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Abstract. This paper presents a modified Loop’s subdivision algorithm for studying
the deformation of a single capsule, the hydrodynamic interaction between two cap-
sules and the hydrodynamic diffusion of a suspension of capsules in bounded shear
flow. A subdivision thin-shell model is employed to compute the forces generated on
the surface of the elastic capsule during deformation. The capsule surface is approxi-
mated using the modified Loop’s subdivision scheme which guarantees bounded cur-
vature and C1 continuity everywhere on the limit surface. The present numerical tech-
nique has been validated by studying the deformation of a spherical capsule in shear
flow. Computations are also performed for a biconcave capsule over a wide range of
shear rates and viscosity ratios to investigate its dynamics. In addition, the hydro-
dynamic interaction between two elastic capsules in bounded shear flow is studied.
Depending on the wall separation distance, the trajectory-bifurcation points that sep-
arate reversing and crossing motions for both spherical and biconcave capsules can be
found. Compared to the spherical capsules, the biconcave capsules exhibit additional
types of interaction such as rotation and head-on collision. The head-on collision re-
sults in a large trajectory shift which contribute to the hydrodynamic diffusion of a
suspension. A suspension of a large number of biconcave capsules in shear flow is
also simulated to show the ability of the modified scheme in running a large-scale
simulation over a long period of time.
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1 Introduction

In recent years, the interest in particle motion has been motivated by applications in mi-
crofluidics and cell biomechanics. Numerous studies have been performed theoretically,
computationally and experimentally for liquid droplets, elastic capsules and red blood
cells [2, 11, 13, 36] to understand how their behaviors affect the flow characteristics. The
motion of a single spherical and slender rigid particle has been well understood. The
dynamics of an isolated elastic capsule or single cell in shear flow is also relatively well
known. In a simple shear flow, spherical capsules exhibit a stationary tank-treading be-
havior [32] while spheroidal and biconcave capsules undergo swinging or tumbling mo-
tion [1]. The dynamics of the capsule depends on the viscosity ratio between the internal
and suspending fluids, applied shear rate and the elastic properties of the capsule mem-
brane. These parameters also affect the hydrodynamics interaction between two particles
in shear flow.

The simplest of problems concerning the interaction between two particles has been
considered for a pair of neutrally buoyant rigid spheres [3, 9, 17]. The analysis of Batch-
elor and Green [3] showed that, depending on the separation distance between the two
spheres, they will either orbit around each other or passing each other before returning to
their initial transverse positions. This result is in agreement with the experiment studied
in [9] for the interaction of two rigid spheres in Couette flow. Recently, Pozrikidis [30,31]
developed accurate numerical methods for simulating the interception of two spheri-
cal particles with arbitrary radii in simple shear flow and discussed the particle self-
diffusivities.

Unlike the interaction of two smooth rigid spheres, the hydrodynamic interaction be-
tween two liquid droplets results in an irreversible vertical displacement [5, 24] which
leads to shear-induced diffusion in a suspension of liquid particles. Such irreversible
shift in the particle trajectories has also been observed for liquid capsules [4, 10, 18, 19].
Depending on the initial separation distance, the two spherical capsules in shear flow ei-
ther cross over each other or undergo reversing motion as observed in [10]. The reversing
motion, in which the two capsules reversed their directions of motion upon approaching,
is the result of the wall effect in the cross-flow direction. In this article, we investigate nu-
merically the hydrodynamic interactions between two identical spherical capsules and
red-blood cells in bounded shear flow and study the effects of channel heights on the
reversing motion. We also investigate numerically the hydrodynamic interactions of a
large number of biconcave capsules in a dense suspension to study the hydrodynamic
diffusion or shear-induced diffusion. Hydrodynamic diffusion of capsules in a suspen-
sion is a phenomenon in which capsules exhibit diffusive motion during flow due to the
interactions between them. This motion is responsible for phenomena such as blood vis-
cosity changes in small capillaries and the natural propensity for blood cells to migrate
to certain preferred locations within a conduit, which is an important application of this
phenomenon. For example, taking advantage of the tendency for white blood cells to
marginate in long channels, it is possible to design a microfluidic device for separating
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white blood cells directly from other components of the whole blood. It is also possible
to use the diffusion information to find new and possibly important differences between
the blood from healthy patients and the blood from patients with blood cell disorder [15].

