
Commun. Comput. Phys.
doi: 10.4208/cicp.070114.170614a

Vol. 16, No. 5, pp. 1263-1297
November 2014

Efficient Variable-Coefficient Finite-Volume Stokes

Solvers

Mingchao Cai1, Andy Nonaka2, John B. Bell2, Boyce E. Griffith3,1,4

and Aleksandar Donev1,∗

1 Courant Institute of Mathematical Sciences, New York University, New York, NY
10012, USA.
2 Center for Computational Sciences and Engineering, Lawrence Berkeley National
Laboratory, Berkeley, CA 94720, USA.
3 Leon H. Charney Division of Cardiology, Department of Medicine, New York
University School of Medicine, NY, USA.
4 Department of Mathematics, University of North Carolina, Chapel Hill, NC 27599, USA.

Received 7 January 2014; Accepted (in revised version) 17 June 2014

Available online 29 August 2014

Abstract. We investigate several robust preconditioners for solving the saddle-point
linear systems that arise from spatial discretization of unsteady and steady variable-
coefficient Stokes equations on a uniform staggered grid. Building on the success of
using the classical projection method as a preconditioner for the coupled velocity-
pressure system [B. E. Griffith, J. Comp. Phys., 228 (2009), pp. 7565–7595], as well as
established techniques for steady and unsteady Stokes flow in the finite-element liter-
ature, we construct preconditioners that employ independent generalized Helmholtz
and Poisson solvers for the velocity and pressure subproblems. We demonstrate that
only a single cycle of a standard geometric multigrid algorithm serves as an effective
inexact solver for each of these subproblems. Contrary to traditional wisdom, we find
that the Stokes problem can be solved nearly as efficiently as the independent pres-
sure and velocity subproblems, making the overall cost of solving the Stokes system
comparable to the cost of classical projection or fractional step methods for incom-
pressible flow, even for steady flow and in the presence of large density and viscosity
contrasts. Two of the five preconditioners considered here are found to be robust to
GMRES restarts and to increasing problem size, making them suitable for large-scale
problems. Our work opens many possibilities for constructing novel unsplit temporal
integrators for finite-volume spatial discretizations of the equations of low Mach and
incompressible flow dynamics.
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1 Introduction

Many numerical methods for solving the time-dependent (unsteady) incompressible [1,
3, 24, 27] or low Mach number [14, 43] equations require the solution of a linear unsteady
Stokes flow subproblem. The linear steady Stokes problem is of particular interest for
low Reynolds number flows [26, 42] or flow in viscous boundary layers. In this work,
we investigate efficient linear solvers for the unsteady and steady Stokes equations in the
presence of variable density and viscosity. Specifically, we consider the coupled velocity-
pressure Stokes system [20, 49]

{
ρut+∇p=∇ ·τ(u)+ f ,

∇·u= g,
(1.1)

where ρ(r) is the density, u(r,t) is the velocity, p(r,t) is the pressure, f (r,t) is a force den-
sity, and τ(u) is the viscous stress tensor. A nonzero velocity-divergence g(r,t) arises,
for example, in low Mach number models because of compositional or temperature vari-
ations [43]. The viscous stress τ(u) is µ∇u for constant viscosity incompressible flow,
µ
[
∇u+(∇u)T

]
when g=0 (incompressible flow), and µ[∇u+(∇u)T]+(γ− 2

3 µ)(∇·u)I
when g 6=0, where µ(r,t) is the shear viscosity and γ(r,t) is the bulk viscosity. When the
inertial term is neglected, ρut = 0, (1.1) reduces to the time-independent (steady) Stokes
equations. In this work we consider periodic boundary conditions and physical bound-
ary conditions that involve velocity only, notably no-slip and free-slip physical bound-
aries†.

Spatial discretization of (1.1) can be carried out using standard finite-volume or finite-
element techniques. Applying the backward Euler scheme to solve the spatially-discret-
ized equations with time step size ∆t gives the following discrete system for the velocity
un+1 and the pressure pn+1 at the end of time step n,





ρ

(
un+1−un

∆t

)
+∇pn+1=∇·τ

(
un+1

)
+ f n+1,

∇·un+1= gn+1,

(1.2)

where f n+1 contains external forcing terms such as gravity and any explicitly-handled
terms such as, for example, advection. Similar linear systems are obtained with other
implicit and semi-implicit temporal discretizations [1, 3, 27]. In the limit ρ/∆t → 0, the
system (1.2) reduces to the steady Stokes equations. Here we will assume that the spatial
discretization is stable, more precisely, that the Stokes system (1.2) is “uniformly solv-
able” as the spatial discretization becomes finer, i.e., that a suitable measure of the con-
dition number of the Schur complement of (1.2) remains bounded as the grid spacing

