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A UNIFORMLY OPTIMAL-ORDER ESTIMATE FOR BILINEAR

FINITE ELEMENT METHOD FOR TRANSIENT

ADVECTION-DIFFUSION EQUATIONS

QUN LIN, KAIXIN WANG, HONG WANG, AND XIAOBO YIN

Abstract. We prove an optimal-order error estimate in a weighted energy

norm for bilinear Galerkin finite element method for two-dimensional time-

dependent advection-diffusion equations by the means of integral identities or

expansions, in the sense that the generic constants in the estimates depend

only on certain Sobolev norms of the true solution but not on the scaling

parameter ε. These estimates, combined with a priori stability estimates of

the governing partial differential equations, yield an ε-uniform estimate of the

bilinear Galerkin finite element method, in which the generic constants depend

only on the Sobolev norms of the initial and right data but not on the scaling

parameter ε.
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1. Introduction

Time-dependent advection-diffusion equations, whih arise in mathematical mod-
els of petroleum reservoir simulation, environmental modeling, and other appli-
cations [3, 12], admit solutions with moving fronts and complex structures, and
present serious mathematical and numerical difficulties [9, 13]. Many numerical
methods have been developed to solve these problems and corresponding optimal-
order convergence rates were proved [1, 5, 6, 9, 13, 14, 15, 18, 24]. However, these
estimates have the major drawback that the generic constants in these estimates
depend inversely on the scaling parameter ε, and so could blow up as ε tends to
zero.

ε uniform estimates have been sought to address these issues and some progress
has been made [13]. In the context of time-dependent advection-diffusion equa-
tions, suboptimal- and optimal-order ε uniform estimates were obtained primarily
for Eulerian-Lagrangian methods [2, 19, 20, 21, 22, 23]. In essence, an ε uniform
estimate is somewhat a restatement that the estimate is independent of the Peclet
number. Eulerian-Lagrangian methods combine the advection and capacity terms
to reformulate the governing equation as a parabolic equation in the Lagrangian
coordinate to carry out the temporal discretization [6, 16, 17]. Thus, the corre-
sponding Peclet number is formally zero. This explains why ε uniform estimates
were proved only for Eulerian-Lagrangian methods, even if these methods are much
more complex to analyze.

In this paper we prove an ε-uniform optimal-order error estimate for the bilinear
Galerkin finite element method for time-dependent advection-diffuson equations,
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which, to the best knowledge of the authors, is the first work of this type. The pri-
mary advantage of Galerkin method resides in the simplicity of the implementation
of the method. Due to the use of a standard temporal discretization, the advection
term must be analyzed with care to ensure the impact of the Peclet number to be
handled properly.

The rest of this paper is organized as follows. In §2 we recall preliminary results
that are to be used in the paper. In §3 we revisit the problem formulation and
approximation properties that are to be used in the analysis. In §4 we prove ε-
uniform optimal-order error estimate for the problem. In §5 we prove auxiliary
lemmas. §6 contains concluding remarks.

2. Problem formulation and Preliminaries

We consider a time-dependent advection-diffusion equation in two space dimen-
sions

(2.1)
ut +∇ ·

(

v(x, t)u − εD(x, t)∇u
)

= f(x, t), (x, t) ∈ Ω× (0, T ]

u(x, 0) = uo(x), x ∈ Ω.

Here Ω = (a, b)×(c, d) is a rectangular domain, x = (x, y), v(x, t) = (V1(x, t), V2(x, t))
is a velocity field, f(x, t) accounts for external sources and sinks, uo(x) is a pre-

scribed initial data, D(x, t) =
(

Dij(x, t)
)2

i,j=1
is a diffusion-dispersion tensor that

has uniform lower and upper bounds 0 < Dmin|α|2 ≤ α
TD(x, t)α ≤ Dmax|α|2 <

+∞ for any α ∈ R2 and (x, t) ∈ Ω × [0, T ]. Here 0 < ε << 1 is a parameter
that scales the diffusion and characterizes the advection-dominance of Eq. (2.1),
and u(x, t) is the ε-dependent unknown function. Finally, problem (2.1) is closed
by a boundary condition. Differential types of boundary conditions are considered
in this paper, including a (homogeneous) Dirichlet boundary condition

(2.2) u(x, t) = 0, (x, t) ∈ Γ× [0, T ]

where Γ := ∂Ω is the spatial boundary of Ω as well as a noflow boundary condition
[3, 12] which describes an impermeable boundary and is characterized by v(x, t) ·
n(x) = 0. On the noflow boundary Γ a homogeneous diffusive flux boundary
condition is imposed

(2.3) −(D∇u)(x, t) · n(x) = 0, (x, t) ∈ Γ× [0, T ].

