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Abstract. A class of normal-like derivatives for functions with low regularity defined

on Lipschitz domains are introduced and studied. It is shown that the new normal-like

derivatives, which are called the generalized normal derivatives, preserve the major prop-

erties of the existing standard normal derivatives. The generalized normal derivatives

are then applied to analyze the convergence of domain decomposition methods (DDMs)

with nonmatching grids and discontinuous Galerkin (DG) methods for second-order el-

liptic problems. The approximate solutions generated by these methods still possess

the optimal energy-norm error estimates, even if the exact solutions to the underlying

elliptic problems admit very low regularities.

AMS subject classifications: 46E35, 65M15, 65M55, 65M60
Key words: Green’s formula, generalized normal derivative, domain decomposition, nonmathing

grids, discontinuous Galerkin, error estimates.

1. Introduction

It is known that normal derivative of function is well defined on boundary of any Lips-

chitz domain, provided that the underlying function is smooth enough (see, [13,20,21]).

But, if the function under consideration has low regularity only, an additional assumption

is needed to guarantee the existence of this normal derivative. For smooth domains, this

topic was studied in details (see Chapter 2 in [20]). However, the results (e.g.,Theorem

7.3) in [20] can not be extended to the case of Lipschitz domain. The main difficulty rests

in the fact that normal vector is discontinuous at the corners of nonsmooth boundary. For

Lipschitz domain, only a few results on normal derivative of low regularity function have

been obtained by [11] and [13].

On the other hand, the normal derivative indeed plays an important role in numer-

ical analysis of boundary value problems. For example, one has to use normal deriva-

tives on the underlying interface in analysis of convergence of DDMs with nonmatch-

ing grids and of DG methods for elliptic boundary value problems of second order (see
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[1, 3, 5, 7, 15, 18, 19, 23, 24]). Most existing error estimates for these methods was de-

rived only under the assumption that the underlying analytic solution has high regularity,

since, as we mentioned above, the normal derivative is not well defined without such high

regularity. But, this assumption can not be satisfied in some applications. This problem

was investigated for DDMs with nonmatching grids in [4], in which an error estimate was

derived for a particular case with low regularity by using Hilbert interpolation technique.

However, Hilbert interpolation technique is not available for the general case that the an-

alytic solution has different regularities on different subdomains.

In the present paper, we try to extend Theorems 6.5 and 7.3 of Chapter 2 in [20] to

second-order elliptic problems on Lipschitz domains in a new manner. To this end, we

introduce a class of generalized normal derivative, which is defined by a Green-like for-

mula. The generalized normal derivative is well defined under very weak assumptions.

Some similar functionals with this generalized normal derivative were mentioned in lit-

eratures. However, to our knowledge, this kind of functional has never been studied in

details before. It will be shown that the generalized normal derivative preserves the main

properties of the usual normal derivative, although it can not be understood as the usual

normal derivative. Such generalized normal derivative will be used to derive the optimal

energy error estimates for the approximations generated by DDMs with nonmatching grids

or by the DG methods for second-order elliptic problems with low regularity solution. An

advantage of the new approach is that one can work the case that the loading function of

the equation does not belong to L2 space (compare [4]).

The outline of the remainder of the paper is as follows. In Section 2, we introduce

generalized normal derivatives and investigate main properties of the generalized normal

derivatives. In Section 3, we apply the generalized normal derivative to analyzing conver-

gence of DDMs with nonmatching grids and DG methods for second-order elliptic problems

with low regularity solution. A Hilbert interpolation result on subspace is derived in Ap-

pendix.

2. Generalized normal derivatives

This section is devoted to introducing and studying a class of generalized normal

derivative.

2.1. Sobolev spaces

In the rest of the paper, we will use various Sobolev spaces repeatedly.

Let Ω̂ ⊂ Rn (n = 2, 3) be a bounded and connected Lipschitz domain with piecewise

smooth boundaries. For convenience, a smooth piece of ∂ Ω̂ is called a face of ∂ Ω̂ in the

following. In applications, the domain Ω̂ usually represents a convex subdomain of the

underlying Lipschitz domain Ω, which includes polygon (in R2) and polyhedron (in R3)

with planed or curved faces. Denote by Hσ(Ω̂) (σ ∈ [0,2]) and Hσ0 (Ω̂) (σ ∈ (0,1]) the

usual Sobolev spaces associated with weak derivatives (see [2,13,21]). The norm in Hσ(Ω̂)

is denoted by ‖ · ‖σ,Ω̂. Let Ll oc(Ω̂) denote the space of locally integrable functions on Ω̂,
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and let (·, ·)Ω̂ denote the L2(Ω̂)-inner product. For σ ∈ [0,1], define (refer to [21])

H−σ(Ω̂) =

¨

v ∈ Ll oc(Ω̂) : sup
w∈Hσ(Ω̂)

|(v, w)Ω̂|

‖w‖σ,Ω̂

< +∞

«

and

‖v‖−σ,Ω̂ = sup
w∈Hσ(Ω̂)

|(v, w)Ω̂|

‖w‖σ,Ω̂

, v ∈ H−σ(Ω̂).

It is certain to regard v1 = v2 in H−σ(Ω̂) if (v1 − v2, w)Ω̂ = 0 for any w ∈ Hσ(Ω̂). Then,

‖ · ‖−σ,Ω̂ is indeed a norm, and H−σ(Ω̂) is a Banach space. It is clear that

Hσ2(Ω̂)⊂ Hσ1(Ω̂)⊂ L2(Ω̂)⊂ H−σ1(Ω̂)⊂ H−σ2(Ω̂), 0≤ σ1 < σ2 ≤ 1.

Accordingly, we define

H−σ0 (Ω̂) =

¨

v ∈ Ll oc(Ω̂) : sup
w∈Hσ0 (Ω̂)

|(v, w)Ω̂|

‖w‖σ,Ω̂

< +∞

«

, σ ∈ [0,1].

Note that both H−σ(Ω̂) and H−σ
0
(Ω̂) are different slightly from the standard dual space. In

fact, we have H−σ(Ω̂)⊂ H−σ
0
(Ω̂)⊂ (Hσ0 (Ω̂))

′ (in the isomorphism sense).

Throughout this paper all differential operators are understood as the weak differential

operators defined by the integration by parts.

Let a ∈ L∞(Ω̂) be a function with positive low bound. For convenience, define A as the

operator Av = −div(a∇v). For σ ∈ [1,2], define the space

HσA (Ω̂) = {v : v ∈ Hσ(Ω̂), Av ∈ Hσ−2(Ω̂)}.

The space is equipped with the norm

‖v‖HσA (Ω̂) =
�

‖v‖2
σ,Ω̂
+ ‖Av‖2

σ−2,Ω̂

� 1

2
.

Then, HσA (Ω̂) is a Banach space. In fact, we have

Lemma 2.1. The space HσA (Ω̂) is a Hilbert space for each σ ∈ [1,2].

Proof. Let Λ : H1(Ω̂) → L2(Ω̂) be a positive and self-adjoint operator in L2(Ω̂) scalar

product, such that H1(Ω̂) is just the definition domain of Λ (see pp. 129-137 in [21] for the

details). Then, Hθ (Ω̂) is also the definition domain of Λθ for each θ ∈ [0,1]. Accordingly,

let H̃−θ (Ω̂) denote the definition domain of Λ−θ (namely, Λ−θ (H̃−θ (Ω̂)) = L2(Ω̂)). Set

〈·, ·〉θ ,Ω̂ = (Λ
−θ ·, Λθ ·)Ω̂.

Then, H̃−θ (Ω̂) can be viewed as the dual space of Hθ (Ω̂) associated with the duality pairing

〈·, ·〉θ ,Ω̂. It can be verified that, for any v ∈ HσA (Ω̂) (σ ∈ [1,2]), there exists a fv ∈ H̃σ−2(Ω̂)

such that

(Av, w)Ω̂ = 〈 fv , w〉2−σ,Ω̂, ∀w ∈ H2−σ(Ω̂).
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Moreover, we have

‖Av‖σ−2,Ω̂ = ‖Λ
σ−2 fv‖0,Ω̂.

Thus, HσA (Ω̂) is a Hilbert space with respect to the inner product

(v, w)Hσ(Ω̂) + (Λ
σ−2 fv ,Λσ−2 fw)Ω̂.

This completes the proof of the lemma. �

Let G denote ∂ Ω̂ itself or a face of ∂ Ω̂. For σ ∈ (0,1), the Sobolev space Hσ(G) is defined

as usual (see [11,13,16]). The norm in Hσ(G) is defined by

‖ϕ‖σ,G =

�

‖ϕ‖20,G +

∫

G

∫

G

(ϕ(p)−ϕ(q))2

|p− q|n−1+2σ
ds(p)ds(q)

�
1

2

, σ ∈ (0,1).

For a face F ⊂ ∂ Ω̂, let H
1

2

00(F) be the space with the norm

‖ϕ‖
H

1
2

00(F)
=

�

‖ϕ‖21
2

,F
+

∫

F

ϕ2(p)

dist(p,∂ F)
ds(p)

�
1

2

.

