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1. Introduction

Optimal control problem governed by advection dominated diffusion equations arises
in many science and engineering applications (see., e.g., [9, 24, 30]). Recently, extensive
research has been carried out on various theoretical aspects of the optimal control problems
governed by advection diffusion and convection dominated equations, see, e.g., [2-4, 9,
27]. Most of them have been concerned with the unconstrained optimal control problem.

In this paper, we consider the following constrained optimal control problem:

min {g(y)+j(w)} (1.1)
uekcu
subject to
—sAy+B-Vy+ay=f +Bu in{, (1.2a)
y=0 ondQ, (1.2b)
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where the bounded open sets Q, Q;; € R? with boundary 89 and 99y,
K cU=L*Qy)

is a bounded convex set, g(-) and j(-) are convex functionals. The details will be specified
in the next section.

It is well known that the standard finite element discretizations applied to convection
dominated diffusion problems lead to strongly oscillation. Some effective discrete schemes
are investigated to improve the approximation properties of the standard Galerkin method
and to reduce the oscillatory behavior, see, e.g., [11-13]. In [11], Hughes and Brooks
first propose the streamline diffusion finite element method (also names SUPG), attract-
ing more and more attentions because of its advantages of numerical stability and high
order accurate. In [27], the authors apply SUPG method to the unconstrained optimal con-
trol problem governed by convection diffusion equation. They consider two approaches:
optimize-then-discretize and discretize-then-optimize. A priori error estimates were proved
for both the state, the co-state and the control. In [3], authors propose another stabilized
finite element method for the discretization of the optimal control problem governed by
convection diffusion equation with the constrained and unconstrained control.

In this paper, we apply the streamline diffusion finite element method to approximate
the constrained optimal control problem (1.1)-(1.2a). We first derive the continuous opti-
mality condition, which contains the state equation, the co-state equation and the optimal
inequality. Then we use the streamline diffusion finite element methods to discretize the
state equation and the co-state equation, and use the standard Galerkin method to approx-
imate the optimal inequality directly. We prove the existence and the uniqueness for the
approach. Moreover, a priori and a posteriori error estimates are obtained for both the
state, the co-state and the control. The numerical examples are presented to illustrate our
theoretical results.

Although a priori error estimates of unconstrained optimal control problem have been
discussed in [27], there are new difficulties in our approach. Firstly, because the authors
only consider the unconstrained problem in [27], the optimal inequality can be replaced
by equality. Therefore the existence and the uniqueness of the problem become trivial
and there is no need to prove them. While for the constrained problem, the existence and
the uniqueness of our discrete SUPG scheme must be proved because it is not equivalent
to a discrete optimal control problem. Moreover, the proof of a priori error estimate for
the constrained control problems is more complicated than the one for the unconstrained
control problems. Furthermore, we provide a posteriori error estimates of SUPG scheme
for the optimal control problems, which is unavailable in literatures to our knowledge.

The outline of the paper is as follows: In Section 2, we present the streamline diffu-
sion scheme for constrained optimal control problem governed by convection dominated
diffusion equations. In Section 3, we prove the existence and uniqueness of the approach.
In Sections 4 and 5, a priori and a posteriori error estimates are derived, respectively. In
Section 6, we present three numerical examples to illustrate the theoretical results. In the
last section, we briefly summarize the method used, results obtained and possible future
extensions and challenges.
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2. The streamline diffusion finite element scheme

Consider following constrained optimal control problem governed by convection dom-
inated diffusion equations:

min {g(y)+j(u)} 2.1)
uekcu
subject to
—eAy+B-Vy+ay=f +Bu in{, (2.2a)
y=0 ondQ, (2.2b)

where g and j are given convex functionals, B is a linear operator from L%(Qy) to L2(£2),
f € L2(), a > 0 is a constant, 0 < ¢ < 1 is a small constant, b is constant vector,
Q C R? and Q C R? are bounded domains with Lipschitz boundaries dQ and Qy, K C
U = L%(Qy) is a convex set. In this paper, we consider the constrained problem with the
constrain set

K={veU:v=>0} (2.3)

We adopt the standard notation W™1(£2) for Sobolev space on Q2 with a norm || - ||, 4.0
and a semi-norm | - [, 4 . We set

W, Q)= {y e W™(Q): v |y0=0}.

For ¢ = 2, we denote H™(Q) = W™2(Q) and || - lmo=I* ll;m20- Especially, we denote the
state space Y = Hy(£2), and the control space U = L?(Qy). The inner products in L*(€y)
and L2(Q) are indicated by (-, -);; and (-, ), respectively. In addition, ¢ and C denote general
constants.

Note that Eq. (2.2a) is the convection dominated diffusion equation when ¢ is very
small. It is well known that the standard finite element method can not be used well for
solving this kind of problems. Stabilized method should be adopted in order to improve the
computation stability. The streamline diffusion finite element scheme (see, e.g., [11]) has
been proved to be an efficient scheme for the state equation (2.2a). In this paper, we use
the streamline diffusion finite element scheme to deal with the optimal control problem
(2.1)-(2.2a).

To consider the streamline diffusion finite element approximation of above optimal
control problem, we first derive a weak formula for the state equation. The weak formula-
tion of the state equation (2.2a) is to find y(u) € Y = Hé(ﬂ), such that

(eVy,Vw)+(b-Vy,w)+ (ay,w) = (f + Buw) YweY.
Therefore, the optimal control problem (2.1)-(2.2a) can be rewritten as
min {g(y)+j(w}, 2.4)
ueKcU

subject to
(eVy,Vw)+(b-Vy,w)+(ay,w)=(f +Bu,w) VweY. (2.5)
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It is known (see, e.g., [7,18]) that the control problem (2.4)-(2.5) has a unique solution
(y,u), and that a pair (y,u) is the solution of (2.4)-(2.5) if and only if there is a co-state
p €Y, such that (y, p,u) satisfies the following optimality conditions:

(sVy,VW)+(B-Vy,W)+(ay,W)=(f +Bu,w) Ywey, (2.6)
(eVp,Vq) - (b-Vp,q) +(ap,q) = (&'(¥),q) Vqev, 2.7)
(G'wW+B*p,yv—u)y =0 VveKcCU, (2.8)

where B* is the adjoint operator of B.

