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Abstract. In this paper, we construct semi-discrete two-grid finite element schemes
and full-discrete two-grid finite element schemes for the two-dimensional time-
dependent Schrödinger equation. The semi-discrete schemes are proved to be con-
vergent with an optimal convergence order and the full-discrete schemes, verified by a
numerical example, work well and are more efficient than the standard finite element
method.
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1 Introduction

In physics, especially quantum mechanics, the Schrödinger equation is used to describe
how the quantum state of a physical system changes in time [1]. Currently, this equation
is widely applied in many areas, for example in optics [2], seismic wave propagation [3]
and Bose-Einstein condensation [4]. For simplification, we consider the following initial-
boundary value problem of Schrödinger equation:

iut(x,t)=−
1

2
△u(x,t)+V(x,t)u(x,t)+ f (x,t), ∀x∈Ω, 0< t≤T, (1.1a)

u(x,t)=0, on ∂Ω, 0< t≤T, (1.1b)

u(x,0)=u0(x), ∀x∈ Ω̄, (1.1c)
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where Ω∈R2 is a convex polygonal domain, u0(x), f (x,t) and unknown function u(x,t)
are complex-valued functions, the potential function V(x,t) is a non-negative function
and V(x,t), Vt(x,t), Vtt(x,t) are bounded for x ∈ Ω, 0≤ t ≤ T. For any complex-valued
function w, we denote its real part by w1, the imaginary part by w2. Then problem (1.1a)-
(1.1b) is equivalent to the following coupled equations:

u1t(x,t)=−
1

2
△u2(x,t)+V(x,t)u2(x,t)+ f2(x,t), ∀x∈Ω, 0< t≤T,

u2t(x,t)=
1

2
△u1(x,t)−V(x,t)u1(x,t)− f1(x,t), ∀x∈Ω, 0< t≤T,

uj(x,t)=0, j=1,2, ∀x on ∂Ω, 0< t≤T.

Numerically solving the time-dependent Schrödinger equation has been studied in
many literature, e.g., in [5–7], where the approaches were designed for solving the origi-
nal problem directly. However, as we know, the Schrödinger equation is actually a cou-
pled system of partial differential equations, so it may be costly to solve the original prob-
lem directly. In this paper, we apply the two-grid discretization method to numerically
solve the time-dependent Schrödinger equation.

The idea of the two-grid discretization method was originally proposed by Xu in [8–
10] for discretizing nonsymmetric and indefinite partial differential equations and then
was used for linearization for nonlinear problems [9–11], for localization and paralleliza-
tion for solving a large class of partial differential equations [12–14], for decoupling the
coupled system of partial differential equations [15]. The application areas of this method
include nonlinear elasticity problems [16], Navier-Stokes problems [17], stationary MHD
equations [18], reaction diffusion equations [19] and so on. As to solving the coupled sys-
tem of partial differential equations by two-grid method, the first work was done by Jin et
al. [15] in 2006. They extended the idea of two-grid finite element method to solving the
steady-state Schrödinger equation by first discretizing the original problem on the coarse
grid and then discretizing a decoupled system on the fine grid, so that the computational
complexity of solving the Schrödinger equation is comparable to solving two decoupled
Poisson equations on the same fine grid. Also, the convergence was analyzed. Later,
Chien et al. [20] proposed two-grid discretization schemes with two-loop continuation
algorithms for computing wave functions of two coupled nonlinear Schrödinger equa-
tions defined on the unit square and the unit disk, where the centered difference approxi-
mations, the six-node triangular elements and the Adini elements were employed for the
spatial discretization, but did not give error estimates for the discrete solutions. Recently,
Wu [21, 22] developed two-grid mixed finite element schemes for solving both steady
state and unsteady state nonlinear Schrödinger equations, where the schemes were based
on a mixed finite-element method and their error estimates were not given. In this paper,
basing on a finite-element discretization, we extend the idea proposed in [15] to the case
of the time-dependent Schrödinger equation (1.1a)-(1.1c) and construct the semi-discrete
two-grid schemes and the full-discrete two-grid schemes. The semi-discrete schemes are
proved to be convergent with a optimal convergence order and the full-discrete schemes,
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verified by a numerical example, work well and are more efficient than the standard finite
element method.