For σ ∈ [0,1), let H−σ(G) denote the dual space of Hσ(G) associated with the pivot

space L2(G) (namely, the dual space of L2(G) is L2(G) itself), and let 〈·, ·〉σ,G be the du-

ality pairing between H−σ(G) and Hσ(G). It is known that 〈·, ·〉σ,G can be viewed as an

extension of the L2(G) scalar product in the sense that

〈w, v〉σ,G =

∫

G

wvd x for w ∈ L2(G)

and v ∈ Hσ(G) (refer to Section 4.4 of [21]). It is easy to see that

〈µ,ϕ〉σ1,G = 〈µ,ϕ〉σ2,G, ∀µ ∈ H−σ1(G), ϕ ∈ Hσ2(G) (0≤ σ1 < σ2 < 1). (2.1)

The norm of H−σ(G) is defined as

‖µ‖−σ,G = sup
ϕ∈Hσ(G)

|〈µ,ϕ〉σ,G|

‖ϕ‖σ,G

, µ ∈ H−σ(G) (σ ∈ [0,1)). (2.2)

Accordingly, one can define the dual space (H
1

2

00(F))
′.

For convenience, the symbols <∼, >∼ and =∼ will be used in the rest of this paper. That

x1
<
∼ y1, x2

>
∼ y2 and x3

=
∼ y3, mean that x1 ≤ C1 y1, x2 ≥ c2 y2 and c3 x3 ≤ y3 ≤ C3 x3 for

some constants C1, c2, c3 and C3.



Generalized Normal Derivatives in DDMs with Nonmatching Grids 387

2.2. Definitions of generalized normal derivatives

Let us first give two well-known results ( refer to [16], see also Theorem 1.4.2.4 and

Theorem 1.4.4.6 in [13]), which can be proved in the standard way.

Proposition 2.1. The space C∞0 (Ω̂) is dense in Hσ(Ω̂) for σ ∈ [0, 1

2
]. In particular, we

have Hσ0 (Ω̂) = Hσ(Ω̂) for σ ∈ (0, 1

2
).

Proposition 2.2. Each (weak) first-order partial differential operator on Ω̂ is a bounded

linear mapping from Hσ(Ω̂) into Hσ−1(Ω̂) (resp. Hσ−1
0 (Ω̂)) for σ ∈ (1

2
, 2] (resp. σ ∈

[0, 1

2
)). In particular, we have HσA (Ω̂) = Hσ(Ω̂) for σ ∈ (3

2
, 2], provided that the known

function a satisfies a suitable smoothness.

The desired generalized normal derivative is associated with a Green-like formula.

Theorem 2.1. Assume that v ∈ H1+s
A (Ω̂) with some s ∈ [0, 1

2
). Then, there exists a µ∂ Ω̂(v) ∈

Hs− 1

2 (∂ Ω̂) such that

∫

Ω̂

a∇v · ∇wdp+

∫

Ω̂

Av ·wdp = 〈µ∂ Ω̂(v), w〉 1

2
−s,∂ Ω̂, ∀w ∈ H1(Ω̂). (2.3)

Moreover, we have

‖µ∂ Ω̂(v)‖s− 1

2
,∂ Ω̂
<
∼ ‖v‖H1+s

A (Ω̂). (2.4)

Proof. For a ϕ ∈ H
1

2
−s(∂ Ω̂), let uϕ ∈ H1−s(Ω̂) be the unique solution satisfying uϕ|∂ Ω̂ =

ϕ and div(a∇uϕ) = 0. Then, we have by Lemmas 3.7 and 4.2 of [11] (see also [16])

‖a
∂ uϕ

∂ n
‖−( 1

2
+s),∂ Ω̂

<
∼ ‖ϕ‖ 1

2
−s,∂ Ω̂ and ‖uϕ‖1−s,Ω̂

<
∼ ‖ϕ‖ 1

2
−s,∂ Ω̂. (2.5)

Since v ∈ H1+s(Ω̂) with s ∈ [0, 1

2
), the trace theorem yields

‖v‖ 1

2
+s,∂ Ω̂

<
∼ ‖v‖1+s,Ω̂. (2.6)

Define

F(ϕ) = 〈a
∂ uϕ

∂ n
|∂ Ω̂, v〉 1

2
+s,∂ Ω̂ +

∫

Ω̂

Av · uϕdp, ϕ ∈ H
1

2
−s(∂ Ω̂).

It follows by (2.5) and (2.6) that

|F(ϕ)| ≤ ‖a
∂ uϕ

∂ n
‖−( 1

2
+s),∂ Ω̂ · ‖v‖ 1

2
+s,∂ Ω̂ + ‖Av‖s−1,Ω̂ · ‖uϕ‖1−s,Ω̂

<
∼ ‖v‖1+s,Ω̂ · ‖ϕ‖ 1

2
−s,∂ Ω̂ + ‖Av‖s−1,Ω̂ · ‖uϕ‖1−s,Ω̂

<
∼ ‖v‖H1+s

A
(Ω̂) · ‖ϕ‖ 1

2
−s,∂ Ω̂.
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Thus, F(ϕ) is a bounded linear functional on H
1

2
−s(∂ Ω̂). Since 〈·, ·〉 1

2
−s,∂ Ω̂ is the duality

pairing between Hs− 1

2 (∂ Ω̂) and H
1

2
−s(∂ Ω̂), there exists a µ∂ Ω̂(v) ∈ Hs− 1

2 (∂ Ω̂) such that

〈µ∂ Ω̂(v),ϕ〉 1

2
−s,∂ Ω̂ = F(ϕ), ∀ϕ ∈ H

1

2
−s(∂ Ω̂). (2.7)

Moreover, we have

‖µ∂ Ω̂(v)‖s− 1

2
,∂ Ω̂
<
∼ ‖F‖

<
∼ ‖v‖H1+s

A (Ω̂).

It suffices to prove the Green-like formula (2.3) for such µ∂ Ω̂(v).

Let w ∈ H1(Ω̂), and set ϕ = w|∂ Ω̂. Then, ϕ ∈ H
1

2 (∂ Ω̂), uϕ ∈ H1(Ω̂) and χ = w − uϕ ∈
H1

0(Ω̂). Using Green’s formula (see [11]), yields

F(ϕ) =

∫

Ω̂

a∇uϕ · ∇vdp+

∫

Ω̂

Av · uϕdp, ϕ = w|∂ Ω̂ ∈ H
1

2 (∂ Ω̂). (2.8)

Note that C∞0 (Ω̂) is dense in H1
0(Ω̂), by the definition of weak derivatives, one can verify

that (refer to p. 165 in [2])

∫

Ω̂

a∇v · ∇χdp+

∫

Ω̂

Av ·χdp = 0, χ = w − uϕ ∈ H1
0(Ω̂). (2.9)

Combining (2.8) and (2.9), leads to

∫

Ω̂

a∇v · ∇wdp+

∫

Ω̂

Av ·wdp = F(ϕ), ϕ = w|∂ Ω̂, ∀w ∈ H1(Ω̂).

This, together with (2.7), gives (2.3). �

Definition 2.1. Let v ∈ H1+s
A (Ω̂) with s ∈ [0, 1

2
). The function µ∂ Ω̂(v) defined by Theorem

2.1 is called the generalized normal derivative of v on ∂ Ω̂.

Remark 2.1. If the known function a(p) is smooth enough, the linear functional F(ϕ) can

be defined directly by

F(ϕ) =

∫

Ω̂

a∇v · ∇uϕdp+

∫

Ω̂

Av · uϕdp, ∀ϕ ∈ H
1

2
−s(∂ Ω̂).

It can be verified that such linear functional F(ϕ) is also bounded on H
1

2
−s(∂ Ω̂). Then,

the Green-like formula (2.3) is valid for any w ∈ H1−s(Ω̂). In this case, the condition v ∈
H1+s

A (Ω̂) becomes a necessary and sufficient condition for the existence of the generalized

normal derivatives.

Remark 2.2. The space C∞(Ω̂) is not dense in H1+s
A (Ω̂) with s ∈ [0, 1

2
), so the generalized

normal derivative µ∂ Ω̂(v) is not a continuous extension of a ∂ v

∂ n
|∂ Ω̂. This means that µ∂ Ω̂(v)

can not be understood as the usual normal derivative. In fact, it seems that there is no

simple relation between µ∂ Ω̂(v) and the normal vector n.
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Remark 2.3. It is clear that the assumption v ∈ H1+s
A (Ω̂) is the weakest condition such that

the functional F(ϕ) is well defined for any ϕ ∈ H
1

2
−s(∂ Ω̂). Thus, Theorem 2.1 is sharp.

For smooth domains, various trace theorems have been built in [20] (see, for example,

Theorems 6.5 and 7.3). It was shown that ∂ v

∂ n
|∂ Ω̂ is well defined when v ∈ DσA (Ω̂)⊂ HσA (Ω̂)

(see p. 227 in [20] for the definition of the space DσA (Ω̂)). But, such Theorem 6.5 and

Theorem 7.3 can not be extended to the current case (see p. 54 and p. 57 in [13]).