This type of boundary condition often arizes in applications such as petroleum
reservoir simulation. Finally, a periodic boundary condition is also considered in
this paper [12].

Let W k
p (Ω) consist of functions whose weak derivatives up to order-k are p-th

Lebesgue integrable in Ω, and Hk(Ω) := W k
2 (Ω). Let H1

0 (Ω) :=
{

v ∈ H1(Ω) :

v(x) = 0, x ∈ Γ
}

, and Hm
E (Ω) be the subspace of Hm(Ω), which consists of

functions that are periodic with respect to the domain Ω. We also introduce the

energy norm ‖f(·, t)‖H1

D
(Ω) :=

(∫

Ω∇f(x, t) ·D(x, t)∇f(x, t)dx
)

1

2 .
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For any Banach space X we introduce Sobolev spaces involving time [7]

W k
p (t1, t2;X) :=

{

f :
∥

∥

∥

∂lf

∂tl
(·, t)

∥

∥

∥

X
∈ Lp(t1, t2), 0 ≤ l ≤ k, 1 ≤ p ≤ ∞

}

,

‖f‖Wk
p (t1,t2;X) :=



















(

k
∑

l=0

∫ t2

t1

∥

∥

∥

∂lf

∂tl
(·, t)

∥

∥

∥

p

X
dt
)1/p

, 1 ≤ p < ∞,

max
0≤l≤k

ess sup
t∈(t1,t2)

∥

∥

∥

∂lf

∂tl
(·, t)

∥

∥

∥

X
, p = ∞.

To define discrete norms, we define a uniform space-time partition on Ω× [0, T ]
by xi := a + i∆x for i = 0, 1, . . . , I with ∆x := (b − a)/I; yj := c + j∆y for
j = 0, 1, . . . , J with ∆y := (d−c)/J ; and tn := n∆t for 0 ≤ n ≤ N with ∆t := T/N .
We assume that ∆y/∆x has positive lower and upper bounds that are independent
of the partition. We also define h := max{∆x,∆y}.

‖f(·, t)‖Ĥ1

D
(Ω) :=

(

J
∑

j=1

I
∑

i=1

(D∇f)(xi− 1

2

, yj− 1

2

, t) · ∇f(xi− 1

2

, yj− 1

2

, t)∆x∆y
)

1

2

,

‖|f‖|Lε(0,T ;Ĥ1

D
(Ω)) := ‖f‖L∞(0,T ;L2(Ω)) +

√
ε‖f‖L2(0,T ;Ĥ1

D
(Ω))

where xi− 1

2

:= (xi−1 + xi)/2 and yj− 1

2

:= (yj−1 + yj)/2.

3. Galerkin method and approximation properties

In this section we present the Galerkin formulation and study its approximation
estimates that will be used in the proof of the main theorem.

3.1. Weak formulation and Galerkin method. Let H = H1
0 (Ω), H

1(Ω), or
H1

E(Ω) in the context of Dirichlet boundary condition, noflow boundary condition,
or periodic boundary condition, respectively. We multiply the advection-diffusion
term in (2.1) by any test function w(x) ∈ H , and integrate it on Ω by parts to get

(3.4)

∫

Ω

∇ ·
(

v(x, t)u − εD(x, t)∇u
)

w(x)dx

= −
∫

Ω

(

v(x, t)u − εD(x, t)∇u
)

· ∇w(x)dx

+

∫

Γ

(

v(x, t)u − εD(x, t)∇u
)

· n(x)w(x)dx.

The test function w(x) vanishes on Γ for the Dirichlet boundary condition (2.2),
while the noflow boundary condition (2.3) implies that the integrand vanishes.
Finally, the boundary term naturally cancels for the periodic boundary condition.
In short, in all the cases, the second term on the right side vanishes.

We approximate the time derivative by backward Euler difference quotient, mul-
tiply the governing equation (2.1) by any test function w(x) ∈ H and integrate
the resulting equation on Ω. Then we combine it with (3.4), leading to a weak
formulation for problem (2.1): For n = 1, 2, · · · , N, seek u(x, tn) ∈ H such that for
any w ∈ H ,

(3.5)

∫

Ω

u(x, tn)− u(x, tn−1)

∆t
w(x)dx −

∫

Ω

v(x, tn)u(x, tn) · ∇w(x)dx

+ε

∫

Ω

D(x, tn)∇u(x, tn) · ∇w(x)dx

=

∫

Ω

f(x, tn)w(x)dx − 1

∆t
E(u,w).
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Here E(u,w) is the local truncation error of the weak formulation

E(u,w) =

∫

Ω

w(x)

∫ tn

tn−1

(t− tn−1)
∂2u

∂t2
(x, t)dtdx.