In the present numerical study, a front tracking method with subdivision thin-shell
model similar to that in [20, 21] is employed for handling the deformation and interac-
tion of the elastic capsules. In literature, the kinematics of deformation of the capsule
membranes have been handled by different membrane models with different membrane
discretization. A finite element model with linear triangular element [6,33] has been used
in [12, 23, 38] to calculate the forces the membrane applied to the fluid during the defor-
mation. Alternatively, an elastic membrane model with quadratic triangular element de-
veloped in Cartesian coordinates [32] has been employed in [29] to take full account of in-
plane tensions and bending moments generated during capsule deformation. Recently, a
thin-shell model [7,8] with Loop’s subdivision surface [26] has been employed in [16,21]
for computing stress and moment resultants on an unstructured triangular mesh rep-
resenting the capsule surface. Subdivision surfaces obtained by the Loop’s scheme are
guaranteed to be C2-continuous everywhere except in the immediate vicinity of a small
number of vertices in the control mesh where they still retain C1 continuity. While the
original Loop’s subdivision algorithm has proven to be a valuable tool for modeling arbi-
trary surfaces, the surfaces generated by the original scheme [26] may have unbounded
curvature. This defect can be removed by introducing the modified Loop’s algorithm [25]
with subdivision masks that obey bounded curvature constraints and the convex-hull
property. It should be noted that the original Loop’s subdivision scheme worked very
well for a single capsule in shear flow [20,21]. However, it may suffer from the instability
after a long period of time in the simulations of a large number of interacting capsules.
When multiple capsules approach each other, the sections of the capsule membranes sur-
rounding the lubrication layer experience a drastic build-up in pressure. As a result, the
Lagrangian meshes representing the membranes may experience huge distortion. When
the distortion is large, the original Loop’s subdivision scheme may cause large errors in
the calculated curvature and membrane force, which in turn leads to numerical insta-
bility. Therefore, in the present work the modified Loop’s subdivision surface [25] with
bounded curvature property is employed for computing the forces generated on the cap-
sule surfaces during the deformation and hydrodynamic interaction of elastic capsules
in bounded shear flow.

2 Formulation

2.1 Governing equations

In a 3-dimensional bounded fluid domain ΩF, the incompressible Navier-Stokes equa-
tions is considered, which is written as

ρ(ut+(u·∇)u)=−∇p+∇·
[

µ
(

∇u+∇uT
)]

+ f , (2.1)
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∇·u=0, (2.2)

where u = (u,v,w)T is the fluid velocity, p the pressure, and ρ and µ the density and
viscosity of the fluid, respectively. The effect of the thin shell with middle surface Γ(t)
immersed in the fluid results in a singular force

f (x,t)=
∫

Γ(t)
f s(ξ1,ξ2,t)δ(x−X(ξ1,ξ2,t))dΓ, (2.3)

where X(ξ1,ξ2,t) is a control point associated with the curvilinear coordinates (ξ1,ξ2) on
the shell middle surface and f s(ξ1,ξ2,t) is the force per unit area at time t. Here, x=(x,y,z)
is spatial position and δ(x) is the three-dimensional Dirac function. The shell follows the
local fluid velocity as

dX(t)

dt
=

∫

ΩF

u(x,t)δ(x−X(t))dx. (2.4)

2.2 Thin shell formulation

For the sake of completeness, the kinematic description and equilibrium deformations
of the hyperelastic shells are summarized in this section. Further details can be found
in [7, 8, 21]. Consider a shell body ΩS whose undeformed and deformed middle surfaces
are denoted by Γ̄ and Γ, respectively. The surface basis vectors corresponding to Γ̄ and Γ

are

āα= X̄(ξ1,ξ2),α , aα=X(ξ1,ξ2),α , (2.5)

respectively. Here and henceforth a comma is used to denote partial differentiation and
Greek indices take the values 1 and 2. The local covariant basis vectors are defined as

ḡα= āα+ξ3(ā3),α , ḡ3= ā3 , (2.6)

gα=aα+ξ3(ηa3),α , g3=ηa3 , (2.7)

where ξ3 is the thickness coordinate, η is the thickness stretch, ā3 and a3 are the unit
normal vectors to the undeformed and deformed middle surfaces, respectively. Con-

travariant basis vectors ḡ i and g i are defined such that ḡ i · ḡ j=δ
j
i and gi ·g j=δ

j
i where δ

j
i is

the Kronecker delta. In term of the co- and contravariant basis vectors, the deformation
gradient tensor F for the shell body may be expressed in the form [27]

F=
∂X

∂X̄
=

∂X

∂ξ i
⊗ ḡi = gi⊗ ḡi , (2.8)

where here and henceforth lowercase Latin indices range from 1 to 3 and summation
over repeated indices is implied. The right Cauchy-Green strain tensor is then given as

C=FTF= gij ḡ
i⊗ ḡ j , (2.9)



D. V. Le and Z. Tan / Commun. Comput. Phys., 16 (2014), pp. 1031-1055 1035

where gij = g i ·g j is the covariant metric tensor.

The total strain energy of the thin shell is

∫

Ω̄S

WdΩ̄S+
∫

Γ
HdΓ, (2.10)

which includes the strain-energy functions W, per unit undeformed volume of Ω̄, and
H, per unit area of Γ. For the incompressible hyperelastic material, such as biological
membranes, the following neo-Hookean strain energy function is considered

W(C)=
E

6
(IC

1 −3), (2.11)

where E is the Young’s modulus, IC
1 is the first invariant of the right Cauchy-Green tensor

C. To model the red blood cell membrane, the strain energy function proposed by Skalak
et al. [35] is used. In addition, the Helfrich [14] bending energy function for biological
membranes is considered, given by

H=2κB(κm−κR
m)

2 , (2.12)

where κB is the scalar bending modulus, κm and κR
m are the mean curvature of the current

and reference configurations, respectively.