Remark 2.4. We fails to prove the result of Theorem 2.1 for s = 1

2
. The main difficulty

comes from the fact that the trace inequality (2.6) is not valid for s = 1

2
yet (see [11]

and [16]). It seems that a stronger assumption is needed for such case.

Proposition 2.3. Assume that v ∈ H
3

2 (Ω̂) and Av ∈ H−
1

2
+ǫ(Ω̂) with (small) ǫ > 0. Then,

the usual normal derivative a ∂ v

∂ n
|∂ Ω̂ is well defined and a ∂ v

∂ n
|∂ Ω̂ ∈ L2(∂ Ω̂).

Proof. Let v0 be the unique solution of the problem:

div(a∇v0) = Av (in Ω̂) and v0|∂ Ω̂ = 0.

This means that v0 ∈ H
3

2
+ǫ(Ω̂). Thus, the normal derivative ∂ v0

∂ n
|∂ Ω̂ is well defined, and

∂ v0

∂ n
|F ∈ Hǫ(F) for each face F ⊂ ∂ Ω̂. In particular, we have a ∂ v0

∂ n
|∂ Ω̂ ∈ L2(∂ Ω̂). Define

vhar = v − v0. Then, vhar ∈ H
3

2 (Ω̂), and vhar satisfies the homogeneous equation

div(a∇vhar) = 0 (in Ω̂).

By the result in [17], we have vhar |∂ Ω̂ ∈ H1(∂ Ω̂). We emphasize that this result is not valid

for solution of inhomogeneous problem on general Lipschitz domains (see p. 166 in [16]).

It follows, by Lemma 3.7 in [11], that a ∂ vhar

∂ n
|∂ Ω̂ ∈ L2(∂ Ω̂). Since v = v0+vhar , one obtains

a ∂ v

∂ n
|∂ Ω̂ ∈ L2(∂ Ω̂). �

2.3. Properties of the generalized normal derivatives

To our knowledge, there is no literature to investigate the function µ∂ Ω̂(v) even if

the coefficient a(p) is smooth. In this subsection, we study properties of the generalized

normal derivatives µ∂ Ω̂(v) in details.

Let σ ∈ [1, 3

2
]. For p ∈ [1,+∞), define

H
σ,p

A (Ω̂) = {v ∈ Hσ(Ω̂) : Av ∈ Lp(Ω̂)},

which is a Banach space with respect to the norm

‖v‖Hσ,p

A
(Ω̂) =
�

‖v‖2
σ,Ω̂
+ ‖Av‖2

Lp(Ω̂)

�
1

2
.

The following result provides simple condition to guarantee the existence of the general-

ized normal derivative µ∂ Ω̂(v).
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Theorem 2.2. (simple sufficient condition) Let s ∈ [0, 1

2
). Assume that v ∈ H

1+s,p

A (Ω̂) with

p > 2n

n+2(1−s)
. Then the generalized normal derivative µ∂ Ω̂(v) is well defined. Moreover, we

have

‖µ∂ Ω̂(v)‖s− 1

2
,∂ Ω̂
<
∼ ‖v‖H1+s,p

A
(Ω̂)

, (2.10)

and
∫

Ω̂

Av ·wdp+

∫

Ω̂

a∇v · ∇wdp = 〈µ∂ Ω̂(v), w〉 1

2
−s,∂ Ω̂, ∀w ∈ H1(Ω̂). (2.11)

Proof. Set q =
p

p−1
for p > 2n

n+2(1−s)
, and let w ∈ H1−s(Ω̂). By the Sobolev embedding

theorem we have w ∈ Lq(Ω̂) and

‖w‖Lq(Ω̂)
<
∼ ‖w‖1−s,Ω̂.

Then (note that Av ∈ Lp(Ω̂)),

�

�

�

∫

Ω̂

Av ·wdp

�

�

� ≤ ‖Av‖Lp(Ω̂) · ‖w‖Lq(Ω̂)
<
∼ ‖Av‖Lp(Ω̂) · ‖w‖1−s,Ω̂, ∀w ∈ H1−s(Ω̂).

Hence, Av ∈ Hs−1(Ω̂). Furthermore, we have v ∈ H1+s
A (Ω̂). It follows by Theorem 2.1

that the generalized normal derivative µ∂ Ω̂(v) is well defined. Moreover, µ∂ Ω̂(v) satisfies

(2.10) and (2.11). �

Remark 2.5. When v ∈ H
1+s,2
A (Ω̂) with s ∈ [0, 1

2
), the usual normal derivative ∂ v

∂ n
|∂ Ω̂ is well

defined (see Lemma 4.3 in [11]). If Ω̂ is a polygon in R2, then the local normal derivative

∂ v

∂ n
|F ∈ (H

1

2

00(F))
′ is well defined for any v ∈ H

1,p

A (Ω̂) with p > 1 and each face F ⊂ ∂ Ω̂ (see

Theorem 1.5.4 in [14]).

It is well known that, when v ∈ H1+s(Ω̂) with s ∈ (1

2
, 1], the usual normal derivative

∂ v

∂ n
|∂ Ω̂ is well defined. Moreover, we have ∂ v

∂ n
|F ∈ Hs− 1

2 (F) for each face F ⊂ ∂ Ω̂, which

implies that ∂ v

∂ n
|∂ Ω̂ ∈ L2(∂ Ω̂).

The following result indicates that the generalized normal derivative is consistent with

the usual normal derivative.

Theorem 2.3. (consistency) Let v ∈ H1+s(Ω̂) with some s ∈ (1

2
, 1]. Then the generalized

normal derivative µ∂ Ω̂(v) is well defined. Moreover, we have µ∂ Ω̂(v) ∈ H−ǫ(∂ Ω̂) and

〈µ∂ Ω̂(v)− a
∂ v

∂ n
|∂ Ω̂, ϕ〉ǫ,∂ Ω̂ = 0, ∀ϕ ∈ Hǫ(∂ Ω̂) (2.12)

for arbitrarily small ǫ > 0. Namely, µ∂ Ω̂(v) = a ∂ v

∂ n
|∂ Ω̂ in H−ǫ(∂ Ω̂) for arbitrarily small

ǫ > 0.



Generalized Normal Derivatives in DDMs with Nonmatching Grids 391

Proof. Since s − 1 > −1

2
, it follows from Proposition 2.2 that Av ∈ Hs−1(Ω̂). Thus,

v ∈ H
3

2
−ǫ

A (Ω̂) for arbitrarily small ǫ > 0. It follows by Theorem 2.1 that the generalized

normal derivative µ∂ Ω̂(v) ∈ H−ǫ(∂ Ω̂) is well defined. Moreover, we have

∫

Ω̂

a∇v · ∇wdp+

∫

Ω̂

Av ·wdp = 〈µ∂ Ω̂(v), w〉ǫ,∂ Ω̂, ∀w ∈ H1(Ω̂). (2.13)

On the other hand, by the standard Green’s formula and the density of H2(Ω̂) in H1+s(Ω̂)

(s ∈ (1

2
, 1]), one can verify that (note that ∂ v

∂ n
|∂ Ω̂ ∈ L2(∂ Ω̂))

∫

Ω̂

a∇v · ∇wdp+

∫

Ω̂

Av ·wdp = 〈a
∂ v

∂ n
|∂ Ω̂, w〉ǫ,∂ Ω̂, ∀w ∈ H1(Ω̂). (2.14)

Combining (2.13) and (2.14), we can deduce that

〈µ∂ Ω̂(v)− a
∂ v

∂ n
|∂ Ω̂,ϕ〉ǫ,∂ Ω̂ = 0, ∀ϕ ∈ H

1

2 (∂ Ω̂).

Furthermore, one obtains (2.12) by the fact that H
1

2 (∂ Ω̂) is dense in Hǫ(∂ Ω̂). �

Remark 2.6. One can not infer that µ∂ Ω̂(v) = a ∂ v

∂ n
|∂ Ω̂ from (2.12), since it is unclear

whether we have µ∂ Ω̂(v) ∈ L2(∂ Ω̂) or not.

To describe a local property of µ∂ Ω̂(v), we first give an auxiliary result on zero exten-

sions of functions defined in F .

Lemma 2.2. Let F be a face of ∂ Ω̂. Assume that ϕ ∈ Hσ(F) for σ ∈ [0, 1

2
), or ϕ ∈ H

1

2

00(F).

Then the zero extension ϕ̃ ∈ Hσ(∂ Ω̂) for any σ ∈ [0, 1

2
]. Moreover, we have

‖ϕ̃‖σ,∂ Ω̂
<
∼ ‖ϕ‖σ,F for σ ∈ [0,

1

2
) and ‖ϕ̃‖ 1

2
,∂ Ω̂
<
∼ ‖ϕ‖

H
1
2

00(F)
. (2.15)

Proof. This result can be viewed as an extension of Theorem 11.4 in Chapter 1 of

[20] to Lipschitz domains, but it can not be proved as in [20]. If ϕ is a piecewise linear

polynomial associated with some triangulation on F, the inequality (2.15) can be verified

as Lemma 4.10 of [25]. For the general case, one has to use the Hilbert interpolation

theory. To this end, define the linear mapping ı : L2(F) → L2(∂ Ω̂) as ıϕ = ϕ̃. It is clear

that

‖ıϕ‖0,∂ Ω̂ = ‖ϕ‖0,F , ∀ϕ ∈ L2(F)

and

‖ıϕ‖1,∂ Ω̂ = ‖ϕ‖1,F , ∀ϕ ∈ H1
0(F).