Let Sh(Ω) ∈ H be the space of continuous and piecewise-bilinear functions with
respect to the spatial partition which is subject to the appropriate boundary con-
dition. The Galerkin method reads: Find uh(·, tn) ∈ Sh(Ω) for n = 1, . . . , N , such
that for any wh ∈ Sh(Ω)
(3.6)

∫

Ω

uh(x, tn)− uh(x, tn−1)

∆t
wh(x)dx −

∫

Ω

v(x, tn)uh(x, tn) · ∇wh(x)dx

+ε

∫

Ω

D(x, tn)∇uh(x, tn) · ∇wh(x)dx

=

∫

Ω

f(x, tn)wh(x)dx.

3.2. Approximation properties. Let Πhv ∈ Sh(Ω) be the piecewise-bilinear
interpolation of v for any v ∈ C(Ω). The following estimates are well known [4]

(3.7)
‖Πhv − v‖Hk(Ω) ≤ C1h

2−k ‖v‖H2(Ω) ∀v ∈ H2(Ω), k = 0, 1,

‖vh‖H1(Ω) + ‖vh‖L∞(Ω) ≤ C2h
−1‖vh‖L2(Ω) ∀vh ∈ Sh(Ω).

However, as we shall see in subsequent sections, these approximation properties
are not enough for the derivation of an ε-uniform estimate. Fortunately we have
the following superconvergence estimate [11].

Lemma 3.1. Let Ωi,j := (xi−1, xi)× (yj−1, yj). The following estimates holds for
any bilinear function zh on Ωi,j and any v ∈ H3(Ωi,j)

(3.8)

∫

Ωi,j

(v −Πhv)zhxdxdy

= − (∆x)2

12

∫

Ωi,j

vxxzhxdxdy − (∆y)2

12

∫

Ωi,j

vyyzhxdxdy

+O(h2)|v|H3(Ωi,j)‖zh‖L2(Ωi,j),
∫

Ωi,j

(v −Πhv)zhydxdy

= − (∆x)2

12

∫

Ωi,j

vxxzhydxdy − (∆y)2

12

∫

Ωi,j

vyyzhydxdy

+O(h2)|v|H3(Ωi,j)‖zh‖L2(Ωi,j),

(3.9)

∫

Ωi,j

(v −Πhv)xzhxdxdy = O(h2)|v|H3(Ωi,j)‖zhx‖L2(Ωi,j),

∫

Ωi,j

(v −Πhv)yzhydxdy = O(h2)|v|H3(Ωi,j)‖zhy‖L2(Ωi,j),

and
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(3.10)

∫

Ωi,j

(v −Πhv)xzhydxdy

=
(∆x)2

12

∫

Ωi,j

vxxzhxydxdy +O(h2)|v|H3(Ωi,j)|zh|H1(Ωi,j),
∫

Ωi,j

(v −Πhv)yzhxdxdy

=
(∆y)2

12

∫

Ωi,j

vyyzhxydxdy +O(h2)|v|H3(Ωi,j)|zh|H1(Ωi,j).

In this paper we use C to denote a general positive constant which could assume
different values at different occurrences.

4. An Optimal-Order Error Estimate for the Galerkin methods

Theorem. Assume u ∈ H2(0, T ;L2)∩H1(0, T ;H2)∩L∞(0, T ;H3) and the coef-
ficients are smooth. Then the following superconvergence estimate holds uniformly
with respect to ε for problem (2.1) with a homogeneous Dirichlet boundary condi-
tion (2.2) or a periodic boundary condition

(4.11)
‖|uh − u‖|Lε(0,T ;Ĥ1

D
)

≤ C∆t‖u‖H2(0,T ;L2) + Ch2
(

‖u‖H1(0,T ;H2) + ‖u‖L∞(0,T ;H3)

)

.

Here the constant C is independent of u, ε, h, or ∆t. Further, if the diffusion tensor
D is diagonal, then (4.11) also holds for the noflow boundary condition (2.3).

Remark. The estimate (4.11), combined with a priori stability estimate of
the governing equation (2.1) [7, 19], yields an ε-uniform estimate of the bilinear
Galerkin finite element method, in which the generic constants depend only on cer-
tain Sobolev norms of the initial and right data but not on the scaling parameter
ε.