The Kirchhoff stress tensor can be expressed as

τ=τijgi⊗g j , (2.13)

with the components τij =2∂W/∂gij−psg i ·g j, where ps denotes the hydrostatic pressure

which can be calculated from the plane stress assumption. The stress resultant ni, and
the moment resultant mα are defined as

ni=
∫ h̄/2

−h̄/2
τ ·g iν̄dξ3 , (2.14)

mα=
∫ h̄/2

−h̄/2
τ ·gαξ3ν̄dξ3 , (2.15)

where ν̄ accounts for the curvature of the shell in the volume integration [7, 34]. The
bending stress follows from (2.12) by the work conjugacy, with the result

qαβ =
∂H

∂καβ
=2κB

(

κm−κR
m

)

gαβ . (2.16)

At equilibrium, the variation of the potential energy of the shell is zero, i.e.

δΠ=δΠint+δΠext=0, (2.17)
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where δΠext is the variation of the potential energy of the external forces. The variation
of the potential of the internal forces can be expressed as

δΠint=
∫

Ω̄S

∂W

∂F
: δFdΩ̄S+

∫

Γ

∂H

∂καβ
δκαβdΓ. (2.18)

Substituting Eqs. (2.8), (2.11) and (2.16) into (2.18) and a straightforward manipulation
yields the following formulation
∫

Γ̄

[

nα ·δaα+ηn3 ·δa3+mα ·(ηδa3),α

]

dΓ̄+
∫

Γ
qαβ

[

δaα,β ·a3+aα,β ·δa3

]

dΓ+δΠext=0. (2.19)

Details for the derivation of Eq. (2.19) are given in [7, 22].

3 Numerical method

3.1 Front-tracking method

To handle the coupling between the fluid and the capsule motion, a front-tracking method
based on the immersed boundary method [28] is used. The immersed boundary method
represents the surface by a control mesh containing a set of NP control points xI , I =
1,··· ,NP. The force per unit area f s

I(ξ
1,ξ2,t) is computed at these control points and is

distributed to the Cartesian grid points using a discrete delta function Dh(x) [28] as

f (x,t)=
NP

∑
I=1

f s
I(ξ

1,ξ2,t)Dh(x−xI(t))△ξ1△ξ2 . (3.1)

The force at node I can be derived by introducing the interpolated parametric

x(ξ1,ξ2)=∑
I

N I(ξ1,ξ2)xI , (3.2)

where N I(ξ1,ξ2) is a basis function defined on the modified Loop’s subdivision surfaces,
into the weak form (2.19). This yields

∫

Γ̄

[

nα · ∂aα

∂xI
+ηn3 · ∂a3

∂xI
+mα ·

(

η
∂a3

∂xI

)

,α

]

dΓ̄

+
∫

Γ
qαβ

[

(

∂aα

∂xI

)

,β

·a3+aα,β·
∂a3

∂xI

]

dΓ+
∫

Γ
f sN IdΓ=0 (3.3)

for I = 1,··· ,NP. For the shape functions defined in Section 3.2, the forces at node I can
be approximated by averaging as

f s
I =

∫

Γ
f sN IdΓ

∫

Γ
N IdΓ

. (3.4)
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Figure 1: Subdivision using the Loop scheme: control mesh, first subdivided mesh and the limit surface.

Eq. (3.3) leads to

f s
I =− f int

I
∫

Γ
N IdΓ

, (3.5)

where f int
I is the internal force at node I and follows in the form

f int
I =

∫

Γ̄

[

nα · ∂aα

∂xI
+ηn3 · ∂a3

∂xI
+mα ·

(

η
∂a3

∂xI

)

,α

]

dΓ̄

+
∫

Γ
qαβ

[

(

∂aα

∂xI

)

,β

·a3+aα,β ·
∂a3

∂xI

]

dΓ. (3.6)

Once the force density is computed and distributed to the Cartesian grid, the Navier-
Stokes equations are solved for the pressure and velocity fields. The velocity field is then
used to advance the position of the immersed boundary in an implicit manner [21].

3.2 Surface discretization with modified Loop’s subdivision scheme

Le [21] has recently employed the C1-interpolation scheme based on the Loop’s subdi-
vision surfaces proposed in [7, 8] for studying the deformation of elastic capsule in fluid
flow. The main idea behind the Loop’s subdivision surfaces [26] is to represent a smooth
surface by a triangular control-mesh. Subdivision algorithms recursively refine this con-
trol mesh by adding new vertices, edges and faces to produce a sequence of finer meshes
that converge to a smooth limit surface that is topologically equivalent to the original
control mesh. This process is illustrated in Fig. 1. For the sake of completeness, the orig-
inal and modified Loop’s algorithms and the surface parameterization are described in
this section.

In a refinement step, each triangle is split into four, and the nodal positions of the
refined mesh are calculated as weighted averages of the nodal positions of the coarser
mesh and given in the form of subdivision masks. Subdivision masks are classified into
vertex masks and edge masks as depicted in Fig. 2. The weights used in the vertex mask
are α=( 3

8+
1
4 cos2π

n )2+ 3
8 and β= 1

n (1−α), where n is the valence of the vertex. The edge
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Figure 2: Vertex mask and edge mask used in Loop’s algorithm.