Thus, we have by the Hilbert interpolation theory

‖ıϕ‖θ ,∂ Ω̂
<
∼ ‖ϕ‖θ ,F, ∀ϕ ∈ [H1

0(F), L2(F)]θ (0< θ ≤ 1). (2.16)
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It is known that [H1
0(F), L2(F)]θ = Hθ0 (F) when θ 6= 1

2
, but [H1

0(F), L2(F)] 1

2

= H
1

2

00(F). By

Proposition 2.1, we have Hθ0 (F) = Hθ (F) for θ ∈ (0, 1

2
). Set θ = σ in (3.31), one obtains

(2.15). �

For v ∈ H1+s
A (Ω̂) with s ∈ [0, 1

2
), let µ∂ Ω̂(v) ∈ Hs− 1

2 (∂ Ω̂) be the generalized normal

derivative of v on ∂ Ω̂. For a face F ⊂ ∂ Ω̂, define the linear functional µF(v) as follows:

〈µF(v),ϕ〉 1

2
−s,F = 〈µ∂ Ω̂(v), ϕ̃〉 1

2
−s,∂ Ω̂ for ϕ ∈ H

1

2
−s(F) if s ∈ (0,

1

2
),

or for ϕ ∈ H
1

2

00
(F) if s = 0. The functional µF(v), which is well defined by Lemma 2.2, is

called the locally generalized normal derivative on F.

The following result will simplify derivations of error estimates in the next section.

Theorem 2.4. (local duality) Assume that v ∈ H1+s
A (Ω̂) with s ∈ [0, 1

2
). Then, µF(v) ∈

Hs− 1

2 (F) if s ∈ (0, 1

2
), or µF(v) ∈ (H

1

2

00(F))
′ if s = 0. Moreover, we have

‖µF(v)‖s− 1

2
,F
<
∼ ‖v‖H1+s

A
(Ω̂) (s ∈ (0,

1

2
)) and ‖µF(v)‖

(H
1
2
00(F))

′
<
∼ ‖v‖H1

A
(Ω̂), F ⊂ ∂ Ω̂. (2.17)

Proof. It follows by (2.2) that

|〈µF(v),ϕ〉 1

2
−s,F| = |〈µ∂ Ω̂(v), ϕ̃〉 1

2
−s,∂ Ω̂| ≤ ‖µ∂ Ω̂(v)‖s− 1

2
,∂ Ω̂ · ‖ϕ̃‖ 1

2
−s,∂ Ω̂.

This, together with (2.15), leads to

|〈µF(v),ϕ〉 1

2
−s,F| <∼







‖µ∂ Ω̂(v)‖s− 1

2
,∂ Ω̂ · ‖ϕ‖ 1

2
−s,F, if s ∈ (0, 1

2
),

‖µ∂ Ω̂(v)‖− 1

2
,∂ Ω̂ · ‖ϕ‖

H
1
2

00(F)
.

Now, the inequality (2.17) follows from (2.2) together with (2.4). �

Remark 2.7. Theorem 2.4 is consistent with Theorem 1.5.4 in [14]. Note that, for the

case with v ∈ H1
A(Ω̂), we have only

‖µF(v)‖
(H

1
2
00(F))

′
<
∼ ‖v‖H1

A(Ω̂)
, (2.18)

instead of the ideal result

‖µF(v)‖− 1

2
,F = ‖µF(v)‖

(H
1
2 (F))′

<
∼ ‖v‖H1

A(Ω̂)
. (2.19)

Fortunately, the drawback will not affect applications to elliptic boundary value problems,

since the underlying solution always belongs to H1+ǫ(Ω̂) with some ǫ > 0.
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In most applications, the generalized normal derivative will be usually associated with

boundary value problems (see the next section). For the applications, we need to study

continuity of the generalized normal derivative.

Let Ω be a bounded and connected Lipschitz domain in Rn (n = 2, 3). Consider the

model problem
(

−div(a∇u) = f , in Ω,

u= 0, on ∂Ω,
(2.20)

where f ∈ H−1
0 (Ω), and a ∈ L∞(Ω) is a function with a positive lower bound.

Let (·, ·) denote the L2(Ω)-inner product. The weak formulation of (2.20) in H1
0(Ω) is

then given by the following: Find u ∈ H1
0(Ω) such that

(a∇u,∇w) = ( f , w), ∀v ∈ H1
0(Ω). (2.21)

Let Ω̂1, Ω̂2 ⊂ Ω be two connected Lipschitz subdomains with piecewise smooth bound-

aries. Denote by F the common face between Ω̂1 and Ω̂2. Assume that ûk = u|Ω̂k
∈

H1+sk (Ω̂k) and f |Ω̂k
∈ Hsk−1(Ω̂k) with sk ∈ [0, 1

2
) (k = 1, 2). Let µ∂ Ω̂k

(ûk) be defined

as in Theorem 2.1 (replacing Av with − f |Ω̂k
), and let µF(ûk) denote the locally general-

ized normal derivative of ûk on F. Set s12 =max{1
2
− s1, 1

2
− s2}.

Theorem 2.5. (continuity) Assume that ûk ∈ H1+sk (Ω̂k) and f |Ωk
∈ Hsk−1(Ωk) with sk ∈

[0, 1

2
) for k = 1, 2. Then, we have

〈µF(û1),ϕ〉 1

2
−s1,F + 〈µF(û2),ϕ〉 1

2
−s2,F = 0, ∀ϕ ∈ Hs12(F) (if s12 ∈ (0,

1

2
)), (2.22)

or

〈µF(û1),ϕ〉 1

2
−s1,F + 〈µF(û2),ϕ〉 1

2
−s2,F = 0, ∀ϕ ∈ H

1

2

00
(F) (if s12 =

1

2
). (2.23)

Similarly, if û2 ∈ H1+s2(Ω̂2) with s2 ∈ (
1

2
, 1], then

〈µF(û1),ϕ〉 1

2
−s1,F +

∫

F

a
∂ û2

∂ n
ϕds = 0, ∀ϕ ∈ H

1

2 (F). (2.24)

Proof. One needs only to verify (2.22). It follows by Theorem 2.4 that µF(û1)+µF(û2) ∈
H−s12(F). Without loss of generality, we assume that ‖µF(û1) + µF(û2)‖−s12,F 6= 0. Since

0 < s12 <
1

2
, the space C∞0 (F) is dense in Hs12(F) (refer to Proposition 2.1). For arbitrarily

small ǫ > 0, there exists ϕǫ ∈ C∞0 (F) such that

‖ϕǫ −ϕ‖s12,F ≤
ǫ

‖µF(û1) +µF(û2)‖−s12,F

.

Hence,

|〈µF(û1) +µF(û2),ϕ−ϕǫ〉s12,F|

≤‖µF(û1) +µF(û2)‖−s12,F · ‖ϕǫ −ϕ‖s12,F ≤ ǫ. (2.25)
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Note that ϕǫ ∈ C∞0 (F), there exists an extension ϕ̃ǫ, which satisfies ϕ̃ǫ ∈ H1
0(Ω̂1 ∪ Ω̂2)

and ϕ̃ǫ|F = ϕǫ. Thus (by (2.21)),

∫

Ω̂1∪Ω̂2

a∇u · ∇ϕ̃ǫdp−

∫

Ω̂1∪Ω̂2

f · ϕ̃ǫdp = 0. (2.26)

On the other hand, it follows by (2.3) that

∫

Ω̂k

a∇ûk · ∇ϕ̃ǫdp−

∫

Ω̂k

f · ϕ̃ǫdp = 〈µ∂ Ω̂k
(ûk),ϕǫ〉 1

2
−sk ,F, k = 1, 2.

This, together with (2.26), leads to

〈µ∂ Ω̂1
(û1) +µ∂ Ω̂2

(û2),ϕǫ〉s12,F = 0.

Combining this with (2.25), gives

|〈µ∂ Ω̂1
(û1) +µ∂ Ω̂2

(û2),ϕ〉s12,F| ≤ ǫ, ∀ǫ > 0,

which implies (2.22). �

Remark 2.8. Theorems 2.1 and 2.5 indicate that the generalized normal derivative pre-

serves the main properties of the usual normal derivative. Thus, the generalized normal

derivative can be applied to numerical analysis for second-order elliptic boundary value

problems.

3. Applications of the generalized normal derivatives

In this section, we present some applications of the results introduced in the last section

to solving the variational problem (2.21).

One can define a discrete problem of (2.21) in various manners. Among them DDMs

with nonmatching grids and DG methods become popular in recent years. However, con-

vergence results of these methods have been obtained only when u is very smooth. For

example, u ∈ H2(Ω) is required for DG methods in literature. It is known that this high

smoothness can not be satisfied if the domain Ω is a concave polyhedron, or the loading

function f does not belong to L2(Ω). To analyze convergence of these methods for the case

that u has low regularity only, one needs to use the generalized normal derivatives.