Proof. We let e = uh − u, and choose w(x) in the reference equation (3.5) to be
wh(x) ∈ Sh(Ω). We then subtract (3.5) from the Galerkin formulation (3.6) to get
an error equation for any wh(x) ∈ Sh(Ω)

(4.12)

∫

Ω

e(x, tn)wh(x)dx + ε∆t

∫

Ω

D(x, tn)∇e(x, tn) · ∇wh(x)dx

−∆t

∫

Ω

v(x, tn)e(x, tn) · ∇wh(x)dx

=

∫

Ω

e(x, tn−1)wh(x)dx + E(u,wh).

The standard technique for deriving optimal-order error estimates for Galerkin finite
element methods for parabolic equations is using a Ritz projection [14, ?] Rhu of
the true solution u of problem (2.1). This would split the global truncation error
e = uh − u as e = (uh −Rhu) + (Rhu− u). However, the upper bound of Rhu− u
would depend inversely on ε, which could blow up as ε tends to zero. To derive
an ε-uniform estimate we decompose the global truncation error e as e = ξh + η,
where ξh = uh −Πu and η = Πu− u with Πu ∈ Sh(Ω) being the piecewise bilinear
interpolation of u.
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The estimate for η is given in (3.7), so we need only to estimate ξh. We choose
wh(x) = ξh(x, tn) and rewrite the error equation in terms of ξh and η as follows:

(4.13)

∫

Ω

ξ2h(x, tn)dx+ ε∆t

∫

Ω

D(x, tn)∇ξh(x, tn) · ∇ξh(x, tn)dx

=

∫

Ω

ξh(x, tn−1)ξh(x, tn)dx+

∫

Ω

η(x, tn−1)ξh(x, tn)dx

−
∫

Ω

η(x, tn)ξh(x, tn)dx+∆t

∫

Ω

v(x, tn)ξh(x, tn) · ∇ξh(x, tn)dx

+∆t

∫

Ω

v(x, tn)η(x, tn) · ∇ξh(x, tn)dx

−ε∆t

∫

Ω

D(x, tn)∇η(x, tn) · ∇ξh(x, tn)dx+ E(u, ξh).

We need only to estimate the right side of (4.13) term by term. The first term
on the right side of (4.13) can be bounded by Cauchy inequality.

∣

∣

∣

∫

Ω

ξh(x, tn−1)ξh(x, tn)dx
∣

∣

∣
≤ 1

2
‖ξh(·, tn)‖2L2 +

1

2
‖ξh(·, tn−1)‖2L2 .

The second and third terms on the right-hand side of Eq. (4.13) are bounded by

∣

∣

∣

∫

Ω

(η(x, tn)− η(x, tn−1))ξh(x, tn)dx
∣

∣

∣

=
∣

∣

∣

∫

Ω

∫ tn

tn−1

ηt(x, t)dtξh(x, tn)dx
∣

∣

∣

≤ C∆t‖ξh(·, tn)‖2 + Ch4‖u‖2H1(tn−1,tn;H2).

We rewrite the fourth term on the right side of (4.13), integrate it by parts, and
incorporate one of the Dirichlet, noflow, or periodic boundary conditions to obtain

∣

∣

∣
∆t

∫

Ω

v(x, tn)ξh(x, tn) · ∇ξh(x, tn)dx
∣

∣

∣

=
∆t

2

∣

∣

∣

∫

Ω

v(x, tn) · ∇ξ2h(x, tn)dx
∣

∣

∣

=
∆t

2

∣

∣

∣

∫

Γ

v(x, tn) · n(x)ξ2h(x, tn)dx −
∫

Ω

∇ · v(x, tn)ξ2h(x, tn)dx
∣

∣

∣

=
∆t

2

∣

∣

∣

∫

Ω

∇ · v(x, tn)ξ2h(x, tn)dx
∣

∣

∣

≤ C∆t‖ξh(·, tn)‖2.

A standard estimate of the fifth term on the right-hand side of (4.13) yields

∣

∣

∣
∆t

∫

Ω

v(x, tn)η(x, tn) · ∇ξh(x, tn)dx
∣

∣

∣

≤ C∆t‖ξh(·, tn)‖H1‖η(·, tn−1)‖L2

≤ C∆t h2‖ξh(·, tn)‖H1‖u(·, tn−1)‖H2

≤ C∆t h‖ξh(·, tn)‖L2‖u(·, tn−1)‖H2

≤ C∆t‖ξh(·, tn)‖2L2 + C∆t h2‖u(·, tn−1)‖2H2 .