Next, let us consider the streamline diffusion finite element approximation of (2.6)-
(2.8). Let T" and T{} be regular triangulations of Q and €y, respectively, so that Q =
Urern T, Qp = Uryeri Tu- Let b = max cpnho,hy = max_ cpnhy,, where h; and h,,
denote the diameter of the element T and 7, , respectively.

Associated with T" is a finite dimensional subspace W" of C(£), such that ¢|, are
polynomials of k-order (k > 1), V¢ € W, Set Y = whn Hj (). Then it is easy to see
that Y" c v = H}(Q).

Associated with Tg is another finite dimensional subspace U" of U = L?(9y), such that
x|z, are polynomials of m-order (m > 0), Vy € U". Set K" = U"n K. Then we have
K" c K. In this paper we consider the case k = 1 and m = 0.

We use the streamline diffusion finite element scheme to approximate the state equa-
tion (2.6) and the co-state equation (2.7), and use the standard finite element scheme
to approximate the inequality (2.8). Then the approximation scheme of the optimality
conditions (2.6)-(2.8) is formulated as follow: find (yy, pp, up) € Y x Y x K™ such that

A’;l(yh,Wh) = (f + Buy, wy, + 55 . th) VWh S Yh, (2.9)
Al (pnan) = (&' (Vn),qn — 6b-Vqy) Vg, € Yh (2.10)
G'(up) +B*pp, vy —up)y =0 Vv, €Kt c UM, (2.11)
where
A, (Vs wy) = (eVyy, Vwy) + (b~ Vyp+ayp,wy+6b - Vwy), (2.12)
Ay (Pn,qn) = (Vpy, Vap) — (b Vpp —apy,qn — 6b - Vqy), (2.13)

0 is a stabilized parameter, which can be chosen as

2
| mhi/e P <1,
6|, = { o pP>1. (2.14)
where P = || b llo,00,= h=/(2¢) is P’eclet number, 7, and 7, are constants. Note that in our

papet, || b ||p «,; is @ constant since b is a constant vector, and £ < h. We set 71 = 75 =1,
and hence 6|, = h,.
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3. Existence and uniqueness of the discrete solution

In the last section, the streamline diffusion finite element scheme for approximating the
control problem (2.4)-(2.5) is provided. It should be pointed out that we derive the ap-
proximation scheme (2.9)-(2.11) by using the streamline diffusion finite element method
for the continuous optimality condition (2.6)-(2.8) directly, instead of approximating the
optimal control problem (2.4)-(2.5) and then deriving the discrete optimality condition as
the standard finite element method for optimal control problem governed by elliptic partial
differential equations (see, e.g., [19] and [20]). Then it is clear that although (y;, pn, up) is
the approximate solution of the optimal control problem (2.1)-(2.2a), it is not equivalent
to the approximation solution (y;, p;,u;) which satisfies

min N+ (W), 3.1
u;ethuh{g(yh) Jj@u)} (3.1

subject to
A (v owi) = (f +Buf,wy +6b-Vwy) VYw, eYh, (3.2)

where A; (-, -) is defined by (2.12). Thus the proof of the existence of (yy, pp,uy) is not triv-
ial, although the existence and uniqueness of the solution (y;,p;,u;) is obvious provided
that the functional J(y(u),u) = g(y(u)) + j(u) is convex.

In the following we shall provide the proof of the existence and the uniqueness of the
solution for the scheme (2.9)-(2.11). Similar technique have been used in [21] for the
optimal control problem governed by elliptic partial differential equations.

Theorem 3.1. Suppose the functional j(-) is uniformly convex, g(+) is convex, j'(-) and g’(-)
are Lipschitz continuous, and the operator B is bounded. Then if 6 is a sufficient small positive
number; the solution of the scheme (2.9)-(2.11) is existent and unique.

Proof. Let
(f +Bup, wp), = (f + Bup, wy + 5b - Vwy),
(&' (i) )t = (&' (¥a)»qn — 6b - Vap).

Then the scheme (2.9)-(2.11) can be rewritten as

A (yp,wi) = (f +Bup,wp)), Vw, €Y", (3.3)
AY(pr,qn) = (&', qr)t Vare Y™, (3.4)
G'(up) +B*pp, vy —up)y =0 Vv, €K™ (3.5)

Introduce two operators Q: L%(Qy) — U™ and Py: L?(Qy) — K" such that for all z €
L% (), Quz € U", Pyz € K", and

(QUZ:Zh)U = (Z,Zh)U v Zp € Uh:

%2 — Prz =min ||z2—2 .
I %2 llo,0, min I 1 llo,qy
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It is easy to be verified that the operator Py satisfies

I Px(2") = Pe(z") oo, <Nl 2" = 2" llog, V%', 2" € L2(Qy). (3.6)

For v, € K", introduce (y,(v4), pu(v)) to be the solution of the following auxiliary equa-
tions:

A (v, wi) = (f + By, wy);  Yw, €Yh, (3.7)
Alpr(vi), qn) = (&' ra(vp)), @) Vap e Y™ (3.8)

Set mapping ®: U" — U", such that
®(z,) = 2, — p(J'(21) + Qu(B*pr(z1))) V2, €U, 0<p<1.
Let &, = T(21,) = P ®(z). Then 2, satisfies (see, [22]),
(B, 2, — 24) = ((21), 2, — 21), Yz € K"

Then the key problem for the proof of the existence and the uniqueness of (2.9)-(2.11) is
to show that T(z;,) is a contractive mapping. It follows from (3.6) that for all z,’l,z,’l’ eUn,

I T(z) = T(2) 13 o, = Pe(@(2,)) = Pe(@(z) 113 o,
<|l ®(z;) — @(z;) I} o, = (8(z;) — 8(z;), 2(z;) — (3 ))U.