3.1. An application to DDMs with nonmatching grids

For simplicity of exposition, let Ω be a bounded polyhedral domain in R3.

Let the domain Ω be decomposed into Ω̄ =
⋃N

k=1 Ω̄k, which satisfy Ωi ∩ Ω j = ; when

i 6= j. We only consider the case of geometrically conforming partitioning of the region

into subdomains:
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(i) if Ω̄i ∩ Ω̄ j 6= ; for some i 6= j, then ∂Ωi ∩ ∂Ω j is a common vertex, or a common

edge or a common face of Ωi and Ω j. In particular, we set Γi j = ∂Ωi ∩ ∂Ω j when

∂Ωi ∩ ∂Ω j is just a common face of Ωi and Ω j , and define Γ = ∪Γi j;

(ii) each subdomain Ωk has the same “size" d in the usual sense (see [25]).

As usual, we assume that each Ωk is a polyhedron. With each subdomain Ωk we as-

sociate a regular and quasi-uniform triangulation Tk made of elements that are either

hexahedra or tetrahedra. We denote by hk the mesh size of Tk, i.e., hk denotes the max-

imum diameter of any tetrahedra in the mesh Tk. The triangulations in the subdomains

are independent of each other and generally do not match at the interfaces between sub-

domains. Hence, each interface Γi j is provided with two different (2D) meshes Ti j and

T ji, which are associated with Ti and T j respectively. Define V (Ωk) as the space consisting

of continuous piecewise linear functions associated with Tk. If ∂Ωk ∩ ∂Ω 6= ;, we require

that each function in V (Ωk) vanishes on ∂Ωk ∩ ∂Ω. Let V (∂Ωk) denotes the trace space

associated with V (Ωk).

For each local interface Γi j , let W (Γi j) be a given finite dimensional space on Γi j .

Define

V (Ω) =

¨

v ∈
N
∏

k=1

V (Ωk) :

∫

Γi j

viϕds =

∫

Γi j

v jϕds, ∀ϕ ∈W (Γi j) for each Γi j ⊂ Γ

«

,

where v = (v1, v2, · · · , vN). Note that we do not require V (Ω) ⊂ H1(Ω). In fact, a function

v ∈ V (Ω) may be discontinuous on the set of all faces and all edges.

The discrete problem of (2.21) is: Find uh = (uh1,uh2, · · · ,uhN) ∈ V (Ω) such that

N
∑

k=1

(a∇uhk,∇vk)Ωk
=

N
∑

k=1

( f , vk)Ωk
, ∀v = (v1, v2, · · · , vN) ∈ V (Ω). (3.1)

Hereafter, we assume that f |Ωk
∈ H−1(Ωk) for each Ωk. It is known that the system (3.1)

has a unique solution under suitable assumptions.

The space W (Γi j), which is called local multiplier space, can be defined such that

W (Γi j) is associated with the triangulation Ti j or T ji. It is also possible that W (Γi j) is

independent of both Ti j and T ji (refer to [19]). When one grid is finer than another

grid between Ti j and T ji, the local multiplier space W (Γi j) should be associated with the

coarser one to reduce the cost of calculation. Without loss of generality, we assume that

hi ≥ h j for each Γi j, and we choose Ti j to define W (Γi j).

For each Γi j, define

V 0
i (Γi j) = Vi(Γi j)∩H1

0(Γi j) with Vi(Γi j) = {v|Γi j
, v ∈ V (Ωi)}.

For simplicity of exposition, we assume that dim(W (Γi j)) = dim(V 0
i (Γi j).

Three conditions for W (Γi j) have been introduced in literature (refer to [18,23]):
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A1: each local multiplier space W (Γi j) possesses the optimal approximation

inf
w∈W (Γi j)

‖w − v‖0,Γi j
<
∼ h

1

2

i
‖v‖ 1

2
,Γi j

, ∀v ∈ H
1

2 (Γi j).

A2: for each Γi j ⊂ Γ and any ϕ ∈W (Γi j), there is a function ψ ∈ V 0
i (Γi j) such that

(ψ,ϕ)Γi j
>
∼ ‖ψ‖0,Γi j

· ‖ϕ‖0,Γi j
.

A3: each W (Γi j) contains the constant functions.

These conditions can guarantee the optimal approximate property of uh. Some examples

for W (Γi j) have been constructed in [3] (the mortar element multiplier) and [18] (the

dual basis multiplier and the finite volume multiplier). We would like to point out that the

dual basis multiplier was first introduced in [24] for two-dimensional problems.

For ease of notation, set uk = u|Ωk
. Define the norm ‖ · ‖ by

‖v‖=

�

N
∑

k=1

|vk|1,Ωk

�
1

2

, v = (v1, v2, · · · , vN) ∈
N
∏

k=1

H1(Ωk).

The following result has been proved in [3,23,24] (see [15] for a similar result involv-

ing numerical integrations).

Proposition 3.1. Let the conditions A1-A3 be satisfied. Assume that uk ∈ H1+αk (Ωk) with

αk ∈ (
1

2
, 1] (k = 1, · · · , N). Then, the error of the nonconforming approximation uh can be

estimated by

‖u− uh‖ <∼

�

N
∑

k=1

h
2αk

k
‖u‖21+αk ,Ωk

�
1

2

. (3.2)

Since the efficient a(p) may have jumps across the faces Γi j, we set ak(p) = a(p) for

p ∈ Ωk. Let nk denote the outer normal vector on ∂Ωk. The proof of Proposition 3.1 is

based on the Strang’s lemma (see [22]) below.

Lemma 3.1. The accuracy of uh can be estimated by the following inequality

‖u− uh‖ ≤ inf
v∈V (Ω)

‖u− v‖+ sup
w∈V(Ω)

�

�

�

N
∑

k=1

∫

∂Ωk
ak
∂ uk

∂ nk
wkds

�

�

�

‖w‖
. (3.3)

The normal derivatives
∂ uk

∂ nk
|∂Ωk

are involved in the second term in the right-hand side

of (??). But, this kind of normal derivative does not well defined when uk belongs only

to H1+αk (Ωk) with αk ≤
1

2
. This means that the restriction αk ∈ (

1

2
, 1] (k = 1, · · · , N) is

essential in the proof of Proposition 3.1. To our knowledge, the work trying to remove
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such restriction is [4], in which a different estimate from (3.2) has been derived for the

case of α1 = · · ·= αN by using the Hilbert interpolation technique.

The main result of this section is described as follows.

Theorem 3.1. Let the conditions A1-A3 be satisfied. Assume that: (i) uk ∈ H1+αk (Ωk) with

αk ∈ (0,1] for k = 1, · · · , N; (ii) f |Ωk
∈ Hαk−1(Ωk) if αk ∈ (0, 1

2
]. Then, the error of the

nonconforming approximation uh can be estimated by

‖u− uh‖<∼

�

N
∑

k=1

h
2αk

k
‖uk‖

2
1+αk ,Ωk

+
∑

αk∈(0, 1

2
]

h
2αk

k
‖ f ‖2αk−1,Ωk

�
1

2

. (3.4)

The proof of Theorem 3.1 will depend on the results obtained in Section 2 and some

other auxiliary results. Define

Fk(uk) =

(

‖uk‖
2
1+αk ,Ωk

, if αk ∈ (
1

2
, 1],

‖uk‖
2
1+αk ,Ωk

+ ‖ f ‖2
Lpk (Ωk)

, if αk ∈ (0, 1

2
]

.

By Theorems 2.2 and 3.1, one immediately obtains

Corollary 3.1. Let the conditions A1- A3 be satisfied. Assume that: (i) uk ∈ H1+αk (Ωk)

with αk ∈ (0,1] (k = 1, · · · , N); (ii) f |Ωk
∈ Lpk(Ωk) with pk >

6

3+2(1−αk)
when αk ∈ (0, 1

2
].

Then, the error of the nonconforming approximation uh can be estimated by

‖u− uh‖<∼

�

N
∑

k=1

h
2αk

k
Fk(uk)

�
1

2

, (3.5)

Before proving Theorem 3.1, we give several useful lemmas. For ease of notation,

define the index sets of k

Λ+ =
�

k : αk ∈ (1/2, 1]
	

and Λ− =
�

k : αk ∈ (0, 1/2)
	

.

Let µ∂Ωk
(uk) denote the generalized normal derivative associated with the subdomain Ωk.

By Strang’s lemma, together with the standard Green’s formula and (2.3), one obtains

Lemma 3.2. Assume that αk 6=
1

2
for all k. Then, the accuracy of uh can be estimated by the

following inequality

‖u− uh‖ ≤ inf
v∈V (Ω)

‖u− v‖

+ sup
w∈V(Ω)

�

�

�

∑

k∈Λ+

∫

∂Ωk
ak
∂ uk

∂ nk
·wkds+
∑

k∈Λ−

〈µ∂Ωk
(uk), wk〉 1

2
−αk ,∂Ωk

�

�

�

‖w‖
. (3.6)
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For each Γi j , let Pi j : L2(Γi j)→W (Γi j) be the usual L2 projection. It follows by A1 that

‖Pi j v − v‖0,Γi j
<
∼ h

1

2

i
‖v‖ 1

2
,Γi j

, ∀v ∈ H
1

2 (Γi j).