†When the normal component of velocity is specified on the whole boundary of the computational domain
Ω, a compatibility condition

∫
∂Ω

u·ndS=
∫

Ω
gdr needs to be imposed.
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h → 0. In the context of finite-element methods, this is typically implied by the well-
known inf−sup or Ladyženskaja-Babuška-Brezzi (LBB) condition. Here we employ the
classical staggered-grid [32] discretization on a uniform grid, which can be thought of
as a rectangular analog of the lowest-order Raviart-Thomas element and is known to
be a stable discretization [41, 48]. We expect that it will be relatively straightforward
to generalize the preconditioners developed here to recently-developed adaptive mesh
staggered schemes [26, 28]. Note, however, that collocated finite-volume discretizations
of the Navier-Stokes equations do not provide a stable discretization, which motivates
the development of approximate-projection methods [2].

Historically, there have been significant differences in the treatment of (1.2) in the
finite-volume and finite-element literature. In the finite-element literature, there is a long
history of numerical methods for solving the Stokes equations, especially in the time-
independent (steady) context [20,49]. By contrast, in the context of high-resolution finite-
volume methods, the dominant paradigm has been to use a splitting (fractional-step)
or projection method [7, 11] to separate the pressure and velocity updates. In part, this
choice has been motivated by the target applications, which are often high Reynolds
number, or even inviscid, flows. In the inviscid limit, the splitting error associated with
projection methods vanishes, and for sufficiently large Reynolds number flows the time
step size dictated by advective stability constraints makes the splitting error relatively
small. At the same time, the preference for splitting methods stems, in large part, from
the perception that solving the saddle-point problem (1.2) is much more difficult than
solving the pressure and velocity subproblems; to quote the authors of Ref. [7], “Spatially
discretized versions of the coupled Eqs. ··· are cumbersome to solve directly.” In fact, one
of the first second-order projection methods [3] was developed by starting with a Crank-
Nicolson variant of (1.2) and then approximating the resulting Stokes system using a
velocity-pressure splitting that was motivated by the perceived difficulty in solving the
coupled system.

Fractional-step approaches, however, suffer from several significant shortcomings. It
is well-known, for example, that the splitting introduces a commutator error that leads
to the appearance of spurious or “parasitic” modes [7, 15] in the presence of physical
boundaries. Furthermore, it is generally not possible to impose the true boundary con-
ditions of the Stokes system in a fractional-step scheme; instead, “artificial” boundary
conditions must be imposed in the velocity and pressure subsystems. This has motivated
the construction of methods that approximately solve the Stokes system (1.2) using block-
triangular factorizations [44] similar to those employed here to construct preconditioners
for iterative methods that solve (1.2) exactly. This is crucial at small Reynolds numbers
because the splitting error becomes larger as viscous effects become more dominant, and
projection or approximate factorization methods do not apply in the steady Stokes regime
for problems with physical boundary conditions.

Recognizing these problems, one of us investigated the use of projection-like meth-
ods as preconditioners for a Krylov method for solving the coupled system (1.2) [27].
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It was found that, contrary to traditional finite-volume wisdom and in agreement with
extensive experience in the finite-element context, the saddle-point problem (1.2) can be
efficiently solved using standard multigrid techniques for the velocity and pressure sub-
problems, for a broad range of parameters. Here we improve and generalize the precon-
ditioners developed in Ref. [27] to account for variable density and variable viscosity, as
well as to robustly handle small or zero Reynolds number (steady) flows. Our primary
motivation for this work is the development of semi-implicit integrators for the low Mach
number equations of fluctuating hydrodynamics for multicomponent fluid mixtures [14].
For these applications it is important to treat the viscosity implicitly (including the limit
of steady Stokes flow [13]) due to the large separation of time scales between momentum
and mass diffusion (i.e., large Schmidt number). In order to properly include thermal
fluctuations with implicit viscous handling it is also necessary to use a coupled Stokes
formulation instead of split (projection method) approaches [12, 50].