This will result in a suboptimal-order estimate of order O(h+∆t) for the Galerkin
method. To derive optimal order error estimate, we need to estimate this term
more carefully. We utilize the superconvergence results in Lemma 3.1 to prove the
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following estimate in Lemma 5.1

(4.14)

∣

∣

∣
∆t

∫

Ω

v(x, tn)η(x, tn) · ∇ξh(x, tn)dx
∣

∣

∣

≤ C∆t‖ξh(·, tn)‖2L2 + C∆t h4‖u‖2L∞(0,T ;H3)

We now turn to the sixth term on the right side of Eq. (4.13). If η were the error
of Ritz projection, this term would have vanished naturally. In the current context
this term does not vanish. Fortunately, we can utilize Lemma 3.1 to prove the
following result in Lemma 5.2

(4.15)

∣

∣

∣
ε∆t

∫

Ω

D(x, tn)∇η(x, tn) · ∇ξh(x, tn)dx
∣

∣

∣

≤ δε∆t‖ξh(·, tn)‖2H1

D
+ Cε∆t h4‖u‖2L∞(0,T ;H3).

We use the expression of E(u, ξh) (below (3.5)) to bound this term by

∣

∣E(u, ξh)
∣

∣ ≤ C(∆t)3/2‖ξh(·, tn)‖L2‖u‖H2(tn−1,tn;L2)

≤ C∆t‖ξh(·, tn)‖2L2 + C(∆t)2‖u‖2H2(tn−1,tn;L2).

We incorporate the preceding estimates into (4.13) to obtain

‖ξh(·, tn)‖2L2 + ε∆t‖ξh(·, tn)‖2H1

D

≤ 1 + C∆t

2
(‖ξh(·, tn)‖2L2 + ‖ξh(·, tn−1)‖2L2)

+
1

2
ε∆t‖ξh(·, tn)‖2H1

D
+ C(∆t)2‖u‖H2(tn−1,tn;L2)

+Ch4(‖u‖2H1(tn−1,tn;H2) +∆t‖u‖2L∞(0,T ;H3)).

We sum the estimate for n = 1, . . . , N1(≤ N) and cancel like terms to obtain

‖ξh(·, tN1
)‖2L2 + ε∆t

N1
∑

n=1

‖ξh(·, tn)‖2H1

D

≤ C∆t

N1−1
∑

n=0

‖ξh(·, tn)‖2L2 + C(∆t)2‖u‖H2(0,T ;L2)

+Ch4
(

‖u‖2H1(0,T ;H2) + ‖u‖2L∞(0,T ;H3)

)

.

We apply Gronwall inequality to conclude

(4.16)
‖|ξh‖|Lε(0,T ;Ĥ1

D
)

≤ C∆t‖u‖H2(0,T ;L2) + Ch2
(

‖u‖H1(0,T ;H2) + ‖u‖L∞(0,T ;H3)

)

.

We combine (4.16) with (3.7) to finish the proof.

5. Auxiliary Estimate on η

In this section we utilize Lemma 3.1 to prove the two superconvergence estimates
on η that were used in the proof of the main theorem.

Lemma 5.1. Assume v ∈ L∞(0, T ;W 1
∞) and u ∈ L∞(0, T ;H3). Then the super-

convergence estimate (4.14) holds.
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Proof. We decompose the fifth term on the right side of (4.13) as follows:

∆t

∫

Ω

v(x, tn)η(x, tn) · ∇ξh(x, tn)dx

= ∆t

∫

Ω

V1(x, y, tn)ξhx(x, y, tn)η(x, y, tn)dxdy

+∆t

∫

Ω

V2(x, y, tn)ξhy(x, y, tn)η(x, y, tn)dxdy.

By symmetry we need only to estimate the first term on the right side. Let
V̄1(x, y, tn) := 1

∆x∆y

∫

Ωi,j
V1(x, y, tn)dxdy be the cell average of V . We rewrite

the first term on the right side by

(5.17)

∆t

∫

Ω

V1(x, y, tn)ξhx(x, y, tn)η(x, y, tn)dxdy

= ∆t

∫

Ω

V̄1(x, y, tn)ξhx(x, y, tn)η(x, y, tn)dxdy

+∆t

∫

Ω

(V1(x, y, tn)− V̄1(x, y, tn))ξhx(x, y, tn)η(x, y, tn)dxdy.