Figure 3: Modified edge mask used in the modified Loop’s algorithm.

mask assigns weights to the vertices of the two triangles that share the edge and do not
depend on the valence. The vertex masks of the modified Loop’s algorithm [25] are
similar to those of Loop’s scheme except that the values of the weights α,β are different.
The edge mask of the modified Loop’s algorithm has larger support and is depicted in
Fig. 3. This edge mask is applied for an edge with extraordinary incident vertex (n 6=6).
The modified edge mask returns to the original edge mask if both incident vertices are
ordinary. The sum of the mask weights 1−λ0,γ0,··· ,γn−1 is equal to 1, so λ0 =∑γi. The
mask weights for arbitrary n≥6 have been proposed in [25]:

γi=
2λ3

1

n(1−λ1)
(1+ui)

(

ui+
1

λ1
− 3

2

)2

, (3.7)

where λ1=
3
8+

1
4 cos2π

n and ui=cos2πi
n ,i=0,··· ,n−1. For the cases where n=3,4 and 5, the
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Figure 4: Limit masks for the modified Loop’s algorithm.

mask weights are given as

γi=















1
6

(

5
4+ui

)

, n=3,
1
2

(

1
2+

3
8 ui

)2
, n=4,

3+
√

5
32

(

1− 1√
5
+ui

)2
, n=5.

(3.8)

By construction, it is known that λ0=∑
n−1
i=0 γi, hence the central weight for the edge mask

is 1−λ0. The central weight for the vertex mask is found by

α=1−λ0+λ2
1 . (3.9)

To compute the limiting positions of the nodes, the position mask as shown in Fig. 4 can
be used. Similarly, the two tangent vectors (and from them the surface normal) to the
limit surface can be computed using the tangent masks.

For numerical evaluation of stress and moment resultants in thin-shell analysis, a
parameterization of the surface and the ability to evaluate surface derivatives at arbi-
trary parameter locations are needed. For a regular triangle, all of whose nodes have
six neighbors, the Loop subdivision surface reduces to the common box splines (shown
schematically in Fig. 5) for which analytical expressions are available. Each node of the
regular triangle has exactly six neighbors and the total number of nodes in the triangle
or adjacent to it is 12. Therefore, the local parameterization of the limit surface can be
expressed in terms of box-spline basis functions as

x(ξ1,ξ2)=
12

∑
I=1

N I(ξ1,ξ2)xI =XTN(ξ1,ξ2), (3.10)

where X is a 12×3 matrix containing the control vertices of the patch ordered as in Fig. 5
and N(ξ1,ξ2) is the vector of basis function N I(ξ1,ξ2). The precise form of the basis
functions N I(ξ1,ξ2) can be found in [37].
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Figure 5: A regular common box spline patch defined by 12 control vertices.

Figure 6: An irregular patch defined by 13 control vertices. After one subdivision step, three-quarters of the
triangular patch become regular and can be evaluated.

For irregular triangles, the local parameterization of the Loop’s subdivision surface
was proposed by Stam [37] based on the eigen-decomposition of the refinement matrix.
Stam’s method described a very effective way to evaluate surface properties at an arbi-
trary location on the limit surface without performing a large number of refinements. A
simplified form of Stam’s method is used and the parameterization of the modified Loop
surfaces for irregular triangles is described. For simplicity, it is assumed that irregular
patches have one extraordinary vertex only including the vertices labelled from ”n+2” to
”n+6” as shown on the top left of Fig. 6. This assumption can always be met for arbitrary
initial meshes through at most two steps of subdivision, which has the effect of separat-
ing extraordinary vertices. The triangular patch associated with the shaded element in
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this figure is defined by n+6 vertices where n is the valence of the extraordinary vertex
labelled ”1” in the middle of the figure. The control vertices are stored in a (n+6)×3
matrix

XT
0 =(x0,1,··· ,x0,n+6).

After one subdivision step, a new set of n+12 vertices

X̄T
1 =(x1,1,··· ,x1,n+12)

are generated as shown on the top right of Fig. 6. The vertices X̄1 can be obtained as
following

X̄1= ĀX0 , (3.11)

where

Ā=





S 0

S11 S12

S21 S22





and the blocks are defined in Appendix A. It is noticed that three-quarters of the tri-
angular patch become regular and can be evaluated. To calculate the integrations in
Eq. (3.6), one-point quadrature rule with the quadrature point located at the barycenter
(ξ1 = 1/3,ξ2 = 1/3) of the triangular element is used. After one subdivision step, the
quadrature point lies within the second regular sub-patch as illustrated in Fig. 6. And
this second regular sub-patch labelled ”2” in Fig. 6 (bottom middle) can be used to eval-
uate the function values at the quadrature point. The control vertices of the sub-patch 2
are PX̄1 where P is a 12×(n+12) ”picking matrix” whose each row is filled with zeros
except for a one in the column corresponding to the index of sub-patch 2 [37]. It should
be noted that the coordinates of the quadrature point need to be transformed in the reg-
ular sub-patches. In sub-patch 2, the new local coordinates of the quadrature point are
ξ̃1 = 1−2ξ1 and ξ̃2 = 1−2ξ2. The function values for sub-patch 2 can now be evaluated
using the interpolation rule

x(ξ1,ξ2)=(PĀX0)
T

N(ξ̃1, ξ̃2). (3.12)

