the Car-Parrinello method used in the elec-
tronic structure calculation:

• optimization methods instead of variational equations;

• equations of motion instead of matrix diagonalization;

• fast Fourier transforms instead of matrix operations;

• a trace of occupied subspace instead of eigenvector operation.
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Note that in the orbital-free approach, the total energy is a functional of charge density
only. We may apply the Car-Parrinello technique to this energy functional, too (see, e.g.,
[52]). Let the pseudo-Lagrangian be defined by

L = Te + Ta − E(ρ,Rn) +λ

�∫

R
3

ρ− N

�
, (5.8)

where N is the number of the electrons and Rn denotes the coordinates of the nth nu-
clear. The first term representing the fictitious kinetic energy associated with the electronic
degrees of freedom is

Te = µ

∫

R
3

ϕ̇2,

where ϕ̇ = dϕ/d t, ϕ2 = ρ, and the fake mass µ is the parameter to model classical motion
of charge density analogous to that of electronic orbital motion. The second term in the
Lagrangian is the kinetic energy of nuclei

Ta =
1

2

∑

n

Mn|Ṙn|2,

where Mn is the mass of the nth nucleus. The third term in (5.8) is the total electronic
energy of the combined system of electrons and ions. The above Lagrangian leads to the
MD equations for both classical ionic degrees of freedom {Rn}

MnR̈n(t) = −∇nE (5.9)

and electronic degrees of freedom ϕ(r, t)

µϕ̈(r, t) = − ∂ E

∂ ϕ(r, t)
+λϕ(r, t), (5.10)

respectively, under the constraint that the total charge density of the system is conserved:
∫

R
3

ϕ2 = N .

In general, the numerical solution of (5.9) is obtained by the Verlet algorithm. That is,
we can update the ionic positions for the next time instant from the ionic positions at the
previous two time steps

Rn(t +∆t) = 2Rn(t)− Rn(t −∆t) +
(∆t)2

Mn

�
∂ E

∂ Rn

(t)

�
(5.11)

and the velocities for calculating the kinetic energy of the ions

Ṙn(t) =
Rn(t +∆t)− Rn(t −∆t)

2∆t
.
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Similarly, the motion of electronic degrees of freedom (5.10) is simulated by updating the
root charge density from the charge densities at previous two time instants

ϕ(t +∆t) = 2ϕ(t)−ϕ(t −∆t) +
(∆t)2

µ

�
∂ E

∂ ϕ
(t) +λϕ(t)

�

and the velocities of electrons are

ϕ̇(t) =
ϕ(t +∆t)−ϕ(t −∆t)

2∆t
,

where the time step for evolving the ionic and electronic are identical.
The time step ∆t and the fake mass µ should be chosen carefully such that the dy-

namics of electrons remains adiabatic, which means that the system should remain in its
electronic ground state during the motion. Choosing a small value of µ will make the
dynamics adiabatic, but the time step ∆t is governed by the value µ to be small since

the frequency associated with the electronic system ω = 2π/∆t scales as µ−
1
2 , and such

a small time step is not very profitable for long computational runs. Furthermore, a long
time step may cause a slow upward drift in the energy. So one needs to choose an optimum
value of ∆t and µ such that the dynamics is stable.

However, this method does not guarantee to reach the global minimum of the system,
the conjugate-gradient methods can not be employed to achieve this purpose neither. To
reach the global minimum of a system, one has to span the configuration space extensively.
For example, the simulated annealing technique is one of the most useful methods to over-
come this difficulty. The atomic structure of clusters was usually obtained by minimizing
the orbital-free energy by varying the nuclear coordinates using a simulated annealing
procedure.

5.4. Numerical examples

In this subsection we will illustrate the OF-DFT method by some numerical examples
in literature. Both the variational method and the direct minimization method will be
considered.

First, we take a nearly free-electron-like metal (solid Aluminum) as an example. For
periodic systems, such as solid state systems, the KS-DFT scales as O (Nk ·N3), where Nk is
the number of the k points used for the Brillouin-zone (BZ) sampling, and N is the number
of atoms which can be the number of order 100. For metallic systems, this BZ sampling
is very expensive, and Nk can be on the order of 1000. The use of OF-DFT, however,
can eliminate such a sampling, and is computationally more suitable to study very large
systems especially metallic systems than KS-DFT. The empirical GNH pseudopotential (4.1)
for Aluminum and the Wang-Teter kinetic energy (2.6) were applied to compute the lattice
parameter. It is shown by the numerical experiments in [16,39] that this LR-based model
performs well and agrees with the experimental value and the KS-DFT.

The OF calculations on the solid Aluminum have also been performed by the real space
methods. Carlos [30] minimized the energy of 365 Aluminum atoms in a face-centered-
cubic (FCC) lattice by a FD method and a modified Truncated-Newton method. Gavini
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et al. [32] discretized the problem (1.2) by a FE method and used a nested sequence
of iterative conjugate-gradient solvers. The cluster consisting of 9× 9× 9 FCC unit cells
with 3730 atoms was simulated and the accurate numerical results obtained illustrated the
efficiency of this algorithm.

Solid Silicon can be computed in a similar way. Similar conclusions were obtained
when an LR-based OF-DFT model with WGC kinetic energy functional and the BLPS were
used [16,116].