The rest of the paper is organized as follows: in Section 2, we propose the semi-
discrete finite element method for the Schrödinger equation and then analyse the semi-
discrete finite element approximation. In Section 3, we construct semi-discrete two-grid
finite element schemes and full-discrete two-grid finite element schemes and estimate the
error of the semi-discrete schemes. In Section 4, we demonstrate a numerical example to
verify the effectiveness of the full-discrete schemes.

2 The semi-discrete finite element approximation

Let QT =Ω×[0,T]. For any complex-valued function w(x) and v(x), let (w,v) denote the
inner product

(w,v)=
∫

Ω
wv̄dx,

and ‖w‖ denote the corresponding norm

‖w‖=
√

(w,w),

where v̄ denotes the complex conjugate of v. We introduce the complex-valued function
spaces

H1(QT)=
{

w(x,t)|w,wt,wx1
,wx2 ∈L2(QT)

}

,

S=
{

w(x,t)|w∈H1(QT), w|∂Ω=0
}

,

and the standard Sobolev space Hm(Ω) with a norm given by

‖φ‖m =
(

∑
|α|≤m

‖Dαφ‖2
)

1
2

for any φ∈Hm(Ω). Then u(x,t), the weak solution of problem (1.1a)-(1.1c) is defined as
follows: find u(x,t)∈S such that for any v∈S and nearly all t∈ (0,T]

i(ut,v)= a(u,v)+( f ,v), u(x,0)=u0(x), x∈ Ω̄, (2.1)

where a(u,v)=(∇u,∇v)/2+(Vu,v).

Let Th be a quasi-uniform quadrilateral or trilateral partition of Ω with meshsize h>0,
Sh ⊂ S be the corresponding piecewise linear finite element space, τ = T/N be the time
step size, N be a positive integer and tn=nτ (n=0,1,··· ,N) be the time discrete point. For
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any function w(x,t), v(x,t) and function series {wn(x)}N
n=0, we introduce the notations:

wn=w(x,tn), ŵn=
1

2
(wn+wn−1),

ŵn =
1

2
(wn+wn−1), dtw

n =
1

τ
(wn−wn−1),

an(w,v)=
1

2
(∇w,∇v)+(V̂nw,v).

Notice that a(w,v) is bounded and coercive on S×S, so for any fixed t∈ [0,T] and given
w∈S, we can define its elliptic projection Phw∈Sh such that

a(Phw,vh)= a(w,vh), ∀vh ∈Sh. (2.2)

Now, we can define the semi-discrete finite element solution uh(x,t) of problem (1.1a)-
(1.1c) as follows: find uh∈Sh such that for any vh ∈Sh and nearly all t∈ (0,T]

i((uh)t,vh)= a(uh,vh)+( f ,vh), (2.3a)

uh(x,0)=Phu0 (2.3b)

or

uh(x,0)=u0,I , (2.3c)

where u0,I ∈ Sh is the interpolating function of u0. Also, we can define the full-
discrete finite element solution series {un

h(x)}
N
n=0 of problem (1.1a)-(1.1c) as follows: find

{un
h(x)}

N
n=0⊂Sh such that

i(dtu
n
h ,vh)= an(û

n
h ,vh)+( f̂n,vh), ∀vh ∈Sh, n=1,2,··· ,N, (2.4a)

u0
h=Phu0 (2.4b)

or

u0
h=u0,I . (2.4c)

For simplicity, let the notation ”.” be equivalent to ”≤C” for some positive constant
C. We introduce the following lemmas:

Lemma 2.1. If for any t∈ [0,T], w(x,t), wt(x,t)∈H2(Ω), then Phw(x,t) has the estimates:

‖w−Phw‖s.h2−s‖w‖2, s=0,1, (2.5a)

‖(w−Phw)t‖s.h2−s(‖w‖2+‖wt‖2), s=0,1. (2.5b)

Proof. Similar to the proof of Lemma 3 in [6].
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Lemma 2.2. If for any t∈ [0,T], w(x,t),wt(x,t),wtt(x,t)∈H2(Ω), then

‖(w−Phw)tt‖s.h2−s(‖w‖2+‖wt‖2+‖wtt‖2), s=0,1. (2.6)

Proof. Let
ρ=w−Phw, ρtt =E11+E22,

where

E11=wtt−Phwtt, E22=Phwtt−
∂2

∂t2
Phw.

For any t∈ [0,T] and χ∈Sh, from (2.2), we get

a(E22,χ)=a(ρtt−E11,χ)= a(ρtt,χ)

=
d2

dt2
a(ρ,χ)−(Vttρ,χ)−2(Vtρt,χ)

=−(Vttρ,χ)−2(Vtρt,χ).