It should be noted that the main different between the original and modified Loop’s
schemes is the parameterization of the surface at irregular elements where the subdivi-
sion matrix Ā is modified to satisfy the bounded curvature constraints. Since the number
of irregular elements is just a small portion of the total number of elements of the surface
mesh, the modified Loop’s scheme may improve the stability of the numerical method
slightly. But it definitely improves the robustness of the subdivision thin-shell model.

4 Results

In this section, the deformation and interaction of elastic capsules of radius a in shear
flow given by the velocity u = (γ̇y,0,0) is investigated, where γ̇ is the shear rate. The
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(a) (b)

Figure 7: System definition of (a) a single capsule and (b) a pair of capsules in bounded shear flow.

capsules’ motion and deformation depend on the initial position, dimensionless shear
rate G = µγ̇a/(Eh̄), bending modulus κ̂B = κB/(a2Eh̄), viscosity ratio, λ and Reynolds
number Re = ργ̇a2/µ. Here, the Reynolds number is chosen to be sufficiently small so
that the inertia effect is neglected. Simulations are performed on a computational domain
of size Lx×Ly×Lz with Dirichlet boundary condition for the velocity at y=±Ly/2 and
periodic at other boundaries. The initial capsule shape is taken to be a reference state
for both in-plane tensions and bending moments. The deformation of the capsules is
described by the Taylor shape parameter Dxy and inclination angle θ [32]. The geometry
of the system for a single capsule and a pair of capsules are shown in Fig. 7.

4.1 Single capsule in shear flow

The present method is validated by studying the convergence of the deformation of a
spherical neo-Hookean capsule for G = 0.1, λ = 2 and κ̂B = 0.01 at Re = 0.01. In a com-
putational domain of size Lx = Ly = Lz = 10a, grid refinement study is performed for
four different fluid grids, i.e 64×64×64, 96×96×96, 128×128×128 and 192×192×192
grids with the corresponding surface meshes of 5120, 8192, 20480 and 32768 triangu-
lar elements, respectively. The deformation parameter, Dxy, and inclination angle, θ, at
different mesh resolutions are shown in Fig. 8. It can be seen that the results converge
with increasing mesh resolution and the 128×128×128 Cartesian grid with surface mesh
of 20480 elements is sufficient to capture accurately the deformation parameters of the
capsule. Fig. 9 shows the results for Dxy and θ, with λ=1 and κ̂B =0 at different dimen-
sionless shear rates G. The results are compared with those obtained using the quadratic
triangular elements [22] and good agreement is observed in Fig. 9. It is noted that the
deformation parameter and the inclination angle obtained in [22] have been validated
against those in [2, 32, 38] and the present results are almost identical to those obtained
by the original Loop’s scheme [21]. The modified Loop’s scheme does not have notice-
able advantages over the original one since we do not see large mesh distortion in the
simulations of single capsule. The results also show that the spherical capsule deforms
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Figure 8: Grid refinement study of (a) the deformation parameter and (b) inclination angle for spherical capsule
with λ=2, G=0.1 and κ̂B =0.01.
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Figure 9: The evolution of (a) the deformation parameter and (b) inclination angle for spherical capsule with
λ=1 and κ̂B=0 at different G. The solid lines are the results obtained with modified Loop subdivision elements
and the dashed lines are obtained with the quadratic triangular elements [22].

to an ellipsoidal shape and the capsule membrane rotates in a tank-treading mode [32].
The tank-treading mode only results in a crossing motion when two spherical capsules
interact with each other in infinite shear flow as can be seen later.

Next simulations for the biconcave capsules with Skalak’s strain energy function for
red-blood cell membrane are performed. The mapping for the biconcave disk shape as-
sumed by red blood cells at rest is given in [22]. The modified Loop’s scheme is able to re-
produce the tumbling and swinging motions of the biconcave capsules at different shear
rates and viscosity ratios. In addition it can capture the transition dynamics between
tumbling and swinging motions. A phase diagram of a biconcave capsule with different
motion modes as a function of the viscosity ratio λ and the inverse dimensionless shear
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Figure 10: Phase diagram of a biconcave capsule with swinging and tumbling regimes as a function of λ and
1/G at κ̂B =0.01.
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Figure 11: Transient motions of biconcave capsules: (a) swinging to tumbling at λ = 2, G = 0.2 and (b)
intermittent tumbling to swinging at λ=7, G=1.4.