We use the inverse estimate (3.7) to bound the second term by

(5.18)

∣

∣

∣
∆t

∫

Ω

(V1(x, y, tn)− V̄1(x, y, tn))ξhx(x, y, tn)η(x, y, tn)dxdy
∣

∣

∣

≤ C∆th3‖ξhx(·, tn)‖L2‖u‖L∞(0,T ;H2)

≤ C∆th2‖ξh(·, tn)‖L2‖u‖L∞(0,T ;H2)

≤ C∆t‖ξh(·, tn)‖2L2 + C∆th4‖u‖2L∞(0,T ;H2).

Because V̄1 is constant on each cell Ωi,j , we can use (3.8) to estimate the first term
on the right side of (5.17).

∆t

∫

Ω

V̄1(x, y, tn)ξhx(x, y, tn)η(x, y, tn)dxdy

= ∆t

I
∑

i=1

J
∑

j=1

∫

Ωi,j

V̄1(x, y, tn)ξhx(x, y, tn)η(x, y, tn)dxdy

= ∆t

I
∑

i=1

J
∑

j=1

(∆x)2

12

∫

Ωi,j

V̄1(x, y, tn)uxx(x, y, tn)ξhx(x, y, tn)dxdy

+∆t

I
∑

i=1

J
∑

j=1

(∆y)2

12

∫

Ωi,j

V̄1(x, y, tn)uyy(x, y, tn)ξhx(x, y, tn)dxdy

+O(h2)|u(·, tn)|H3‖ξh(·, tn)‖L2

= ∆t

I
∑

i=1

J
∑

j=1

(∆x)2

12

∫

Ωi,j

V1(x, y, tn)uxx(x, y, tn)ξhx(x, y, tn)dxdy

+∆t

I
∑

i=1

J
∑

j=1

(∆y)2

12

∫

Ωi,j

V1(x, y, tn)uyy(x, y, tn)ξhx(x, y, tn)dxdy
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+∆t

I
∑

i=1

J
∑

j=1

(∆x)2

12

∫

Ωi,j

(V̄1(x, y, tn)− V1(x, y, tn))uxx(x, y, tn)ξhx(x, y, tn)dxdy

+∆t
I

∑

i=1

J
∑

j=1

(∆y)2

12

∫

Ωi,j

(V̄1(x, y, tn)− V1(x, y, tn))uyy(x, y, tn)ξhx(x, y, tn)dxdy

+O(h2)|u(·, tn)|H3‖ξh(·, tn)‖L2 .

The last three terms can be bounded in the same manner as (5.18). We need only
to estimate the first term on the right side. The second term can be estimated
similarly. We integrate the first term by parts to get
(5.19)

∆t

I
∑

i=1

J
∑

j=1

(∆x)2

12

∫

Ωi,j

V1(x, y, tn)uxx(x, y, tn)ξhx(x, y, tn)dxdy

= ∆t

I
∑

i=1

J
∑

j=1

(∆x)2

12

∫ yj

yj−1

V1(xi, y, tn)uxx(xi, y, tn)ξh(xi, y, tn)dy

−∆t
I

∑

i=1

J
∑

j=1

(∆x)2

12

∫ yj

yj−1

V1(xi−1, y, tn)uxx(xi−1, y, tn)ξh(xi−1, y, tn)dy

−∆t

I
∑

i=1

J
∑

j=1

(∆x)2

12

∫

Ωi,j

(V1uxx)x(x, y, tn)ξh(x, y, tn)dxdy

= ∆t

J
∑

j=1

(∆x)2

12

∫ yj

yj−1

V1(b, y, tn)uxx(b, y, tn)ξh(b, y, tn)dy

−∆t
J
∑

j=1

(∆x)2

12

∫ yj

yj−1

V1(a, y, tn)uxx(a, y, tn)ξh(a, y, tn)dy

−∆t

I
∑

i=1

J
∑

j=1

(∆x)2

12

∫

Ωi,j

(V1uxx)x(x, y, tn)ξh(x, y, tn)dxdy.

Here we have used the continuity of V1, uxx, and ξh to cancel the integrals on the
interior element edges. The third term on the right side of (5.19) can be bounded
by C∆t‖ξh(·, tn)‖2L2+C∆th4‖u‖2L∞(0,T ;H3). We now bound the first and the second

terms on the right-hand side of (5.19). In the case of Dirichlet boundary condition,
these two terms vanish since ξh(a, y, tn) = ξh(b, y, tn) = 0 for y ∈ [c, d]. In the case
of noflow boundary condition, V1(a, y, t) = V1(b, y, t) = 0 for y ∈ [c, d]. Finally in
the case of periodic boundary condition the two terms cancel with each other. In
short, the first two terms on the right side of (5.19) vanish in all the cases. We
combine the preceding estimates to finish the proof.