Taking χ=E22, we have

‖E22‖
2
1. a(E22,E22). (‖ρ‖+‖ρt‖)‖E22‖,

which implies that
‖E22‖1.‖ρ‖+‖ρt‖.

From (2.5a) and (2.5b), we get

‖E22‖1.h2(‖w‖2+‖wt‖2). (2.7)

Therefore, (2.6) follows from (2.5a) and (2.7).

Lemma 2.3. If for any t∈ [0,T], u,ut,utt∈H2(Ω), then uh, the finite element solution defined in
(2.3a) and (2.3b) has the estimates:

‖Phu−uh‖.h2, (2.8a)

‖(Phu−uh)t‖.h2. (2.8b)

Also, if u0 ∈ H2(Ω), then uh, the finite element solution defined in (2.3a) and (2.3c) has the
estimate:

‖Phu−uh‖.h2. (2.9)

Proof. From (2.1) and (2.3a), we can get

i((u−uh)t,vh)= a(u−uh,vh), ∀vh ∈Sh. (2.10)

Let
u−uh=ρ+θ



H. M. Zhang, J. C. Jin and J. Y. Wang / Adv. Appl. Math. Mech., 5 (2013), pp. 180-193 185

with

ρ=u−Phu, θ=Phu−uh,

then

i(ρt+θt,vh)= a(ρ+θ,vh).

From (2.2), it is easy to obtain

i(θt,vh)−a(θ,vh)=−i(ρt,vh). (2.11)

Taking vh = θ in (2.11) and noticing that

d

dt
‖θ‖2 =(θt,θ)+(θ,θt)=2Re{(θt ,θ)},

we have

1

2

d

dt
‖θ‖2 =Re{(θt,θ)}= Im{a(θ,θ)}−Re{(ρt ,θ)}

=−Re{(ρt,θ)}.‖ρt‖·‖θ‖,

which implies that
d

dt
‖θ‖.‖ρt‖. (2.12)

By integral and (2.12), we see that

‖θ(·,t)‖−‖θ(·,0)‖.h2
∫ T

0
(‖u‖2+‖ut‖2)dt. (2.13)

If uh(x,0) satisfies (2.3b), then

θ(·,0)=0. (2.14)

If uh(x,0) satisfies (2.3c), then

‖θ(·,0)‖≤‖u0−Phu‖+‖u0−u0,I‖.h2‖u0‖2. (2.15)

Therefore, (2.8a) and (2.9) follow from (2.13), (2.14) and (2.15). Next we show the validity
of (2.8b).

Taking vh = θt(·,0) in (2.11) with t=0 and using (2.14), we have

‖θt(·,0)‖.‖ρt(·,0)‖. (2.16)

In addition, by the partial derivative of (2.11) with vh = θt, we get

i(θtt,θt)−a(θt ,θt)−(Vtθ,θt)=−i(ρtt,θt).
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Noticing that
d

dt
‖θt‖

2=2Re{(θtt ,θt)},

we obtain

d

dt
‖θt‖

2=2Im{a(θt ,θt)+(Vtθ,θt)}−2Re{(ρtt ,θt)}

=2Im{(Vtθ,θt)}−2Re{(ρtt ,θt)}

.‖θ‖‖θt‖+‖ρtt‖‖θt‖,

thus

d

dt
‖θt‖.‖θ‖+‖ρtt‖.

From (2.13) and (2.6), it is easy to obtain

d

dt
‖θt‖.h2,

thus
‖θt(·,t)‖.‖θt(·,0)‖+h2. (2.17)

Therefore, (2.8b) follows from (2.17), (2.16) and (2.5b).

Lemma 2.4. If for any t∈ [0,T], u,ut∈H4(Ω), utt∈H3(Ω), then uh, the bilinear finite element
solution defined in (2.3a) and (2.3c) has the estimates:

‖uI−uh‖.h2, (2.18a)

‖(uI−uh)t‖.h2, (2.18b)

where uI is the corresponding interpolating function of u.