The preconditioners we investigate here numerically are drawn from the large finite-
element literature on Stokes solvers [4, 5, 18–22, 34, 35, 37–40, 42, 49]. We will not attempt
to review the extensive finite-element literature on preconditioners for Stokes flow here;
instead, we will point out the similarities and differences with prior work for each of
the preconditioners that we study. When necessary, we generalize the existing precondi-
tioners to finite Reynolds numbers (unsteady Stokes equations) and to variable density
and variable viscosity problems. We investigate several alternative preconditioners that
solve the velocity and pressure subproblems in different orders. In the finite-element con-
text, variable-viscosity steady Stokes solvers based on several of the preconditioners we
investigate here have been developed by several groups [8, 25], and have already been
successfully scaled to massively-parallel architectures and very difficult large-contrast
geophysical problems. In the finite-volume context, the work most closely related to our
work is Ref. [24], which focuses on steady Stokes flow in the presence of large viscosity
contrast (i.e., discontinuities) for geodynamic applications. Notably, both our work and
the work presented in Ref. [24] are based on a staggered finite-volume discretization and
geometric multigrid solvers.

Our primary contribution in this work is that we investigate in detail the computa-
tional performance of a collection of four standard preconditioners over a broad range of
parameters in the context of a specific but very efficient (in terms of number of degrees
of freedom per grid cell) finite-volume discretization. By carefully designing and opti-
mizing the parameters for all of the key components of the solvers, ranging from the ge-
ometric multigrid smoothers to the restart frequency of the GMRES solver, we construct
a complete solver that can readily be employed to construct novel unsplit temporal in-
tegrators for finite-volume (conservative) spatial discretizations of the equations of low
Mach and incompressible flow dynamics. Importantly, these unsplit schemes can use
the same building blocks (e.g., geometric multigrid solvers and high-resolution advec-
tion techniques) and achieve a similar computational complexity as traditional projection
methods, as we will demonstrate in future work.
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The preconditioners that we investigate are built using two crucial subsolvers. The
first of these is a linear solver for the inviscid problem





ρ

(
un+1−un

∆t

)
+∇pn+1= f n+1,

∇·un+1= gn+1,

(1.3)

the solution of which requires solving a density-weighted pressure Poisson equation

−∆t∇ ·
(

ρ−1
∇pn+1

)
= gn+1−∇·

(
un+ρ−1 f n+1

∆t
)

.

For the staggered-grid finite-volume discretization we employ here, this Poisson prob-
lem can efficiently be solved using standard geometric multigrid techniques [1]. The
second subsolver required by the preconditioners is a linear solver for the unconstrained
variable-coefficient velocity equation,

ρ

(
un+1−un

∆t

)
=∇·τ

(
un+1

)
+ f n+1. (1.4)

Note that both (1.3) and (1.4) use the same boundary conditions for velocity as the cou-
pled problem, and that natural boundary conditions are required for the pressure when
solving (1.3) on a staggered grid. For constant viscosity incompressible flow ∇·τ(u)=
µ∇2u and therefore (1.4) is a system of d uncoupled Helmholtz equations, where d is the
dimensionality. These can be solved efficiently using standard geometric multigrid tech-
niques. For variable viscosity flows or when g 6= 0 the different components of velocity
are coupled. Here we develop an effective geometric multigrid method for solving (1.4)
that generalizes the classical red-black coloring smoother for the scalar Poisson equa-
tion. Since the solution of either (1.3) or (1.4) is itself a costly iterative process, it is cru-
cial that the preconditioners require only approximate subsolvers. More precisely, pre-
conditioning should only require the application of linear operators that are spectrally-
equivalent [20] to the exact solution operators for (1.3) or (1.4). Here we use one or a few
cycles of geometric multigrid as approximate solvers for these subproblems.

The preconditioners investigated in this work can be easily generalized to other spa-
tial discretizations and boundary condition types by simply modifying the approximate
subsolvers for (1.3) and (1.4). For example, boundary conditions that couple pressure
and viscous stress can be handled by imposing approximate boundary conditions for the
subsolvers. In Ref. [27], at physical boundaries on which normal tractions (normal com-
ponents of the stress tensor) are prescribed, Neumann conditions are imposed on the nor-
mal velocity component when solving (1.4) and Dirichlet conditions are imposed for the
pressure when solving (1.3). For adaptively-refined meshes [26,28], multilevel geometric
multigrid techniques can be used to solve the pressure and velocity subproblems [1, 28].
To the best of our knowledge, however, there is presently no (LBB) stable conservative
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discretization of the steady Stokes equations on block-structured multi-resolution stag-
gered grids; existing schemes do not maintain at least one of the key properties of uni-
form discretization: conservation, uniform solvability, and symmetry. We therefore do
not consider here non-uniform staggered grids and focus our attention on uniform stag-
gered grids.