Note that

(8(z) — ®(z;), 2(z;) — (2 )y

=z~ |2, —20(, — 3, J'(&) — /(5 Dy

- 2p (2, — 2,,Qu(B"pr(2) — B*pr(z; )y

+ 0211 j'(z) — j'(z) + Qu(B*pu(z;) — B*pu(z;)) IIS,QU,
and

(Z;{l - Z;I/,QU(B*Ph(Z;Q) - B*Ph(zﬁ)))U
= (z; — 2;,, B pr(2;) — B pr(z; )y = (B(z;, — 21,), pu(z;) — pr(zr)).

We have

1 T() ~ T 12,
<l 2 — =/ 1P, ~20(a — 5,1 (21) — §' &)y — 2p (B(z, — 51 pu(z1) — pu(zf))
+ 02 ') — (&) + Qu(B"pa(z) — B palzi ) I, - (3.9)

Note that j(-) is uniformly convex. It is easy to see that

( _Zh )] (Zh) J (Z ))U > C ” 21/1 _Z}/l/ ”(2),QU; (3.10)
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where C; is the constant dependent on the uniformly convexity of j(:). For z,’l,z}’l’ e K" it
follows from (3.7)-(3.8) that

A (va(z) — ya(z), wi) = (B(z, — ), Wi
A (pr(z) — pr(zr) an) = (8’ (n(z)) — &' (ra(2,))s an)y-
Setting wy, = py(2;) — pu(z;)) and qj, = y4(2;) — yu(2;), we deduce that
(B(z, — ), () — Pu(2));,
= A (vu(=) — yn(z), pu(z) — Pr(2))) — An(pn(2:) — prlzr), ya(zh) — ya(z;)
+ (8" (nlz)) — &' (rn(z))s yn(z1) — yn(z D
Therefore,
(B(z, — 21,0, Pr(2,) — pn(2;))
= A (yn(zr) — yn(z)), pr(zr) — pr(z)) — AS(pr(23) — pu(@), Yu(=) — ya(z))
+ (&' () — &' n(@))), yu(z) — yulz))s
— 8(B(z;, — 2, b - V(pu(z;) — pulz)))- (3.11)

LetY, = yh(Z;l) — yh(Zh ), b, = ph(zh) — ph(Z}/I/). By the definitions OfA';l(Yh,Ph), AZ(Phs Yh)
and integrating by parts, we have

Ay (Y, P) — AL (P, Yy)
= (b- VY, +aYy,P,+6b-VP)+(b- VP, —aP,,Y,— 6b-VY,) =0. (3.12)
Note that g(-) is convex. We have
(&' (n(2)) — &' mlz)), yu(zy) — yu(z) )5
= (&' (n(z)) — &' () yul(zp) — yn(2)))
+6(g (J’h(zh)) &' nE), bV (yu(zh) — yu(z))

>0- 6’25; [RACAESCAN Pt A CACAERA ) 4% (3.13)

where y is an arbitrary positive number, C, is the constant dependent on the bound of
g’(+). Moreover, it is easy to see that

8(B(z}, — 21), bV (pu(z;) — pu(zy )
1 -
< o6 Iz =5 30, +67 I BY(A(s) ~ ) I G4

again, where y is an arbitrary positive number, and C; is the constant dependent on the
bound of the operator B. By the property of A; (.,.) and A7(.,.) (see, e.g., [1] and [25]),
we have

1yn(z) = @G o + 6 115 - V() = G 15 0= Call 2 =2 I3, (3:15)
IPr(zr) = Pa(E) o + 8 1| BY - (Pu(z) = puG) 15 o< Cs ll 24, =2 3o, - (3-16)
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Combining (3.11)-(3.16), we deduce that
(B(z, —2,), Pr(z,) — Pa(2))

> _ 1 N _ ”mo2 7 N _ i 2
> C26Y Il ya(z) — yu(z) g, =07 1DV (ya(z) — yr(z Dl o
1 -
- Ca5 154~ I, ~57 I BY(u(a}) ~ i) I3
1
> —((CC4s + C3)5¥ +(Cq+Cs)7) |l 2, — 7 ||3,QU . (3.17)

Moreover, it is easy to see that
I17(2) = 3 () + Qu(B*pi(z) — B*pi( ) I3 o, < Co 2, — 21, llg g, - (3.18)
Then it follows from (3.9), (3.10), (3.17) and (3.18) that
T () = T 15,0, < C* 12, = 21 5.0, (3.19)

where 1
C*=1-2pC;+2p((C,C4+ 03)5; +(C4+ C5)y) + p2Cs.

Set y = C;/2(C4 + Cs). We have
* _ 4pd 24 _ 2
C —1—PC1+C—(C2C4+C3)(C4+C5)+P Ce=1—pC;+p~C,
1

where C; = C; —46(C,C,4 + C3)(C4 + C5)/Cy > 0, when 6 is small enough, which is the
reasonable assumption because that 6 = O(h) generally in our case. It follows that C* < 1
if p < C,/Cg. Therefore T(zy) is the contractive mapping and hence the existence and the
uniqueness of (2.9)-(2.11) are direct conclusions. O

4. A priori error estimates

In this section, we consider a priori error estimate for the optimal control problem
(2.6)-(2.8) and its streamline diffusion finite element approximation (2.9)-(2.11).