rate 1/G is shown in Fig. 10. The phase diagram is obtained at constant reduced bend-
ing modulus κ̂B = 0.01, which is on the order of bending stiffness of healthy red-blood
cell [29]. At high dimensionless shear rate G and low viscosity ratio λ, the swinging
motion is observed. At low dimensionless shear rate and high viscosity ratio, the cap-
sule undergoes tumbling motion because the fluid shear stress acting on the membrane
is no longer sufficient to force the membrane to tank tread. The transition dynamics from
swinging to tumbling at low viscosity ratio (Fig. 11(a)) is also observed. At a narrow
range of high viscosity ratio and high dimensionless shear rate, an intermittent regime of
successive tumbling and swinging can be seen as shown in Fig. 11(b).
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Figure 12: Trajectories of the spherical capsule center O1 with different initial locations y0/a in shear flow in a
channel of height (a) Ly/a=10 and (b) Ly/a=30.

4.2 Hydrodynamic interaction between two identical capsules

The motion of an individual capsule will affect the hydrodynamic interaction between
them. In this section the hydrodynamic interaction between two identical capsules in
bounded shear flow is investigated. The computational domain is chosen as: Lx = 20a,
Lz=10a and Ly is varied to study the effects of the channel height on the interaction. The
mesh sizes are the same as those used for single capsule. The capsules with centers of
mass O1 and O2 are initially located in the same shear plane at (−x0,y0,0) and (x0,−y0,0),
respectively as shown in Fig. 7(b).

4.2.1 Interaction of spherical capsules

First the hydrodynamic interaction between two neo-Hookean spherical capsules is in-
vestigated. Fig. 12 shows the trajectories of the capsule center of mass O1, (xc,yc,0),
with different initial vertical separations y0/a for two channel heights of Ly/a= 10 and
Ly/a = 30. Here λ = 1, G = 0.2, κ̂B = 0.01, Re = 0.001 and x0/a = 5 are considered. For
sufficiently large initial vertical offsets ∆y0 the trajectories of the spherical capsules in
wall-bounded shear flow are qualitative similar to those in free space (Ly/a≥30). Due the
relative velocity between the two capsules, they approach each other and subsequently
cross over each other. After crossing the vertical separation decreases and maintains a
constant value as they move away from each other. This type of interaction has also been
observed in [10, 19] and is referred to as a crossing motion. The only distinctive feature
of the trajectory depicted in Fig. 12(a) is that yc decreases before reaching the maximum
when the capsules roll over each other (i.e. ∆xc≈0), while in free space yc would increase
monotonically. For smaller initial vertical offsets ∆y0 the capsules in wall-bounded shear
flow (Ly/a=10) approach each other due to the non-zero relative velocity between them
but they do not cross over each other upon encounter. Instead, they reverse their di-
rections of motion when their centers of mass cross the y = 0 axis as seen in Fig. 12(a)
for y0/a = 0.1, 0.2. The reversing motion can be explained by examining the stream-
lines around a single capsule in tank-treading mode as illustrated in Fig. 13. Fig. 13(a)
shows fluid streamlines around a capsule in the middle of the channel with wall sepa-
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Figure 13: Streamlines around a single capsule in a channel with (a) Ly/a=5 and (b) Ly/a=30.

ration Ly/a = 5. As expected, in a wall-bounded system there is a region of reversing
streamlines. If the center of mass of another capsule falls within this reversing region,
the capsule will change its direction of motion and result in a reversing type of interac-
tion. Fig. 13(b) shows the familiar streamlines around a capsule in the channel with wall
separation Ly/a = 30 which is large enough to represent the unbounded shear flow. It
should be noted that the region of reversing streamlines becomes smaller with increasing
channel wall separation Ly/a and disappears in unbounded shear flow. This is further
illustrated in Fig. 14, where the trajectory-bifurcation point yc

0 separating reversing and
crossing trajectories with Ly/a at G = 0.1, 0.2 and 0.5 is plotted. It can be seen that the
width in y of the reversing zone at a given wall separation Ly/a decreases with increasing
G. This is because of the larger deformation and greater alignment of the capsule with
the undisturbed flow at larger dimensionless shear rate G.

4.2.2 Interaction of biconcave capsules

Now the interaction between two biconcave capsules with Skalak’s strain energy func-
tion for red blood cell membrane is considered. The capsules are initially inclined at an
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angle θ0 = π/4 with respect to the streamlines of the undisturbed flow. Fig. 15 shows
several trajectories of the biconcave capsule O1 corresponding to various types of inter-
action such as reversing, crossing and continuous rotation. The trajectories of biconcave
capsules are studied for G=0.05, κ̂B =0.01, Re=0.001, Ly/a=10, x0/a=−5 at different
initial offsets ∆y0. It is noted that at this shear rate, the capsules exhibit tumbling motion.
At y0/a=0.2, the capsules exhibit the reversing motion due to the wall-bounded effect as
explained previously for two spherical capsules. The reversing zone can be seen clearly
in Fig. 16 where the streamlines around a single biconcave capsule undergoing tumbling
motion are plotted. In contrast to the streamlines around a spherical capsule, a large recir-
culation zone in the middle of the domain and around the biconcave capsule can be seen.
At some points in time during the tumbling motion of the capsules the recirculation zone
may be large enough to trap another capsule inside and leads to the continuous rotation.
The trajectory of capsule O1 corresponding to the continuous rotation is shown in Fig. 15
for y0/a=0.3. At larger initial vertical separation the two capsules approach each other
and subsequently cross over each other. Fig. 17 shows the trajectory-bifurcation point yc