Moreover, it is known that

‖Pi j v‖0,Γi j
≤ ‖v‖0,Γi j

, ∀v ∈ L2(Γi j),

and

‖Pi j v‖ 1

2
,Γi j

<
∼ ‖v‖ 1

2
,Γi j

, ∀v ∈ H
1

2 (Γi j).

Thus, by Hilbert interpolation theory, one obtains for any s ∈ [0, 1

2
]

‖Pi j v − v‖0,Γi j
<
∼ hs

i‖v‖s,Γi j
, ∀v ∈ Hs(Γi j), (3.7)

and

‖Pi j v − v‖s,Γi j
<
∼ h

1

2
−s

i
‖v‖ 1

2
,Γi j

, ∀v ∈ Hs(Γi j). (3.8)

For v ∈ L2(Γi j), let γΓi j
(v) denote the integration average of v on Γi j . For ease of

notation, we define

w i
i j = wi |Γi j

− γΓi j
(wi) and w

j

i j
= w j |Γi j

− γΓi j
(w j) (3.9)

for w = (w1, w2, · · · , wN) ∈ V (Ω).

The following result is a direct consequence of A3 (which implies that 1 ∈W (Γi j)).

Lemma 3.3. Assume that w = (w1, w2, · · · , wN) ∈ V (Ω). Then, we have for each Γi j

γΓi j
(wi) = γΓi j

(w j), (3.10)

and

(wi −w j)|Γi j
= w i

i j −w
j

i j
. (3.11)

Lemma 3.4. Assume that w = (w1, w2, · · · , wN) ∈ V (Ω). Then,

‖w i
i j −w

j

i j
‖0,Γi j

<
∼ h

1

2

i
(|wi| 1

2
,∂Ωi
+ |w j | 1

2
,∂Ω j
) (3.12)

and

‖w i
i j −w

j

i j
‖s,Γi j

<
∼ h

1

2
−s

i
(|wi| 1

2
,∂Ωi
+ |w j| 1

2
,∂Ω j
), (s ∈ [0,

1

2
]). (3.13)

Proof. One needs only to prove (3.13). By the definition of V (Ω), together with (3.10),

leads to

(w i
i j −w

j

i j
)|Γi j
= (w i

i j − Pi jw
i
i j) + (Pi jw

j

i j
−w

j

i j
). (3.14)

This, together with (3.8), yields

‖w i
i j −w

j

i j
‖s,Γi j

<
∼ h

1

2
−s

i
(‖w i

i j‖ 1

2
,Γi j
+ ‖w j

i j
‖ 1

2
,Γi j
).
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Furthermore, we obtain (3.13) by Friedrich’s inequality. �

To deal with the particular case αk =
1

2
, we give an interpolation result between two

complex spaces.

Let 1≤ σ′
k
≤ σ′′

k
≤ 2 (k = 1, · · · , N). Define (using similar notation to Subsection 2.1)

Z ′(Ω) =

¨

v ∈ H1
0(Ω) : v ∈

N
∏

k=1

Hσ
′
k(Ωk), Av ∈

N
∏

k=1

Hσ
′
k
−2(Ωk)

«

,

and

Z ′′(Ω) =

¨

v ∈ H1
0(Ω) : v ∈

N
∏

k=1

Hσ
′′
k (Ωk), Av ∈

N
∏

k=1

Hσ
′′
k
−2(Ωk)

«

.

Hereafter, v ∈
∏N

k=1 Hσ
′
k(Ωk) means v|Ωk

∈ Hσ
′
k(Ωk) for each k. The spaces Z ′(Ω) and

Z ′′(Ω) are Banach spaces when they are equipped with obvious norms.

We assume that the coefficient a(p) is smooth on each Ωk.

Lemma 3.5. For a given θ ∈ [0,1], set σk = θσ
′
k
+ (1− θ)σ′′

k
for k = 1, · · · , N. Then,

[Z ′(Ω), Z ′′(Ω)]θ =

¨

v ∈ H1
0(Ω) : v ∈

N
∏

k=1

Hσk(Ωk), Av ∈
N
∏

k=1

Hσk−2(Ωk)

«

. (3.15)

This result will be proved in Appendix.

Proof of Theorem 3.1. The proof is divided into three steps.

Step 1. Estimate the first term in the right of (3.3). As in [3, 5, 23, 24] (with an obvious

change), one can verify by A2 that

inf
v∈V (Ω)

‖u− v‖<∼

�

N
∑

k=1

h
2αk

k
‖uk‖

2
1+αk ,Ωk

�
1

2

. (3.16)

Step 2. Estimate the second term in the right of (3.3) when none αk equals 1

2
. For a

face F ⊂ ∂Ωk, let µF(uk) denote the locally generalized normal derivative of uk on F. By

Theorem 2.4, we have µF(uk) ∈ Hαk−
1

2 (F). It is clear that

∫

∂Ωk

ak

∂ uk

∂ nk

·wkds =
∑

F⊂∂Ωk

∫

F

ak

∂ uk

∂ nk

·wkds, k ∈ Λ+

and

〈µ∂Ωk
(uk), wk〉 1

2
−αk ,∂Ωk

=
∑

F⊂∂Ωk

〈µF(uk), wk〉 1

2
−αk ,F, k ∈ Λ−.



400 Q. Hu

Thus,

∑

k∈Λ+

∫

∂Ωk

ak

∂ uk

∂ nk

·wkds+
∑

k∈Λ−

〈µ∂Ωk
(u), wk〉 1

2
−αk ,∂Ωk

=
∑

Γi j⊂Γ

¨

∑

i∈Λ+

∑

j∈Λ+

�∫

Γi j

ai

∂ ui

∂ ni

·wids+

∫

Γi j

a j

∂ u j

∂ n j

·w jds

�

+
∑

i∈Λ+

∑

j∈Λ−

�∫

Γi j

ai

∂ ui

∂ ni

·wids+ 〈µΓi j
(u j), w j〉 1

2
−α j ,Γi j

�

+
∑

i∈Λ−

∑

j∈Λ−

�

〈µΓi j
(ui), wi〉 1

2
−αi ,Γi j

+ 〈µΓi j
(u j), w j〉 1

2
−α j ,Γi j

�«

.

This, together with Theorem 2.5, leads to

∑

k∈Λ+

∫

∂Ωk

ak

∂ uk

∂ nk

·wkds+
∑

k∈Λ−

〈µ∂Ωk
(u), wk〉 1

2
−αk ,∂Ωk

=
∑

Γi j

¨

∑

i∈Λ+

∫

Γi j

ai

∂ ui

∂ ni

· (wi −w j)ds+
∑

i∈Λ−

∑

j∈Λ−

〈µΓi j
(ui), wi −w j〉 1

2
−αi ,Γi j

«

. (3.17)

By Lemmas 3.3 and 3.4, one obtains for αi ∈ (
1

2
, 1]

�

�

�

∫

Γi j

ai

∂ ui

∂ ni

· (wi −w j)ds

�

�

�=

�

�

�

∫

Γi j

(ai

∂ ui

∂ ni

− Pi j(ai

∂ ui

∂ ni

|Γi j
)) · (w i

i j −w
j

i j
)ds

�

�

�

≤ ‖ai

∂ ui

∂ ni

− Pi j(ai

∂ ui

∂ ni

|Γi j
)‖0,Γi j

· ‖w i
i j −w

j

i j
‖0,Γi j

≤ h
αi

i
‖ai

∂ ui

∂ ni

‖αi−
1

2
,Γi j
· (|wi| 1

2
,∂Ωi
+ |w j | 1

2
,∂Ω j
), (3.18)

and for αi ∈ (0, 1

2
)

�

�〈µΓi j
(ui), wi −w j〉 1

2
−αi ,Γi j

�

� =
�

�〈µΓi j
(ui), w i

i j −w
j

i j
〉 1

2
−αi ,Γi j

�

�

≤ ‖µΓi j
(ui)‖αi−

1

2
,Γi j
· ‖w i

i j −w
j

i j
‖ 1

2
−αi ,Γi j

≤ h
αi

i
‖µΓi j

(ui)‖αi−
1

2
,Γi j
·
�

|wi | 1
2

,∂Ωi
+ |w j | 1

2
,∂Ω j

�

. (3.19)
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Substituting (3.18) and (3.19) into (3.17), and using the trace theorem, the inequality

(2.17) and Cauchy-Schwarz inequality, leads to

�

�

�

∑

k∈Λ+

∫

∂Ωk

ak

∂ uk

∂ nk

·wkds+
∑

k∈Λ−

〈µ∂Ωk
(u), wk〉 1

2
−αk ,∂Ωk

�

�

�

<
∼ ‖w‖ ·

�

N
∑

k=1

h
2αk

k
‖uk‖

2
1+αk ,Ωk

+
∑

k∈Λ−

h
2αk

k
‖ f ‖2αk−1,Ωk

�
1

2

(αk 6=
1

2
). (3.20)