Lemma 4.1. Let (y,p,u) and (¥u, pn,Uy) be the solutions of (2.6)-(2.8) and (2.9)-(2.11),
respectively. Assume that j(-) is uniformly convex such that

G'0yy—wy =G’ @,y —wy 2cllv—ullyg,, 4.1

g() is convex, j'(-) and g'(-) are Lipschitz continuous, the operator B is bounded, K" c K,
u € H'(Qy). Then we have that

lu = up llo,0, = Clhy+ Il p(un) = pp llo0), (4.2)
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where (y(up), p(up)) € Hé(Q) X Hcl)(ﬂ) is the solution of the following equation:

(eVy(uy), Vw) + (B -Vy(up),w) + (ay(up),w) = (f +Buy,w) Ywey 4.3)

(eVp(up), vq) = (B-Vp(up), @) + (ap(up),q) = (&'(y(w)), @)~ Vge¥. (4.4
Proof. Set J(u) = j(u) + g(y(u)) as in the problem (2.4). Then,

(J'(w),v) = (W) +B*p,v)y, (4.5)

(J'(un),v) = (j'(up) + B*p(up), vy, (4.6)

where p and p(u;,) are the solutions of (2.6)-(2.8) and (4.3)-(4.4), respectively. It follows
from (4.1) and (4.5)-(4.6) that
'), u—up) — (' (up),u — up)
>cllu—uy, IIS’QU +(B*p —B*p(up), u — up)y- 4.7)

Moreover, it can be deduced from (2.6)-(2.7) and (4.3)-(4.4) that

(B*p — B*p(up),u — up)y = (B(u — up), p — p(up))
= (eV(y — y(w)), V(p — pwp))) + (b - V(¥ — y(up)), p — p(up))
+ (aly — y(up)), p — p(up))
= (eV(p — p(up)), V(y = y(w))) = (b- V(p — p(up)), y — y(up))
+ (a(p —p(up)), y — y(up))
=&’ — &),y — y(up)) = 0. (4.8)
Thus, (4.7) and (4.8) imply that

'@, u—up) = ' u—u) Zcllu—uyllg g, - (4.9)

Letu; €K " be the L?-projection of u. Then it follows from (4.9),(2.8) and (2.11) that

=(j'(w) +B*p,u —up)y — (' (up) + B p(up), u — up)y
=(j'(w) + B*p,u —uy)y + (B*(p(uy) — pp), up — Wy
+ (j'(up) + B py up — upy + (5 (up) + B ppoup — Wy
<0+ (B"(p(up) = pr)sup — Wy + 0+ (' (up) + B pp,up —u)y
= (j'(up) + B*pp — j'(u) = B*p,u; —u)y + (j'(w) + B*p,u; —w)y
+ (B*(p(up) — pp)rup — wy
< ('(wy) = j'(W),u; —wy + (B*(pp — p(up)), uy — wy + (B*(p(uy) — p),uy —wy
+ (W) + B*p,uy — u)y + (B*(p(up) — pp),up — )y
<('W+Bp,u; —wy +C(N) llu—u 15 o, +C() 1 B*(p(un) = pr) llg g
+Cy 11 B (p(up) = p) llg o +Cy 11 /() = /'@ g o, +Cr lu—up 5, (4.10)

cllu—u ||(2),QU< (') = J' (up),u —up)
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where y is an arbitrary positive number. Note that u; € U" be the integral average of u on
each element such that

Then it is easy to prove that (see, e.g., [5]) if u € H'(Qy),
lu—u < Chy llullg, - (4.1D)
Moreover, if u € H'(Qy;) and p € H!(Q2), we have
(j'(w)+B*p,u; —u)y = (j'(w) + B*p, m%u —u)y

= Z (j'(w) +B*p — n%(j'(u) + B*p))(n*u — u)

reTh Y Tu
<|l j’(w)+B*p — n*(j’(u) + B*p) llo,o, Il Tu—ulloq,
< ChZ | j'(W)+B*p I 0, U lia,
< Chi(|u Iigu +1plig) < Chj,. (4.12)

Note that B* and j’(-) are bounded. Then it follows from (4.10)-(4.12) that

lu—uy I, < COORE +CO I plun) = pi 12
+Cr llp(un) = p g o +Cr 1w —up 15 g, - (4.13)

From (2.7) and (4.4) we can deduce that
Alg,p = pup)) = (&'(y) — &' (¥ (), @)

Setting g =p —p(uy) and ||| v |||[= ¢ || Vv ||?> +a || v ||?, we have that

llp—p)lI=C g’ (y)—g' ) lloa=Cllly =yl
Similarly, it can be proved that

Iy =y lll<Cllu—upllog, -
Therefore, we obtain that
Il p = p(up) llo.o=<llp — p(up) llI< C [lu —up [lo,0, - (4.149)

Thus (4.13) and (4.14) imply that

=y 3, < COOMZ +C) | pr— p(w) 1B +Cr lu—wy |2, -

This proves (4.2) by setting y = % O
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Theorem 4.2. Let (y,p,u) and (yy, Py, Uy) be the solutions of (2.6)-(2.8) and (2.9)-(2.11),
respectively. Assume that all conditions of Lemma 4.1 are valid. Moreover, assume that
¥, p, y(up), p(yy) € H*(Q), where y(uy) is the solution of the system (4.3)-(4.4), p(yy) is
the solution of the equation:

(eVp(yp), V@) — (b Vp(yp), @) + (@p(y), @) = (¢'(¥4),q) YgE€HI(Q).  (4.15)
Let & be defined by (2.14). Then we have
Iy =y llsp + 11 2 = Py llsp + =1y llo., < Clhy +h¥* + he'/), (4.16)

where
2 2 12 7 2
lwlsp=¢ll Vw ||0’Q + || azw ||0’Q +6 b-Vw IIO,Q .