Lemma 5.2. If u ∈ L∞(0, T ;H3), then the superconvergence estimate (4.15) holds
for the Dirichlet boundary condition (2.2) and a periodic boundary condition. In
addition, if D is diagonal, (4.15) also holds for the noflow boundary condition (2.3).

Proof. We rewrite the sixth term on the right side of (4.13) as follows:

(5.20)
ε∆t

∫

Ω

(

D∇η
)

(x, tn) · ∇ξh(x, tn)dx

= ε∆t

∫

Ω

D11ηx(x, y, tn)ξhx(x, y, tn)dxdy
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+ε∆t

∫

Ω

D22ηy(x, y, tn)ξhy(x, y, tn)dxdy

+ε∆t

∫

Ω

D12ηy(x, y, tn)ξhx(x, y, tn)dxdy

+ε∆t

∫

Ω

D21ηx(x, y, tn)ξhy(x, y, tn)dxdy.

If D is a diagonal matrix, e.g. D12 = D21 = 0, the third and the fourth terms
on the right side of (5.20) vanish and we need only to pay attention to the first
term since the second term can be estimated by symmetry. Let D̄11(x, y, tn)|Ωi,j

:=
1

∆x∆y

∫

Ωi,j
D11(x, y, tn)dxdy be the cell average of D11. Then we use (3.9) to bound

the first term on the right side of (5.20) as follows:

∣

∣

∣
ε∆t

∫

Ω

D11ηx(x, y, tn)ξhx(x, y, tn)dxdy
∣

∣

∣

=
∣

∣

∣
ε∆t

I
∑

i=1

J
∑

j=1

∫

Ωi,j

D̄11ηx(x, y, tn)ξhx(x, y, tn)dxdy

+ε∆t

I
∑

i=1

J
∑

j=1

∫

Ωi,j

(D11 − D̄11)ηx(x, y, tn)ξhx(x, y, tn)dxdy
∣

∣

∣

≤ Cε∆th2|ξh(·, tn)|H1 (|u(·, tn)|H3 + ‖u(·, tn)‖H2)

≤ δε∆t‖ξh(·, tn)‖2H1

D
+ Cε∆th4‖u‖2L∞(0,T ;H3),

Notice that this estimate is valid for all the three types of boundary conditions
considered in this paper.

When D is a full tensor, we still need to consider the third term on the right side
of (5.20) and the fourth term can be estimated similarly. Again, let D̄12(x, y, tn)|Ωi,j

:=
1

∆x∆y

∫

Ωi,j
D12(x, y, tn)dxdy be the cell average of D12. We decompose the third

term as

(5.21)

ε∆t

∫

Ω

D12ηy(x, y, tn)ξhx(x, y, tn)dxdy

= ε∆t

∫

Ω

D̄12ηy(x, y, tn)ξhx(x, y, tn)dxdy

+ε∆t

∫

Ω

(D12 − D̄12)ηy(x, y, tn)ξhx(x, y, tn)dxdy.

The second term on the right side of (5.21) can be bounded by

(5.22)

∣

∣

∣

∣

ε∆t

∫

Ω

(D12 − D̄12)ηy(x, y, tn)ξhx(x, y, tn)dxdy

∣

∣

∣

∣

≤ Cε∆th2‖ξh(·, tn)‖H1

D
‖u‖L∞(0,T ;H2)

≤ δε∆t‖ξh(·, tn)‖2H1

D
+ Cε∆th4‖u‖2L∞(0,T ;H2).

We use (3.10) to estimate the first term on the right side of (5.21).

(5.23)

∫

Ω

D̄12ηy(x, y, tn)ξhx(x, y, tn)dxdy

=

I
∑

i=1

J
∑

j=1

∫

Ωi,j

D̄12ηy(x, y, tn)ξhx(x, y, tn)dxdy
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= −
I

∑

i=1

J
∑

j=1

(∆y)2

12

∫

Ωi,j

D̄12uyy(x, y, tn)ξhxy(x, y, tn)dxdy

+O(h2)|u(·, tn)|H3 |ξh(·, tn)|H1

= −
I

∑

i=1

J
∑

j=1

(∆y)2

12

∫

Ωi,j

(D12uyy)(x, y, tn)ξhxy(x, y, tn)dxdy

+O(h2)|u(·, tn)|H3 |ξh(·, tn)|H1 .