To text the performance of the conjugate-gradient optimization OF methods and the
OF molecular dynamic methods, we enumerate several examples. Jiang and Yang consid-
ered a Sodium cluster, Na216 in [48]. By using the LR-based OF model, they compared the
efficiency of some direct minimization methods, the steepest-descent method (SD), the se-
quential conjugate-gradient method (SCG) and the concurrent conjugate-gradient method
(CCG). It is seen from [48] that the convergence behavior of the conjugate-gradient meth-
ods for this realistic system can be obtained in about 50 iterations. Because there is no
work for orbital orthogonalization during the iterations, the conjugate-gradient method
for OF model can save a lot of work in large scale problems. Using orbital-free molecular
dynamics, Kanhere and Shah gave a walk through the Li7Al5 cluster. The calculations were
performed in a unit cell of 35 a.u. with a 64× 64× 64 mesh, and started by choosing a
random initial geometry, the total energy minimization was performed by the method of
conjugate-gradients. By cooling run of the system, they carried out a calculation to find a
possible global minimum for the cluster, and the configuration was obtained at the end of
the cooling run. More computational results can be found in [52]. It should be pointed out
that the OF molecular dynamic method would be more useful for geometry configuration
of the cluster when the present kinetic energy functionals are incorporated.

6. Concluding remarks

The main advantage of using OF-DFT is the ability to construct linear scaling implemen-
tation by avoiding orbital orthogonalization. Although it is not good for total energy due
to the KEDF terms, it is somehow good for the electron density and the structure [16,26].
With present workstation computational resources, systems of thousands of atoms can be
studied [46, 47, 103]. Such a size is inconceivable for the present OB ab initio and DFT
methods. In fact, the OF-DFT scheme is purely restricted by the grid size, not by the num-
ber of electrons, and certainly has clear advantages over the OB methods. With the help of
linear scaling Ewald summation techniques [2, 43], even significantly larger systems can
be modeled dynamically within the DFT description using current computational power.

The OF method has become favorable due to its linear scaling. It is noted that there
are a number of issues that require future investigations and there are many ongoing
works which try to make the method more applicable and accurate in modeling atoms
and molecules, including

• Development of more reliable orbital-free kinetic energy functionals: The poor quality
of the OF-KEDF’s had somehow weaken the further interest of the OF methods. If
better high-quality nonlocal density approximation OF-KEDF’s were invented, the
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OF-DFT scheme would gradually regain its popularity. In previous studies of OF-
DFT, conclusions were usually drawn from the results on specific systems studied by
KEDF’s with empirical parameters fit to those systems. Therefore, these conclusions
may not be generally applicable. In [16], the work has presented an attempt to
apply the same LR-based OF-DFT to study a very wide range of systems: atoms,
molecules, and solids. This provides a severe test for any such theory, and helps
uncover deficiencies in the present formulation. Further work along these lines could
lead to a generally accurate OF-DFT.

• Making the OF-DFT scheme entirely linear scaling: In the formulation of KEDF’s (2.5)
and (2.6), one could try to reduce the computational cost from the typical quadratic
scaling (from the nonlocal terms) to linear scaling. Now in the TF-HK equation,
all the potential terms can be set up by conventional plane-wave-basis techniques
with essentially linear scaling [77, 98, 105]. However, for very large systems with
more than 5000 nuclei, the computational cost associated with the nuclear-nuclear
Coulomb repulsion energy becomes the major bottleneck. In this case, linear scaling
Ewald summation techniques should be utilized [2,43].

• Combination of the OF methods and the KS methods: A new implementation named
orbital-corrected orbital-free DFT has been developed by Zhou and Wang [114]. The
work provides a new impetus to further improve OF-DFT methods and presents a
robust means to significantly lower the cost associated with general applications of
linear scaling KS-DFT methods on large systems of thousands of atoms. The OF-DFT
combining with KS methods can remedy the drawbacks of the OF methods which
lacks a transferable KEDF and accurate LPSs.

• Multi-level computer simulations: As an important application, OF-DFT can be used
in the multi-level computer simulations which describe the complex system of dif-
ferent length scales by different basic physical principles. In the simulation, the
orbitals of the subsystem described at the orbital level are obtained from the KS like
equations with a multiplicative effective potential. This effective embedding poten-
tial is expressed by means of the electron density of the environment. Based on
a mixed description of the whole system by means of embedded orbitals and elec-
tron density, a non-empirical formalism was introduced in [108]. This formalism
makes it possible to link the orbital-level description with any other type of theory
provided that it yields the electron density of the environment and is referred to
as “orbital-free embedding formalism". The representative works concerning multi-
level computer simulations using the orbital-free embedding potential can be found
in [13,45,72,106–108].

• Quasicontinuum (QC) method: The OF methods have been proven to be an efficient
method applied to the QC method. The QC method proposed by Tadmor et al. [89]
is a first-principles multiscale modeling approach which retains atomic resolution
only where necessary and grades out to a continuum finite elements description
elsewhere. The OF methods can be performed at the atomic scale where the effect
of the electrons can not be omitted [24,31,32]. Such QC-OFDFT methods supply a
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fundamental description of the material with defects like vacancies, dislocations and
cracks that require quantum mechanical resolutions and are sensitive to long range
continuum stresses.
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