Proof. Let p(y;) be the solution of Eq. (4.15). Then it is easy to see that p; is the
streamline diffusion finite element solution of p(y;), and

Ip(u) = Pl < Cllg’ (r(wr)) — &' llo,a < Clly (wy) = Yulloo- (4.17)
Using the results of [1] and [25], we obtain the following error estimate:
I p(yn) = pa llsp < C(h*? + he'/?). (4.18)

Similarly, we have
Iy (ur) = yu lsp< CCR** + he' ), (4.19)

Then it follows from (4.17)-(4.19) that
Ip(un) — prlloq < Ip(us) = p(rillog + IP(v) — Pallog < C(R*% + he'/?). (4.20)
Recall Lemma 4.1, it can be deduced from (4.2) and (4.20) that
|t —uy llog, < Clhy +h¥* + he'/?). (4.21)
Let ¥, be the solution of the following equation
A5\ (Fnown) = (f +Bu,wy)y, Ywy, € VR, (4.22)
We can find that ¥, is the streamline diffusion finite element solution of y, and
| 7= ynllsp< C llu—uy llo,q, - (4.23)
Again, it can be deduced as in [1] and [25] that
Iy = 3n llsp< Ch(h'/2 +£1/2). (4.24)
Consequently, (4.21) and (4.23)-(4.24) imply that

Iy = yu llsp< Ch(RY* + eV2)+ C | u—wy llo.o, < C(hy +h*/ + he'/). (4.25)
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Similarly, let p, be the solution of the following equation

A (Brqr) = ('), gt Yan e VM. (4.26)
We have
|| p — B llsp< Ch(hY/? + £1/2), (4.27)
and
| Br—pr llsp=<C Il g'(y) — &'(¥n) ||0,Q§ Clly —yn ”0,Q . (4.28)

Then, from (4.25)-(4.27) we obtain
I p = pu llsp< Ch(RY* + &)+ C | y — yp lloo< Clhy +he'/? +13/2). (4.29)

Summing up, (4.16) is proved from (4.21), (4.25) and (4.29). O

Remark 4.3. In this section, we discussed a priori error estimate. It is proven that the
accuracy order of the discrete scheme is @(hy, +h*/?) when the solution is smooth enough
and € < h. It is not optimal for the state and the co-state in L?-norm, and it is well
known that the optimal L2-error estimate is not available for the advection dominated
diffusion problems generally. Using the superconvergence analysis technique, the optimal
L2-error estimate can be obtained, but some strong conditions are required (see, e.g.,
[14,16,17,28,29], for more details).

5. A posteriori error estimates

In the following we shall derive a posteriori error estimates in L?-norm for the problem
(2.6)-(2.8) and its streamline diffusion finite element approximation (2.9)-(2.11).

Recall that we consider the optima control problem with constrained control set (see
(2.3)) in this paper, i.e., K = {v € U,v > 0}. In this section, let the functional j(u) =
fﬂu j(w), where j(-) is a function. Hence j'(-)(v) = (j'(-),v)y for all v € L?(Qy). For
simplicity, we denote j(-) still by j(-) in the following. In order to construct a posteriori
error estimates, we divide the domain Q;; into three subdomains:

Q" ={xeQy: (B'pp)(x)+j'(0) <0},
Q%= {x €Qy: (B'pp)(x)+j(0)> 0, uy(x) =0},
Qf={xeQy: (B*pp)(x)+j'(0) >0, up(x) > 0}.
Then it is easy to see that above three subsets are not intersected each other, and
Q=0 uduar

Moreover, it is clear that Q™ should be the active set, while 2° should be the inactive one.
To derive a posteriori error estimates, we need the following lemmas. The proof of
Lemma 5.1 can be find in [26]. Lemma 5.2 is a well known result; its proof can be find in,

e.g., [5].
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Lemma 5.1. Let 7}, be the average interpolation operator defined in [26]. For m =0 or 1,
1<q<ooandvewWhi(Q), we have ;v € v and

1—
”V - nhv”m,q,r =C Z hr mlvll,q,f“

T'NTH#0D

Lemma 5.2. Assume that the element 7 is regular. Then for v € W4(1), 1 < q < oo, we
have

_1 1-1
”V“O,q,ar = C(hrq ”VHO,q,T + hT ! |V|1,q,r)-
Firstly, let us consider the a posteriori error estimate for the control u.

Lemma 5.3. Let (y,p,u), (¥, Pn, Uy) be the solution of (2.6)-(2.8) and (2.9)-(2.11), respec-
tively. Assume that j(-) is uniformly convex (see (4.1) in Lemma 4.1), g(-) is convex, j'(-) is
Lipschitz continuous, the operator B is bounded, K" € K. Then we have

=y 2, < Cn2+ 1l pCy) = i 2.0, 5.1)

where (y(uy,), p(uy,)) is the solution of the system (4.3)-(4.4), and
n = f (i’ (up) +B*pp)*.
Q-unt
Proof. Let J(u) = j(u) + g’(y(u)). It has been proved in Lemma 4.1 (see (4.9)) that
'@,u—up) = (') u—up) > cllu—upligg, - (5.2)
Note that u;, € K. Similar to Lemma 4.1, it follows from (5.2) and (2.8) that

cllu—uplly o, < ('@, u—up)y — ('), u —upy
= (') +B*p,u —up)y — (' (up) + B*p(up), u — up)y
< —(B*p(up) + j'(up), u — up)y
= (j'(up) + B pp, up — Wy + (B*(py — p(up)), u — up)y. (5.3)