0
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Figure 16: Streamlines around a single biconcave capsule in a channel with Ly/a= 10 at different times: (a)
γ̇t=6 and (b) γ̇t=7.

separating the reversing motion and other types of interaction with Ly/a at G=0.2, 0.05.
It should be noted that at G = 0.2 each biconcave capsule undergoes swinging motion
and therefore only exhibits reversing and crossing types of interaction. The continuous
rotation only occur when the individual capsule undergoes tumbling motion at small di-
mensionless shear rate. The reversing, crossing and continuous rotation motions have
been observed in previous studies [3, 11, 19]. In the present study, we observe new types
of complicated crossing behaviors which could decrease or increase the vertical trajectory
shifts.

As shown in Fig. 12(b) the hydrodynamic interactions of the spherical capsules dur-
ing the crossing lead to irreversible trajectory shifts. The trajectory shifts are positive,
meaning that the crossing results in shear-induced diffusion. The similar simple cross-
ing behavior for biconcave capsules undergoing swinging motion at high dimensionless
shear rates is seen. However, when each biconcave capsule undergoes tumbling motion
while crossing each other, the crossing becomes complicated. For example, Fig. 15 shows
that the crossing interaction between two capsules when the initial separation y0/a=0.4
(dash-dotted line) results in a negative cross-flow displacement. After passing the center
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plane x = 0, the capsules follow the path of the continuous rotation trajectories but the
positive pressure in the gap between the two capsules move them apart and prevent a
full continuous rotation motion. Consequently, the final trajectory shift is either null or
negative. When the initial separation is y0/a= 0.34 (dash line), the crossing interaction
between the two capsules results in a large final trajectory shift. The final vertical position
is even larger than that of the capsule with greater initial separation such as y0/a= 0.5.
We do not see this behavior for spherical capsules where the final vertical position in-
creases monotonically with the initial vertical position [19]. The jump in the value of the
trajectory shift is due to a head-on collision of the two capsules under tumbling motion
as illustrated in Fig. 18. Fig. 18 shows the snapshots of the biconcave capsules at differ-
ent times during the head-on collision. At γ̇t=13, the two capsules approach each other
while undergo tumbling motion. The capsule on the left rotates downward while the
one on the right rotates upward. If each capsule undergoes swinging motion they may
just slide over each other. However, due to the tumbling motion the capsules continue to
rotate until they hit each other at γ̇t=15 and start to deform substantially at one side of
each capsule at γ̇t= 17 to 19. During this period, instead of tumbling around its center
of mass, each capsules rotates around the center of the domain where the two capsules
meet. Subsequently, the capsules separate and recover the biconcave shape as observed
in Fig. 18(e) and Fig. 18(f). The head-on collision increases the hydrodynamic diffusion
of a suspension of capsules since it increases the vertical shift. However, in a suspension,
capsules approach each other from different shear planes with different orientations. So it
is not very clear how the head-on collision or other types of interaction affect the diffusion
of capsules in the suspension. Owing to the influence of the hydrodynamic interaction
between capsules, a sufficiently large number of capsules must be used in simulations to
adequately describe the bulk or macroscopic rheological properties of the suspension.
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Figure 18: Shapes of the biconcave capsules during the head-on collision.

4.3 Hydrodynamic diffusion of a suspension of capsules

The complicated hydrodynamic interaction between two capsules affects the rheological
properties of the suspension of capsules such as relative viscosity and hydrodynamic dif-
fusion coefficient. Hydrodynamic or shear-induced diffusion of capsules in a suspension
is the random walk motion away from the undisturbed trajectories of the capsules due
to the interaction of the capsules with their neighbors. In this section, the hydrodynamic
diffusion of a suspension of biconcave capsules in shear flow is studied to show that the
modified Loop’s subdivision scheme has improved the stability in the simulation over a
long period of time. The simulations are performed for biconcave capsules which have
random starting positions and are non-overlapping in a fluid domain as shown in Fig. 19.
In these simulations, z is the direction of shear gradient and the parameters are chosen as
G=0.1, κ̂B =0.01, Re=0.001 and λ=1.