Proof. Let
u−uh =(u−uI)+η,

with η=uI−uh, then from (2.10), we get

i(ηt,vh)=
1

2
(∇η,∇vh)+(Vη,vh)−i((u−uI)t,vh)

+
1

2
(∇(u−uI),∇vh)+(V(u−uI),vh). (2.19)

Taking vh =η in (2.19), then

i(ηt,η)=
1

2
(∇η,∇η)+(Vη,η)−i((u−uI)t,η)

+
1

2
(∇(u−uI),∇η)+(V(u−uI),η).
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Noticing that
1

2

d

dt
‖η‖2 =Re{(ηt ,η)},

we obtain

1

2

d

dt
‖η‖2 =−Re{((u−uI)t,η)}+ Im

{1

2
(∇(u−uI),∇η)+(V(u−uI),η)

}

.

Now, we introduce the following estimates given in [23].

|((u−uI)t,v)|. ch2‖ut‖3‖v‖, ∀v∈Sh, (2.20a)

|(∇(u−uI),∇v)|. ch2‖u‖4‖v‖, ∀v∈Sh. (2.20b)

Then from the above inequalities, we can get

d

dt
‖η‖.h2(‖ut‖3+‖u‖4),

which implies that

‖η‖.‖η(·,0)‖+h2
∫ T

0
(‖ut‖3+‖u‖4)dt.

Noticing that η(·,0)=0, therefore, (2.18a) holds. Next we show the validity of (2.18b).
Taking vh =ηt(·,0) in (2.19) with t=0, then from (2.20a) and (2.20b), we get

‖ηt(·,0)‖
2.h2(‖ut(·,0)‖3+‖u(·,0)‖4)‖ηt(·,0)‖,

thus
‖ηt(·,0)‖.h2. (2.21)

In addition, by the partial derivative of (2.19) with vh =ηt, we can obtain

i(ηtt,ηt)=
1

2
(∇ηt,∇ηt)+(Vtη,ηt)+(Vηt,ηt)−i((u−uI)tt,ηt)

+
1

2
(∇((u−uI)t),∇ηt)+(Vt(u−uI),ηt)+(V(u−uI)t,ηt).

Noticing that d‖ηt‖2/dt=2Re{(ηtt ,ηt)}, we have

1

2

d

dt
‖ηt‖

2=Im{(Vtη,ηt)}−Re{((u−uI)tt,ηt)}+
1

2
Im

{

(∇((u−uI)t),ηt)
}

+ Im
{

(Vt(u−uI),ηt)+(V(u−uI)t,ηt)
}

.

From (2.18a), (2.20a) and (2.20b), we get

d

dt
‖ηt‖.h2. (2.22)

Therefore, (2.18b) follows from (2.21) and (2.22).
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Theorem 2.1. If for any t∈ [0,T], u,ut ∈H2(Ω), then uh, the finite element solution defined in
(2.3a) and (2.3b) has the estimate:

‖u−uh‖s .h2−s, s=0,1. (2.23)

Proof. Noticing that

‖u−uh‖s.‖u−Phu‖s+‖Phu−uh‖s,

therefore, (2.23) follows from (2.5a), (2.8a) and the well-known inverse inequality.

Similar to the Theorem 2.1, we have the following theorem:

Theorem 2.2. If for any t∈[0,T], u,ut∈H4(Ω), utt∈H3(Ω), then uh, the bilinear finite element
solution defined in (2.3a) and (2.3c) has the estimate:

‖u−uh‖s.h2−s, s=0,1. (2.24)

Proof. Noticing that

‖u−uh‖s.‖u−uI‖s+‖uI−uh‖s,

therefore, (2.24) follows from (2.18a), (2.20b) and the well-known inverse inequality.

3 The two-grid finite element schemes

In order to reduce the computational cost, following Jin et al. [15], we construct the fol-
lowing two-grid finite element schemes for problem (1.1a)-(1.1c). The basic ingredient in
our approach is another finite element space SH (⊂ Sh ⊂ S) defined on a coarser quasi-
uniform quadrilateral or trilateral partition of Ω with mesh size H>h>0.

By the different initial value (2.3b) and (2.3c), we first construct and analyse the fol-
lowing semi-discrete two-grid finite element algorithms:

Algorithm 3.1: Semi-discrete two-grid finite element scheme with projection initial value

Step 1: Find uH ∈SH such that

{

i((uH)t,vH)=
1
2 (∇uH,∇vH)+(VuH ,vH)+( f ,vH), ∀vH ∈SH , t>0,

uH(x,0)=PHu0(x)∈SH .

Step 2: Find us
h ∈Sh such that

{

1
2 (∇us

h,∇vh)= i((uH)t,vh)−(VuH ,vh)−( f ,vh), ∀vh∈Sh, t>0,

us
h(x,0)=Phu0(x)∈Sh.