It is easy to see that
(j'(up) + B pp,up — wy
= J (j'(up) + B*pp)(up, — u) + J (' (up) + B*pp) (up, — w), (5.4)
Q-uQt 0o

and

J (J'(up) + B pp)(up, — u)
Q-uQt

<C(y) (' (up) + B pp)?* + Crlluy, —u||3,QU
Q-uQt

= C(nT + Crllup —ullg g, (5.5)
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where v is an arbitrary positive number. Note that j'(u) + B*p, > j’(0) + B*p, > 0 and
u, —u=0—u < 0 on the domain Q°. This leads to

J (j'(up) + B pp)(up, — u) < 0. (5.6)
QO

Then (5.4)-(5.6) imply that
(' (up) + By, = wy < CINT + Cylluy —ull} g - (5.7)
Moreover, Schwartz inequality implies that
(B*(pn — p(up)), u — up)y < C(Y)IIB*(py —P(uh))HaQU + Cryllu— uhllg,gu
< ClIpn— Pl + Crllu— w2 . - (5.8)

Summing up, (5.1) follows from (5.3), (5.7) and (5.8). This proves the theorem. O

In order to obtain the a posteriori error estimate of || y, —y(uy) llo.q and || pp—p(up) llo.0
we introduce the following auxiliary dual problems:

_8A¢1 — B . v¢1 + a¢1 = fl in Q, (5 9)
¢, =0 on 21, '
and
—8A¢2+B-V¢2+a¢2 :f2 in Q,
{ 5=0 on J9. (5.10)

For above dual problems, we have the following stability estimates (see, e.g., [23]).

Lemma 5.4. Let ¢; be the solution of (5.9) or (5.10). If Q is convex polygon or smooth, then
fori=1or2, wehave

2l ¢i g +& 1 di g +11 ¢ loa< C Il f; lloq -

Now we are in the position to prove the a posteriori error estimate for the problem
(2.6)-(2.8) and its streamline diffusion finite element scheme (2.9)-(2.11).

Theorem 5.5. Let (y,p,u),(Yn, Pn, up) be the solution of (2.6)-(2.8) and (2.9)-(2.11), re-
spectively. Assume that j(-) is uniformly convex (see (4.1) in Lemma 4.1), g(+) is convex, j'(-)
and g'(+) are Lipschitz continuous, the operator B is bounded, K" c K, Q is convex polygon
or smooth. Then we have

5
lu—up l3g, + 11y =i g+ 1P —pal2g< €D 0% (5.11)
i=1
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where 1) is defined in Lemma 5.3,

ﬂ%z J(f +Bu, — b Vy, —ay)?,
’L'GTh

2 __

N3 = J [eVyy -]
ZeaTh 1N69=0

nG = J (b~ Vp— apy+ &' (yn))%
TETh

n = [eVpy, - /]2
ZeaTh noa=p & Ji

Here | = %11 N flz is the edge of the element, h; is the length of the edge , [v]; is the jump of v
over the edge l:

[v(x)]xer = Slir(gg (V(x +sn) —v(x— sn)),
and i is the unit normal vector on | outward 8711.
Proof. Let f5 = p(uy) — py, in (5.10). We obtain
I p(u) = pr 1} o = (€A +b- Vo +adhs, p(uy) — pp)
= (&' (), d2) = (eVbo, Vpy) + (b2, b - Vpy) — (adha, p)-
Note that
(eVpr, Va) = (b Vpy — apy,qy — 5b - Va) = (8'(yn),qn — 5b- Van) Vg, € VP,
Then
Il p(r) = py 13 o= (&' (), $2) = (€Y s, Vpy) + (2, b - Vpy,) — (b, pi)
+(eVpr, Van) — (b Vp, — apy,qy — 5b - Vay) — (8'(ya):qn — b - V)

= (g'(yn)s b2 — qu + b - V) + (6 Vpp, V(qy — $2)) + (B - Vpp, o — g+ 8b - Vgp)
—(app, $2 — g+ 6b- V) + (&' (y (W) — &' (), d2)

= > | (B-Vpy—apy+8 (y))(¢2 — gn + 8555 - V)

teThd T
f eVpy - 1(qn — ¢2) + (&' (v () — &' (v, ¢2)
leaTh

::Il +12+13. (5.12)
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Let g, = my, ¢, Where 1y, is defined in Lemma 5.1. Then we have
Il ¢2 =g+ 825 Vay llo,x
= ¢3 — Ty +6b - V(7p,) ||0 =l 2 — Thep ||0 16 || b-V(mpes) ||0,r

<Ch; Y. I1Vesllow +C8 D b lleoll Vs llow< Che D 1| Vb lloes
T'NT#D T'NTH#0D T'NT#D

where we used the fact that 6 < Ch, which can be derived from (2.14). Thus, we obtain

L= Z (b~ Vpp — apy+ &' () (ps — qn + 825 - Vgp)

TeThv T

<C Y hlB-Vpp—apy+ 8 llor Y. IV llow

TeTh TNTAD

h2 -
<cn Y. - J (b-Vpy—apy +&'(yu))* + Crellgalli g
T

TeTh

< C(Ing+Cy I pup) = pr 5 o5 (5.13)

where vy is an arbitrary positive number. In the last step of (5.13), Lemma 5.4 is used to
obtain

8||¢2”1Q <C ”p(uh) Pn ”09
Similarly, it follows from Lemmas 5.1 and 5.2 that when [ C 97,