We integrate the first term by parts to get

ε∆t
I

∑

i=1

J
∑

j=1

(∆y)2

12

∫

Ωi,j

(D12uyy)(x, y, tn)ξhxy(x, y, tn)dxdy

= ε∆t

I
∑

i=1

J
∑

j=1

(∆y)2

12

∫ xi

xi−1

(D12uyy)(x, yj , tn)ξhx(x, yj , tn)dx

−ε∆t

I
∑

i=1

J
∑

j=1

(∆y)2

12

∫ xi

xi−1

(D12uyy)(x, yj−1, tn)ξhx(x, yj−1, tn)dx

−ε∆t
I

∑

i=1

J
∑

j=1

(∆y)2

12

∫

Ωi,j

(D12uyy)y(x, y, tn)ξhx(x, y, tn)dxdy

The third term can be bounded by
∣

∣

∣

∣

∣

∣

ε∆t

I
∑

i=1

J
∑

j=1

(∆y)2

12

∫

Ωi,j

(D12uyy)y(x, y, tn)ξhx(x, y, tn)dxdy

∣

∣

∣

∣

∣

∣

≤ δε∆t‖ξh(·, tn)‖2H1

D
+ Cε∆th4‖u‖2L∞(0,T ;H3).

Note that ξhx(x, y, tn) is continuous across each y = yj , so the integrands in the
first two terms cancel with each other in the interior edges, leading to

ε∆t

I
∑

i=1

J
∑

j=1

(∆y)2

12

∫ xi

xi−1

(D12uyy)(x, yj , tn)ξhx(x, yj , tn)dx

−ε∆t
I

∑

i=1

J
∑

j=1

(∆y)2

12

∫ xi

xi−1

(D12uyy)(x, yj−1, tn)ξhx(x, yj−1, tn)dx

= ε∆t

I
∑

i=1

(∆y)2

12

∫ xi

xi−1

(D12uyy)(x, d, tn)ξhx(x, d, tn)dx

−ε∆t

I
∑

i=1

(∆y)2

12

∫ xi

xi−1

(D12uyy)(x, c, tn)ξhx(x, c, tn)dx.

The last two terms cancel each other in the case of periodic boundary condition
and vanish in the case of Dirichlet boundary condition (2.2). Thus, we finish the
proof.

6. Concluding Remarks

In the context of stationary advection-diffusion equations, the location of inter-
nal and boundary layers is known a priori. A piecewise-uniform ε-dependent mesh
was proposed and analyzed by Shishkin to resolve the boundary and internal lay-
ers. Moreover, an ε-uniform L∞ error estimate was proved for numerical methods
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with Shishkin mesh [8, 13]. However, in the context of time-dependent advection-
diffusion equations, the fronts are dynamic and do not always coincide with the
spatial mesh. Thus, although an ε-uniform error estimate in the L∞-norm is ideal,
it is generally impossible especially in the context of multiple space dimensions and
in the limiting case of ε = 0. This is why L∞ norm is not used in the numerical
methods for hyperbolic conservation laws [10].

In this paper we derived ε-uniform error estimates in the ε-weighted energy
norm, which is in fact related to the ‖ · ‖L∞ in the context of advection-diffusion
equations. As a matter of fact, in the context of an exponential layer [8, 13], both
the ε-weighted energy norm and the L∞ norm of the global truncation error are
of order O(1). Thus, both norms are comparable recognize the exponential layer.
On the other hand, when problem (2.1) has a smooth solution, both the ε-weighted
energy norm and the L∞ norm of the global truncation error are of order O(h2)
and are still comparable. Nevertheless, in the context of a parabolic layer, the L∞

norm of the global truncation error is of order O(1) but the ε-weighted energy norm
of the global truncation error is of order O(ε1/4). In other word, the L∞ norm still
recognizes the parabolic layer, but the ε-weighted norm does not.

In summary, the ε-weighted norm is comparable to the L∞ norm in the context
of a smooth solution or an exponential layer. An exponential layer exhibits the
strongest layer behavior and is of the major concern from a numerical and analysis
viewpoint. On the other hand, in the context of a parabolic layer, the ε-weighted
energy norm of the global truncation error is somewhat weaker than the L∞ norm
of the error. In short, the ε-weighted norm is probably a natural measure for time-
dependent advection-diffusion equations and is closely related to the L∞ norm. The
L∞ norm is an ideal but impossible measure in this context.
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