(3.1)
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Algorithm 3.2: Semi-discrete two-grid finite element scheme with interpolating initial value

Step 1: Find uH ∈SH such that

{

i((uH)t,vH)=
1
2 (∇uH ,∇vH)+(VuH,vH)+( f ,vH), ∀vH ∈SH , t>0,

uH(x,0)=u0,I(x)∈SH .

Step 2: Find us
h ∈Sh such that

{

1
2 (∇us

h,∇vh)= i((uH)t,vh)−(VuH ,vh)−( f ,vh), ∀vh ∈Sh, t>0,

us
h(x,0)=u0,I(x)∈Sh.

Theorem 3.1. If for any t∈ [0,T], u,ut,utt ∈ H2(Ω), then us
h, the two-grid solution defined in

Algorithm 3.1 has the estimates:

‖uh−us
h‖1.H2, (3.2a)

‖u−us
h‖1.h+H2, (3.2b)

where uh is the finite element solution defined in (2.3a) and (2.3b).

Proof. From (2.3a) and (3.1), we get

1

2
(∇(uh−us

h),∇vh)= i((uh−uH)t,vh)−(V(uh−uH),vh), ∀vh ∈Sh,

which, by taking vh =uh−us
h, gives

|uh−us
h|

2
1. (‖(uh−uH)t‖+‖uh−uH‖)‖uh−us

h‖.

From Friechriechs inequality ‖uh−us
h‖1,Ω. |uh−us

h|1,Ω, we obtain

‖uh−us
h‖1.‖(uh−uH)t‖+‖uh−uH‖. (3.3)

In addition, from (2.5b) and (2.8b), we see that

‖(u−uh)t‖.‖(u−Phu)t‖+‖(Phu−uh)t‖.h2,

which implies that
‖(u−uH)t‖.H2. (3.4)

So, (3.2a) follows from (2.23), (3.3), (3.4). And (3.2b) follows from (2.23), (3.2a).

Theorem 3.2. If for any t∈ [0,T], u,ut ∈ H4(Ω), utt ∈ H3(Ω), then us
h, the two-grid bilinear

finite element solution defined in Algorithm 3.2 has the estimates:

‖uh−us
h‖1.H2, (3.5a)

‖u−us
h‖1.h+H2, (3.5b)

where uh is the bilinear finite element solution defined in (2.3a) and (2.3c).
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Proof. Following the idea in proof of Theorem 3.1, inequality (3.3) also holds in this case.
In addition, from (2.18b) and (2.20a), we have

‖(u−uh)t‖≤‖(u−uI)t‖+‖(uI−uh)t‖.h2, (3.6)

which implies that
‖(u−uH)t‖.H2. (3.7)

Therefore, (3.5a) follows from (2.24), (3.3), (3.6) and (3.7). And (3.5b) follows from (2.24)
and (3.5a).

Finally, by applying the Crank-Nicolson scheme for the time discretization, we pro-
pose the full-discrete two-grid finite element algorithms as follows:

Algorithm 3.3: Full-discrete two-grid finite element scheme with projection initial value

Step 1: Find {un
H}

N
n=0⊂SH such that

{

i(dtu
n
H ,vH)=

1
2 (∇ûn

H ,∇vH)+(V̂nûn
H ,vH)+( f̂n,vH), ∀vH ∈SH , t>0, n=1,2,··· ,N,

u0
H =PHu0∈SH .

Step 2: Find {u∗n
h }N

n=0⊂Sh such that

{

1
2 (∇û∗n

h ,∇vh)= i(dtu
n
H ,vh)−(V̂nûn

H ,vh)−( f̂n,vh), ∀vh ∈Sh, t>0, n=1,2,··· ,N,

u∗0
h =Phu0 ∈Sh.

Algorithm 3.4: Full-discrete two-grid finite element scheme with interpolating initial value

Step 1: Find {un
H}

N
n=0⊂SH such that

{

i(dtu
n
H ,vH)=

1
2 (∇ûn

H ,∇vH)+(V̂nûn
H ,vH)+( f̂n,vH), ∀vH ∈SH , t>0, n=1,2,··· ,N,

u0
H =u0,I ∈SH .

Step 2: Find {u∗n
h }N

n=0⊂Sh such that







1

2
(∇û∗n

h ,∇vh)= i(dtu
n
H ,vh)−(V̂nûn

H ,vh)−( f̂n,vh), ∀vh∈Sh, t>0, n=1,2,··· ,N,

u∗0
h =u0,I ∈Sh.