The dimensionless variance of the displacement of the capsules in both the y- and
z-directions is measured. The variance in the y-direction at the dimensionless time γ̇t is
defined as

σ2
y =

(

〈

(∆y)2
〉

−〈∆y〉2
)

/a2 , (4.1)

where ∆y is the displacement of a capsule in the y-direction measured from a reference
time and 〈 〉 denotes averaging over all capsules in the computational domain at an in-
stance in time. The reference time is set to be 10 dimensionless time units after the start
of the simulation, which is about the time required for the capsules’ deformation to reach
their average values. The variance in the z-direction is defined in a similar manner. To
determine the type of motion of the suspension (subdiffusion, diffusion or superdiffu-
sion), σ2

i ∝ tαi is assumed, where i=y, z and calculate αi by a least squares fit to the data.
The variances for t ∈ [100,1000] is used to calculate αy and αz as shown in Fig. 20. The
initial motion is ballistic with αi=2 up to γ̇t≈1. The motion of the suspension eventually
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Figure 19: The fluid domain with dimensions Lx = Ly =16a, Lz =4a, enclosing 74 red blood cells leading to a
volume fraction of 30%.
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becomes diffusive in y-direction with αy≈1 and the diffusion coefficient Dyy=0.006. The
value of αz shows that the motion in the z-direction is always subdiffusive with αz ≈0.21
due to the hindrance of the walls. If one calculate αz using the dimensionless variance
data for γ̇t> 500, αz = 0 will be obtained. That means the variance of the displacement
of the capsules in the z-direction needs a long period of time to reach a constant value.
Therefore a robust method is needed to carry out the simulations over a long time to get
meaningful results. And to the best of our knowledge, the present method with modi-
fied Loop’s subdivision scheme is the first method that has performed simulations for a
dense suspension of biconcave capsules for γ̇t up to 1000. If the original Loop’s scheme
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Figure 21: Snapshot showing the deformation of elastic capsules at time γ̇t= 110 for G= 0.1, κ̂B = 0.01 and
λ= 1 in a channel with volume fraction of 30%. The mean curvature on the capsule membranes is shown on
the left and the force is shown on the right.

is used for the same simulation, the simulation can only be run for up to γ̇t≈110 which
is not long enough to capture the hydrodynamic diffusion of the suspension of capsules
correctly. The original Loop’s scheme suffers from the numerical instability due to the
large errors in the calculated curvature and membrane force at the quadrature points in
the irregular elements when the distortion of the membrane mesh is large enough. We
note that the original Loop’s scheme can produce an artifact of divergent curvature due
to the lack of the bounded curvature constraints [25]. Fig. 21 shows a snapshot of the sus-
pension of capsules at γ̇t=110 before the numerical instability stops the simulation from
running further. The mean curvature is shown on the left and the force magnitude is
shown on the right of Fig. 21. The large error in the membrane force at the large distorted
part of the membrane mesh leads to the numerical instability.

5 Conclusions

In this article, a thin-shell model with modified Loop’s subdivision surfaces for describ-
ing the geometry of the capsule membrane and computing smooth force fields in the
framework of the principle of virtual displacements is presented. The limit surface ob-
tained by the modified Loop’s algorithm obeys the bounded curvature constraints and
can be described locally by the common box splines. The present method has been val-
idated by studying the deformation of spherical capsules in shear flow. For a single
biconcave capsule, a phase diagram is produced for systematic exploration of the bicon-
cave capsule dynamics with swinging, tumbling and transient regimes as a function of
viscosity ratio and dimensionless shear rate.
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In bounded shear flow the hydrodynamic interaction between two spherical capsules
results in the reversing or crossing trajectories depending on the initial vertical separation
between the capsules. The trajectory-bifurcation plot for separating the reversing and
crossing types of interaction for both spherical and biconcave capsules is obtained. For
biconcave capsules, other interaction types such as rotation and head-on collision can
be seen. The head-on collision is a special case of the crossing motion and results in a
large trajectory shift which contribute to and enhance the hydrodynamic self-diffusivity
in dilute suspensions.

The hydrodynamic diffusion of a suspension of capsules in bounded shear flow is
also studied and the type of motion of the suspension is determined. The motion of the
suspension is diffusive in the y-direction (or vorticity direction) and subdiffusive in the
z-direction due to the hindrance of the walls. The numerical simulations also showed
the ability of the modified Loop’s subdivision scheme to improve the stability of the
numerical method when there is a need to run simulation for a long period of time.
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A Subdivision matrices

The 1-ring subdivision matrix S

S=















α 1−α
n

1−α
n ··· 1−α

n
1−λ0 γ0 γ1 ··· γn−1

1−λ0 γn−1 γ0 ··· γn−2
...

...
...

. . .
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1−λ0 γ1 γ2 ··· γ0















.

The remaining four blocks of Ā are

S11=
1
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2 6 0 0 ··· 0 0 6
1 10 1 0 ··· 0 0 1
2 6 6 0 ··· 0 0 0
1 1 0 0 ··· 0 1 10
2 0 0 0 ··· 0 6 6













and S12=
1
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2 0 0 0 0
1 1 1 0 0
0 0 2 0 0
1 0 0 1 1
0 0 0 0 2
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S21=
1
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0 3 0 0 ··· 0 0 1
0 3 0 0 ··· 0 0 0
0 3 1 0 ··· 0 0 0
0 1 0 0 ··· 0 0 3
0 0 0 0 ··· 0 0 3
0 0 0 0 ··· 0 1 3

















and S22=
1
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3 1 0 0 0
1 3 1 0 0
0 1 3 0 0
3 0 0 1 0
1 0 0 3 1
0 0 0 1 3
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