Il mhbs = @2 llog < C D (hy 2l by = o llo,e +hy" Il b — 2 .0

lcor

1
< Chl /2 Z ” V¢2 ||O,T’~

lcot,7'NT#0
Then

L=, J eV, Al(qy — §2) =

leaTh

J eVpy - ](qn — ¢2)

leaTh NoQ=0

S I CE M AT

ledTh,Inan=0 Dico T NTHD

<C(y) f[eVph 2+ Crellgallf g
leaTh INdQ= (Z)
< C(y)ni +Cr Il p(up) = pr 5 g - (5.14)

Moreover, it is easy to see that

=(g'(y(wp) = &' (n), #2) < 18"y () — &' ) lloall 2 llog
< C 1 y(up) = yu I3 +CrlipCup) = py G - (5.15)
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Summing up, it follows from (5.12)-(5.15) that

Il p(up) = pu I5,0< C Il y(up) = yi 13 o +Cn + Cn. (5.16)

Similarly, setting f; = y(uy) — y in (5.9), we have

1y @) = yi g = (—eAdy — b Vi + ag, y(up) — yz)

= (eVy(Ww), V1) + (b~ Vy(wy), 1) + (ay(up), ¢1)
— (Y, Vyy) = (¢1,b- Vyy) — (ad1, v1)

= (f +Buy, $1) — (eVyh, V1) — (b Vyu, ¢1) — (ayp, 1)
—(f + Bup, myp1 + 5B - V)
+(eVyh, Vpd1) + (B Vyp + ayy, mp¢y +6b - Vi)

= (f +Buy, ¢1 — Thp1 — 55 - V1) + (eVyn, V(mps — $1))
+(B- Vyy +ayp mpy + b Vrudy — 1)

= > | (F +Buy—b-Vy, — ay,)(dy — a1 — 615 Vrpey)

TeThvy 7

+ ] f [eVyy - Al(mhd1 — $1)
l

ledTh

h2 -
<C(y) Z ?TJ(f +Buy, — b Vy;, — ay)?

Terh

ve Y2

ledTh,1naN=0
< C)ms+n3)+Cr lly(up) =y, I3 -

f[sVyh -2+ Crellgalli g
z

Therefore,
| y(r) = yu 5, o< C(n3 +n3). (5.17)
Combining (5.16), (5.17) and Lemma 5.3, we obtain that

5
lu = wll§ g, <€D 7. (5.18)
i=1
Moreover, it is easy to see that
1y = y(wnlloe < ClIB(u — up)llo,o < Cllu — upllo,q, (5.19)

and

lp = pupllo < ClIg’(¥) — &' (y(wDlloa
< Clly = y(@pllo,a = Cllu = upllo,q,- (5.20)
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Thus, it can be deduced from (5.16)-(5.20) that

5
ly = ¥l g < Clly = y@)li2 o+ Clly () — yalld g <€ D> n, (5.21)
i=1
5
lp = pill2 < Cllp = pwp)l2 o + Clip(uy) — palld g < € > . (5.22)
i=1
Then (5.11) follows from (5.18), (5.21) and (5.22). This proves the theorem. O

6. Numerical examples

In this section we will present several numerical examples to illustrate our theoretical
results obtained in the earlier sections.
Consider the problem:

1
min {—J(y—yo)2+J (u—uo)z} (6.1)
uekcU | 2
Q Q
subject to
—eAy+B-Vy+ay=f+Bu in Q, (6.2)
y=0 ondQ,

with © = [0,1] x [0, 1], B = I. For simplicity, we use the same mesh for T" and T{}.
Example 6.1. Let ¢ = 107>, b= (1,1), a =10, yy, ug, f be as following:

Yo = m(cos Xy Sin 271X + 2 os 271X, sin 7x; )(1 + e~ C1x2)/e))
uy = 1 —sin(mx;/2) — sin(7wxy/2) — sin(7wx;) sin(7x,)
+ (1 — e~ (atx2l/ey sin(7tx;) sin(27x,),
f = (572 + 10)%(1 — e~ 1+*2/%)gin(71x; ) sin(27x,)
+ 4(51%¢ + 10)/ee” 122 gin( ;) sin(27x,)
+ (57%¢ + 10)e(—3e~1+%2)/¢ £ 1)(sin(27x,) cos(mx;) + 2 sin(mx;) cos(27x5))

—max{0, 1 — sin(7x;/2) — sin(7x,/2) — sin(7x;) sin(7wx,).
Then the exact solution of problem (6.1)-(6.2) is

y = (5m%¢ +10)(1 — e~ 172/ &) gin(7rx, ) sin(27x,),
p=0- e_(x1+x2)/€)sin(nx1) sin(27x,),

u =max{0,1 — sin(mx,/2) — sin(7x,/2) — sin(7x; ) sin(7wx,)}.
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Table 1: Convergence results on uniform mesh for Example 6.1.

Dofs | ||y —=ynllsp | order | [|p—pnllsp | order | [[u—up|lo | order
41 | 5.265111e+0 5.344924e-1 5.26e-2

145 | 2.658064e+0 | 0.98 | 2.722418e-1 | 0.97 2.57e-2 1.03
545 | 1.352481e+0 | 0.98 | 1.409325e-1 | 0.95 1.31e-2 0.97
2113 | 6.999507e-1 | 0.95 | 7.019852e-2 | 1.01 6.57e-3 1.00

Table 1 presents the errors and convergence orders of the streamline diffusion finite
element approximation on the uniform mesh, where DoFs denotes the numbers of the de-
gree of freedoms. It is shown that the numerical results are accordant with our theoretical
results. Noting that we choose h = h; in our example, the convergence order is

ly = ynllsp +1Ip = pallsp + llu — ugllon,
= 0(h'® +hy) = 0(hy) = O(h).
Fig. 1(a) shows the surface of control u, and Fig. 1(b) is the adaptive mesh for control

u obtained by using the indicator n%. It is shown that a higher density of node points are
distributed along the free boundary. We obtain an error

| u—up llon,= 6.339274 x 107>

using 716 nodes on the adaptive mesh shown in Fig. 1(b). However, it is shown in Table 1
that we need 2113 nodes on uniform mesh to obtain a similar error. Thus it is evident that
our adaptive mesh indeed saves substantial computing work.
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04 06 08 : (b) ) 01 02 03 04 05 06 07 08 09 1
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Figure 1: Example 6.1: (a) the surface of u; (b) the adaptive mesh T}.