Now, combining Lemma 3.2 with (3.16) and (3.20), one deduces that

‖u− uh‖<∼

�

N
∑

k=1

h
2αk

k
‖uk‖

2
1+αk ,Ωk

+
∑

k∈Λ−

h
2αk

k
‖ f ‖2αk−1,Ωk

�
1

2

(αk 6=
1

2
). (3.21)

Step 3. Derive (3.4) for the case with some αk =
1

2
. It is clear that a slightly weaker

result can be obtained by Proposition 2.3 for such case. To get the current result, we have

to use Lemma 3.5. Without loss of generality, we assume that αk =
1

2
when k = 1, · · · , N0,

and αk 6=
1

2
for k = N0 + 1, · · · , N. Then, there exist α′

k
∈ (0, 1

2
) and α′′

k
∈ (1

2
, 1) (k =

1, · · · , N0) such that 1

2
=

α′
k
+α′′

k

2
(k = 1, · · · , N0). For convergence, set α′

k
= α′′

k
= αk for

k = N0 + 1, · · · , N. Define

Y ′(Ω) =

¨

v ∈ H1
0(Ω) : v ∈

N
∏

k=1

H1+α′
k(Ωk), Av ∈

N
∏

k=1

Hα
′
k
−1(Ωk)

«

and

Y ′′(Ω) =

¨

v ∈ H1
0(Ω) : v ∈

N
∏

k=1

H1+α′′
k (Ωk), Av ∈

N
∏

k=1

Hα
′′
k
−1(Ωk)

«

.

Then, T : u→ u− uh is a linear mapping from Y ′(Ω)+ Y ′′(Ω) into X (Ω) defined by

X (Ω) =

¨

v ∈ L2(Ω) : v|∂Ω = 0, v ∈
N
∏

k=1

H1(Ωk)

«

.

It follows by (3.21) that

‖Tu‖ <∼

�

N
∑

k=1

h
2α′

k

k
(‖u‖2

1+α′
k
,Ωk
+ ‖Au‖2

α′
k
−1,Ωk

)

�
1

2

, ∀u ∈ Y ′(Ω) (3.22)

and

‖Tu‖ <∼

�

N
∑

k=1

h
2α′′

k

k
(‖u‖2

1+α′′
k

,Ωk
+ ‖Av‖2

α′′
k
−1,Ωk

)

�
1

2

, ∀u ∈ Y ′′(Ω). (3.23)
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Thus, by Hilbert interpolation theory, gives

‖Tu‖ <∼

�

N
∑

k=1

h
2αk

k
(‖u‖21+αk ,Ωk

+ ‖Au‖2αk−1,Ωk
)

�
1

2

, ∀u ∈ [Y ′(Ω), Y ′′(Ω)] 1

2

. (3.24)

On the other hand, it follows by Lemma 3.5 that

[Y ′(Ω), Y ′′(Ω)] 1

2

=

¨

v ∈ H1
0(Ω) : v ∈

N
∏

k=1

H1+αk(Ωk), Av ∈
N
∏

k=1

Hαk−1(Ωk)

«

.

Furthermore, using (3.24) we deduce to (3.4) for the case with some αk =
1

2
.

Finally, we obtain (3.4) for αk ∈ (0,1] (k = 1, · · · , N). �

Remark 3.1. Step 3 above is similar to the proof of Theorem 2.1 in [4] (for the case

with α1 = · · · = αN). Such interpolation technique can be also used to derive Theorem

3.1 directly if the parameters α1, · · · ,αN have some particular relation. In fact, using

(3.1), together with Cauchy-Schwarz inequality and the generalized Poincáre inequality

(see [5]), yields

‖uh‖ ≤

�

N
∑

k=1

‖ f ‖2−1,Ωk

�
1

2

.

Thus,

‖uh− u‖<∼

�

N
∑

k=1

(‖uk‖
2
1,Ωk
+ ‖ f ‖2−1,Ωk

)|

�
1

2

=

�

N
∑

k=1

‖uk‖
2

H1
A(Ωk)

�
1

2

, uk ∈ H1
A(Ωk). (3.25)

Define a set of the parameters {αk}
N
k=1

as

C =

¨

{αk}
N
k=1 ⊂ (0,

1

2
] : ∃ α0

k ∈ (
1

2
, 1] s.t.

α1

α0
1

= · · ·=
αN

α0
N

= θ ∈ (0,1)

«

.

When (α1, · · · ,αN) ∈ C , the estimate (3.4) can be derived by Hilbert interpolation result,

together with (3.2) and (3.25). However, if (α1, · · · ,αN) /∈ C , then the estimate (3.4) can

not be obtained directly by such simple method. This means that the proof of Theorem 2.1

in [4] is not complete.

3.2. An application to DG methods

There are many variations of DG methods (refer to [1]). As an application example, we

consider only the DG method described in [7], and use the same notation as that in [7].

Let us first describe the DG method. Without loss of generality, we assume that Ω is a

bounded polygonal domain in R2.
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Let {Th}h be a regular and quasi-uniform family of triangulations of Ω; we shall indicate

by E the triangles of Th, and set h = maxE∈Th
diam(E). We denote by Eh the set of all

internal edges of Th. Define

Vh = {vh ∈ L2(Ω) : vh|E is linear, ∀ E ∈ Th}

and

Wh = {τh ∈ (L
2(Ω))2 : each complement of τh|E is linear, ∀ E ∈ Th}.

To define discontinuous approximations uh ∈ Vh of (2.20), let us define the average of a

function vector θh ∈Wh and the jump of a function vh ∈ Vh as follows

• θ0
h
= θh+ θ

ex t
h
/ 2 on internal edges e ∈ Eh;

• [[vh]] = v+
h

n+ + v−
h

n− on internal edges.

Hereafter, θ ex t
h

denotes the value of θh on the element facing the element under con-

sideration across the edge e; the notation (·)+ and (·)− indicates the value of the generic

quantity (·) on the two elements sharing the same edge e.

For the space

Ṽ =
∏

E∈Th

H1(E),

define the affine operators R, re : Ṽ →Wh by

∫

Ω

R(w) ·τhdp = −
∑

e∈Eh

∫

e

[[w]] ·τ0
h
ds, ∀τh ∈Wh

and
∫

Ω

re(w) ·τhdp = −

∫

e

[[w]] ·τ0
hds, e ∈ Eh ∀τh ∈Wh.

Now, the bilinear form ah(·, ·) can be defined as

ah(uh, vh) =
∑

E∈Th

∫

E

a[∇uh · ∇vh+∇uh ·R(vh) +R(uh) · ∇vh]dp

+ c0

∑

e∈Eh

∫

Ω

are(uh) · re(vh)dp. (3.26)

Hereafter, c0 is a suitable positive number. The discrete variational problem for (3.1)

becomes: Find uh ∈ Vh such that

ah(uh, vh) =
∑

E∈Th

( f , vh)E , ∀vh ∈ Vh. (3.27)

It is certain to assume that
∑

E∈Th
( f , vh)E is well defined for each vh ∈ Vh.
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Define the mesh-dependent norm

|‖v|‖=
� ∑

E∈Th

|v|21,E +
∑

e∈Eh

‖re(v)‖
2
0,Ω

� 1

2
, ∀v ∈ Ṽ .

All existing error estimates for DG methods were obtained under the assumption u ∈
H2(Ω), since the derivation of the error estimates involves the normal derivative ∂ u

∂ n
|e for

each edge e ∈ Eh (see [7]). Of course, the existing results can be extended directly to the

case when u ∈ Hσ(Ω) with σ ∈ (3

2
, 2].

By the generalized normal derivative introduced in the last section, one can prove the

following optimal error estimate for the case with low regularity.

Theorem 3.2. Let u ∈ Hs(Ω) for some s > 1, and let uh be defined by (3.27). Assume that,

for each E ∈ Th, u|E ∈ H1+αE (E) with αE ∈ (0,1], and f |E ∈ HαE−1(E) if αE ∈ (0, 1

2
]. Then,

we have

|‖u− uh|‖<∼

� ∑

E∈Th

h2αE‖u‖21+αE ,E

�
1

2
. (3.28)

Proof. The bilinear form ah(·, ·) can be written as (see (30) in [7])

ah(uh, vh) =
∑

E∈Th

∫

E

a∇uh · ∇vhdp−

∫

e

[[uh]] · (a∇vh)
0ds

−

∫

e

[[vh]] · (a∇uh)
0ds + c0

∑

e∈Eh

∫

Ω

are(uh) · re(vh) dp. (3.29)

In the above formula, uh can not be replaced by u, since ∇u has no sense on e ∈ Eh ∩ ∂ E

for αE ∈ (0, 1

2
]. Thus, the estimate (3.28) can not be proved as in Theorem 1 of [7]. One

needs only to consider the case when none αE =
1

2
. If some αE =

1

2
, the result can be

derived from Hilbert interpolation technique as in Theorem 3.1.

It can be verified that (refer to the proof of Lemma 1 in [7])

[[w]] · (a∇vh)
0 =

1

2
(w+ −w−)
h

a+
∂ v+

h

∂ n+
− a−

∂ v−
h

∂ n−

i

on each edge e, ∀w ∈ H
1

2 (e).