We note that the linear system in Step 2 both in Algorithms 3.3 and 3.4 is a decou-
pled system which involves only two separate Poisson equations and only on the coarser
space a coupled system needs to be solved in Step 1. As a result, the computational com-
plexity of solving problem (1.1a)-(1.1c) is comparable to solving two decoupled Poisson
equations on the same fine grid.
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4 Numerical example

In this section, we carry out a numerical example to demonstrate the efficiency of Algo-
rithms 3.3 and 3.4.

For problem (1.1a)-(1.1c), let V(x,t) = 1, Ω= [0,1]×[0,1], T = 20 second and f be so
chosen that

u= e3t(1−x1)(1−x2)sin(x1x2)+i(1−x1)x2tsin(x1(1−x2))

is the exact solution.

Ω is uniformly divided into families TH and Th of quadrilaterals and SH,Sh⊂S are bi-
linear finite element spaces defined on TH, Th, respectively. For the full-discrete two-grid
methods, we solve the original problem by the conjugate gradient method on the coarse
grid and solve the modified fine grid equation by multigrid method on the fine grid. For
h= H2, τ = H, N = T/τ and H = 1/4, 1/8, 1/16, {u∗n

h }N
n=0 are computed by Algorithm

3.3 and Algorithm 3.4 respectively and {un
h}

N
n=0, the full-discrete standard finite element

solution, are computed by (2.4a). From the numerical results at t=20s listed in Tables 1
and 2, we can see that

‖u−uN
h ‖1

‖u‖1
≈O(h) and

‖u−u∗N
h ‖1

‖u‖1
≈O(H2)(≈O(h)),

and the two-grid finite element method is more efficient than the standard finite element
method on running CPU time.

If the domain Ω is uniformly divided into families TH and Th of triangulation meshes,
we can get the same conclusions from the Tables 3 and 4.

Table 1: Numerical results of the Algorithm 3.3 on quadrilateral meshes.

mesh
‖u−uN

h ‖1

‖u‖1
ratio cpu time (s)

‖u−u∗N
h ‖1

‖u‖1
ratio cpu time (s)

h=1/16 6.18E-2 2.35 6.87E-2 1.62

h=1/64 1.54E-2 4.01 145.66 1.71E-2 4.02 44.98

h=1/256 3.84E-3 4.01 44133.76 4.27E-3 4.01 1535.90

Table 2: Numerical results of the Algorithm 3.4 on quadrilateral meshes.

mesh
‖u−uN

h ‖1

‖u‖1
ratio cpu time (s)

‖u−u∗N
h ‖1

‖u‖1
ratio cpu time (s)

h=1/16 6.18E-2 2.36 6.87E-2 1.62

h=1/64 1.54E-2 4.01 145.19 1.71E-2 4.02 45.15

h=1/256 3.84E-3 4.01 48682.56 4.27E-3 4.01 1543.77
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Table 3: Numerical results of the Algorithm 3.3 on triangulation meshes.

mesh
‖u−uN

h ‖1

‖u‖1
ratio cpu time (s)

‖u−u∗N
h ‖1

‖u‖1
ratio cpu time (s)

h=1/16 9.93E-2 5.26 1.11E-1 3.97

h=1/64 2.48E-2 4.00 281.76 2.81E-2 3.95 100.63

h=1/256 6.18E-3 4.01 43478.90 7.04E-3 3.99 3593.79

Table 4: Numerical results of the Algorithm 3.4 on triangulation meshes.

mesh
‖u−uN

h ‖1

‖u‖1
ratio cpu time (s)

‖u−u∗N
h ‖1

‖u‖1
ratio cpu time (s)

h=1/16 9.93E-2 2.32 1.11E-1 3.45

h=1/64 2.48E-2 4.00 142.89 2.81E-2 3.95 100.74

h=1/256 6.18E-3 4.01 44949.76 7.04E-3 3.99 3642.19

5 Conclusions

In this paper, we presented the semi-discrete two-grid finite element schemes and full-
discrete two-grid finite element schemes for the time-dependent Schrödinger equation.
We also provided the error analysis of the semi-discrete schemes and a numerical exam-
ple of the full-discrete schemes. Numerical example showed that our two-grid schemes
work well, give very good numerical results and partly verify the convergence results.
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