Example 6.2. Let ¢ = 104 b = (=1,—1), a = 10. Set M = e~ (1=1/2"+(x2=1/2))/e
Assume Y, ug, f are of the following forms:
Yo = M sin(7x;)sin(mx,)(x;(2x; —1)/e + y(2x5, — 1)/¢)
+ M sin(7tx,) cos(mx;)(1/2 — 2xq) + M sin(7x;) cos(mxy)(1/2 — 2x5),
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©
Figure 2: Example 6.2: (a) the surface of u; (b) the adaptive mesh T; (c) the surface of y; (d) the
adaptive mesh T".

uy = 2cos(mxy)cos(mxy) —1+M/2,
f=2(r?e+ 7)2M sin(7x;) sin(7x,) + 2(7%e + 7)mM cos(mx;) sin(7mx,)(2x; — 3/2)
+ 2(m%e + 7)M cos(mx,) sin(mx;)(2x5 — 3/2)
— 2(m?e + 7)M sin(mx;) sin(7x,)(x; — 1)(2x; — 1)/e
— 2(m2e + 7)M sin(mx;) sin(7x5) (x5 — 1)(2x5 — 1)/& — max{ug — M/2,0}.
The exact solutions is
y = (n%e + 7)M sin(7tx;) sin(mx,),
p=M/2,
u = max{0, 2 cos(7wx; ) cos(mxy) — 1}.

We use n% as the indicator to construct the adaptive finite element mesh T L’} for the
control u, and use n% + ng as the indicator to construct the adaptive finite element mesh
T" for the state y and the co-state p. Figs. 2(a) and 2(c) are surfaces of u and y. Figs. 2(b)
and 2(d) are adaptive meshes obtained by the indicators n% and n% + ng, respectively.

Table 2 presents the error of the state y and the co-state p on the uniform mesh and
the adaptive mesh, respectively. It is shown that the errors of y — y; and p — p;, on the
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Table 2: Error of y and p on uniform and adaptive meshes for Example 6.2.

unform mesh, nodes=2113 | adaptive mesh, nodes=852
ly = ynlloq 5.456995e-002 5.341020e-002
|y =¥ ha 2.175102e+000 1.925758e+000
Il p—pnllog 2.774408e-003 2.872870e-003
|p—pn 1o 1.453691e-001 1.282954e-001

adaptive mesh with nodes of 852 are similar to those on the uniform mesh with nodes
of 2113. Again, the substantial computing work can be saved by using efficient adaptive
mesh.

Example 6.3. Let ¢ = 1074, b= (2,3), a =1. The exact solution of problem (6.1)-(6.2) is

y =sin(x;)(1 — eT2H20)/e)52(1 — (Z3F3x0:)/e))
p = sin(7tx;) sin(7x,),

u = max{sin(2mx;) + sin(2mx,), 0}.
The right hand side f and the Dirichlet boundary data on ) are chosen accordingly.

The solution y shows exponential boundary layers along the boundary at x; = 1 and
Xy = 1.

We again use n% as the indicator to construct the adaptive finite element mesh Tg for
the control u, and use n%+n§ as the indicator to construct the adaptive finite element mesh
T" for the state y. Fig. 3(a) shows the contour-line of the control u; and Fig. 3(b) presents
the adaptive mesh obtained by the indicators n% for the control u. Moreover, Fig. 4(a)
shows the exact solution of the state y and Fig. 4(b) presents the adaptive mesh obtained
by the indicators n% + n% for the state y.

0.8 0.8

071 07l
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05 K—

o h I T { f L L L L , 0 N f h L L f
(a) 0 01 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1 (b) 0 01 0.2 03 0.4 05 0.6 0.7 08 0.9 1

Figure 3: Example 6.3: (a) contour-line of control u; (b) the adaptive mesh of control u.

The errors of y and u on uniform and adaptive meshes are presented in Table 3. Again,
a substantial computing work can be saved by using efficient adaptive mesh.
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Figure 4: Example 6.3: (a) the exact solution of state y; (b) the adaptive mesh of state y.

Table 3: Error of y and u on uniform and adaptive meshes.

Mesh | y-dof | u-dof | ||y = ypllon | lu—up llog,
Uniform | 2113 | 2113 | 6.85e-002 | 2.32e-002
Adaptive | 833 | 930 | 5.37e-002 | 2.73e-002

7. Discussions

In this paper, we discussed the streamline diffusion finite element method for the con-
strained optimal control problem governed by convection dominated diffusion problems.
The existence and uniqueness of the scheme are discussed. The a priori and a posteriori
error estimates are provided. The numerical examples are presented to demonstrate our
theoretical results. For simplicity, we only discuss the convection diffusion problem with
the constant coefficients in this paper. The basic idea and technique used in this paper can
be extended to variable coefficient problems.

There are many important issues still to be addressed in this area. Firstly, it should be
pointed out that our streamline diffusion finite element scheme is only the approximation
of the continuous optimality condition. It is not equivalent to the discrete optimal control
problem. In the coming work, we will construct and analyze another streamline diffusion
finite element scheme, which is derived from discrete optimal control problem. Moreover,
it is important and challenging to investigate the control problem governed by evolution
convection dominated diffusion problems.
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