For convenience, set α0 = max
E
(1

2
− αE). Since (w+ − w−)|e ∈ H

1

2 (e) and vh|E ∈ H2(E) for

each E ∈ Th, we have by Theorems 2.3 and 2.4 (note (2.1))
∫

e

[[w]] · (a∇vh)
0ds =

1

2
〈µe(v

+
h
)−µe(v

−
h
), w+ −w−〉α0,e on each edge e.

Substituting this relation into (3.29), yields

ah(uh, vh) =
∑

E∈Th

∫

E

a∇uh · ∇vhdp−
1

2

∑

e∈Eh

〈µe(v
+
h
)−µe(v

−
h
),u+

h
− u−

h
〉α0,e

−
1

2

∑

e∈Eh

〈µe(u
+
h
)−µe(u

−
h
), v+

h
− v−

h
〉α0,e + c0

∑

e∈Eh

∫

Ω

are(uh) · re(vh) dp. (3.30)
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Let Ṽh be the usual conforming finite element space

Ṽh = {vh ∈ H1
0(Ω) : vh|E is linear for each E ∈ Th},

and let ũh be the interpolation of u. By the assumptions, the interpolation ũh is well

defined, and belongs to Ṽh. It is known that

|‖u− ũh|‖
2 =
∑

E∈Th

‖u− ũh‖
2
1,E
<
∼

∑

E∈Th

h2αE‖u‖21+αE ,E. (3.31)

From Theorem 2.4, one can replace uh and vh in (3.30) by u− uh and ũh− uh respectively,

and define ah(u− uh, ũh− uh) accordingly. As in [7], we have

|‖ũh− uh|‖
2 <
∼ |‖ũh− u|‖ · |‖ũh− uh|‖+ ah(u− uh, ũh− uh).

If one can verify that

ah(u− uh, ũh− uh) = 0, (3.32)

then

|‖ũh− uh|‖<∼ |‖ũh− u|‖. (3.33)

Note that re(u) = 0 for each e ∈ Eh, it follows by (3.30) that

ah(u, ũh− uh) =
∑

E∈Th

∫

E

a∇u · ∇(ũh− uh)dp

−
1

2

∑

e∈Eh

〈µe(u
+)−µe(u

−), (ũh− uh)
+− (ũh− uh)

−〉α0,e.

This, together with Theorem 2.5, leads to

ah(u, ũh− uh)

=
∑

E∈Th

∫

E

a∇u · ∇(ũh− uh)dp−
∑

e∈Eh

〈µe(u), (ũh− uh)
+− (ũh− uh)

−〉α0,e

=
∑

E∈Th

�∫

E

a∇u · ∇(ũh− uh)dp− 〈µ∂ E(u), ũh− uh〉αE ,∂ E

�

. (3.34)

Here, we have used the relation (2.1). Combining (3.34) with (3.27), gives

ah(u− uh, ũh− uh) = ah(u, ũh− uh)− ah(uh, ũh− uh)

=
∑

E∈Th

�∫

E

a∇u · ∇(ũh− uh)dp− 〈µ∂ E(u), ũh− uh〉αE ,∂ E

�

−
∑

E∈Th

( f , ũh− uh)E

=
∑

E∈Th

�∫

E

a∇u · ∇(ũh− uh)dp− ( f , ũh − uh)E

�

− 〈µ∂ E(u), ũh− uh〉αE ,∂ E,

which, together with (2.3), yields to (3.32). Then, (3.28) is a direct consequence of (3.31)

and (3.33). �
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Remark 3.2. If u ∈ H1(Ω) only, one needs to replace the usual interpolation ũh in (3.31)

by Clement interpolation [8].

Corollary 3.2. Let uh be defined by (3.27). Assume that u ∈ H1+α(Ω) with α ∈ (0,1] and

f ∈ Lp(Ω) with p > 2

2−α
. Then we have

|‖u− uh|‖<∼ hα‖u‖1+α,Ω. (3.35)

Remark 3.3. Note that the norm ‖ f ‖αE−1,E (resp. ‖ f ‖LP(Ω) ) does not appear in (3.28)

(resp. (3.35) ). In fact, the generalized normal derivative is only a “bridge" in the proof of

Theorem 3.2.

Appendix

In this appendix, we prove Lemma 3.5. To this end, we need to use a Hilbert interpo-

lation result in subspace (see [20]).

Let Φ and Ψ be two locally convex topological vector spaces, and let X and Y be two

Banach spaces which satisfy X ⊂ Φ and Y ⊂ Φ. Assume that ∂ ∈ L (Φ,Ψ), which denotes

the set consisting of all continuous and linear operators from Φ into Ψ. For two Banach

spaces X and Y , define

X∂ ,X = {v : v ∈ X , ∂ v ∈ X} and Y∂ ,Y = {v : v ∈ Y, ∂ v ∈ Y }.

Assume that there exist two Banach spaces X̃ and Ỹ and an operator S , such that

(i) X ⊂ X̃ ⊂ Ψ and Y ⊂ Ỹ ⊂ Ψ;

(ii) ∂ ∈ L (X , X̃ )∩L (Y, Ỹ );
(iii) S ∈L (X̃ , X )∩L (Ỹ , Y ) and S ∂ x = x for any x ∈ X̃ + Ỹ .

The following result can be viewed as a particular case of Theorem 14.3 in Chapter 1

of [20](with the mapping r = 0).

Lemma A.1 Let the conditions (i), (ii) and (iii) above be satisfied. Then, the following

relation holds for any θ ∈ [0,1]

[X∂ ,X , Y∂ ,Y ]θ = ([X , Y ]θ )∂ ,[X ,Y ]θ . (A.1)

In the following we prove Lemma 3.5 by this result.

Proof of Lemma 3.5. Define

X = H1
0(Ω)∩

N
∏

k=1

Hσ
′
k(Ωk), X = H−1

0 (Ω)∩
N
∏

k=1

Hσ
′
k
−2(Ωk),

and

Y = H1
0(Ω)∩

N
∏

k=1

Hσ
′′
k (Ωk), Y = H−1

0 (Ω)∩
N
∏

k=1

Hσ
′′
k
−2(Ωk).
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Moreover, define ∂ = A. As in Section 12.5 of Chapter 1 in [20], one can verify that

[Hσ
′
k
−2(Ωk), Hσ

′′
k
−2(Ωk)]θ = Hσk−2(Ωk), k = 1, · · · , N.

Thus, we have by the interpolation of product spaces (see p. 178 in [20])

�

N
∏

k=1

Hσ
′
k(Ωk),

N
∏

k=1

Hσ
′′
k (Ωk)

�

θ

=

N
∏

k=1

Hσk(Ωk),

and
�

N
∏

k=1

Hσ
′
k
−2(Ωk),

N
∏

k=1

Hσ
′′
k
−2(Ωk)

�

θ

=

N
∏

k=1

Hσk−2(Ωk).

Furthermore, one can verify, by Lemma 2.1 and the technique developed by the works of

Bernardi, Dauge and Maday (refer to [6]), that

[X , Y ]θ = H1
0(Ω)∩

N
∏

k=1

Hσk(Ωk), [X , Y ]θ = H−1
0 (Ω)∩

N
∏

k=1

Hσk−2(Ωk).

In the following, we derive the equality (3.15) by Lemma A.1 (note that A(H1
0(Ω)) ⊂

H−1
0
(Ω)). To this end, we need to define suitable X̃ , Ỹ , Φ, Ψ and S , so that the conditions

(i), (ii) and (iii) in Lemma A.1 can be satisfied.

Define

Φ = H1
0(Ω), Ψ = H−1

0 (Ω), X̃ = Ψ∩
N
∏

k=1

H
σ′

k
−2

0 (Ωk) and Ỹ = Ψ∩
N
∏

k=1

H
σ′′

k
−2

0 (Ωk).

Besides, set A0 = A|H0
with H0 =
∏N

k=1 H1
0(Ωk), and define S = (A0)

−1. For such defini-

tions, the conditions (i) and (ii) in Lemma A.1 are satisfied by Proposition 2.2. It suffices

to consider the condition (iii). Since Ωk is a convex polyhedron, we have

S ∈L
�

X̃ ,

N
∏

k=1

(Hσ
′
k(Ωk)∩H1

0(Ωk)
�
⋂

L
�

Ỹ ,

N
∏

k=1

(Hσ”k(Ωk)∩H1
0(Ωk))
�

.

Thus,

S ∈L (X̃ , X )∩L (Ỹ , Y ).

Moreover, for any z ∈ X̃ + Ỹ we have S z ∈
N
∏

k=1

H1
0(Ωk), so

∂S z = A0(A0)
−1z = z, ∀z ∈ X̃ + Ỹ .

All this shows that the condition (iii) in Lemma A.1 is also satisfied. �
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Remark A.1 From the above proof, we know that the following interpolation result also

holds

[H
σ1

A (Ωk), H
σ2

A (Ωk)]θ = H
θσ1+(1−θ )σ2

A (Ωk), 1≤ σ1 ≤ σ2 ≤ 2; θ ∈ [0,1].
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