The organization of this paper is as follows. In Section 2, we introduce several precon-
ditioners based on approximating the inverse of the Schur complement. In Section 3 we
specialize to a particular staggered-grid second-order finite-volume discretization and
give details of our numerical implementation. In Section 4 we perform a detailed study
of the efficiency and robustness of the various preconditioners, and select the optimal val-
ues for several algorithmic parameters. Finally, we offer some conclusions in Section 5,
and then give several technical derivations in an extensive Appendix.

2 Preconditioners

In this section we present several preconditioners for solving the saddle-point linear sys-
tem (1.2) that arises after spatio-temporal discretization of (1.1). Much of the discussion
presented here has already appeared scattered through many diverse works in the liter-
ature; for the benefit of the reader we provide a condensed but complete summary of the
key derivations. For increased generality, we write this system in the form,

M

(
xu

xp

)
=

(
A G
−D 0

)(
xu

xp

)
=

(
bu

bp

)
, (2.1)

where (xu, xp)T denote the velocity and pressure degrees of freedom, (bu,bp)T are the
velocity and pressure right hand sides, D denotes a discrete divergence operator, and G
is a discrete gradient operator. Note that for the staggered-grid discretization that we
describe in Section 3, the gradient and divergence operators are negative adjoints of each
other for periodic, no-slip, and free-slip boundary conditions, G = (−D)∗, where star
denotes adjoint, making M=M⋆ a self-adjoint matrix (non-symmetric saddle-point sys-
tems can also be considered [10]). Here the linear velocity operator A=θρ−Lµ combines
inertial and viscous effects, where θ is a parameter that is zero for steady Stokes flow,
and θ ∼∆t−1 for unsteady flow. The operator ρ is a mass density matrix (distinct from
the standard finite element mass matrix), such that ρxu is a spatially-discrete (conserved)
momentum field. The viscous operator is denoted with Lµ, with Lµu being a spatial
discretization of ∇ ·τ(u).

The saddle-point problem (2.1) can formally be solved by using the inverse of the
Schur complement,

S−1=
(
−DA−1G

)−1
,

to obtain the exact solution for the pressure,

xp =−S−1(DA−1bu+bp), (2.2)
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and for the velocity degrees of freedom,

xu =A−1(bu−Gxp)=A−1bu+A−1GS−1(DA−1bu+bp). (2.3)

These formal solutions are not useful in practice because the Schur complement can-
not be formed explicitly for large three-dimensional grids, nor inverted efficiently. In
Ref. [24], the authors investigate evaluating the action of S−1 in (2.2) by an outer Krylov
solver, which itself relies on evaluating the action of A−1 in an inner (nested) Krylov
solver. We do not investigate this approach here and instead focus on what the authors
of Ref. [24] call the “fully coupled preconditioned approach”, in which an approxima-
tion of the Schur complement solution is used to construct an effective preconditioner
for a Krylov solver applied to the saddle-point problem (2.1). The key part in designing
preconditioners for (2.1) is approximating the (inverse of the) Schur complement, specif-
ically, constructing an operator S−1 that is spectrally-equivalent to S−1 [19].

To motivate the approximation of S−1, let us consider the case of constant viscosity µ0

and constant density ρ0. In this case A= θρ0 I−µ0L, where I denotes an identity matrix
and L is a discrete vector Laplacian operator, constructed taking into account the imposed
velocity boundary conditions. We then have

S−1=
[
−D(θρ0 I−µ0L)−1 G

]−1
≈
[
(−DG)

(
θρ0 I−µ0Lp

)−1
]−1

=−θρ0L−1
p +µ0I, (2.4)

where Lp=DG denotes a scalar (pressure) discrete Laplacian operator, and have assumed
the commuting property LG ≈ GLp, which is an exact identity for the staggered grid
discretization applied to periodic systems. This approximation to the Schur complement
inverse has been used in the finite-element context in Ref. [36] and in the finite-volume
approach in Ref. [27]; an in-depth discussion of the use of approximate commutators for
constructing preconditioners can be found in Ref. [17].

Here we generalize (2.4) to variable density and viscosity through a simple construc-
tion. The basic idea is that the first part of the Schur complement approximation, θρ0L−1

p ,

corresponds to the inviscid limit. For variable density, this term becomes θL−1
ρ , where

Lρ =Dρ−1G

is a discretization of the density-weighted Poisson operator ∇·ρ−1∇ that also appears
in traditional variable-density projection methods [1]. Therefore, for variable-density,
constant-viscosity flow, ∇·τ=µ0∇

2u, and we employ the approximation

S−1≈S−1=−θL−1
ρ +µ0I. (2.5)

The term µ0 I in (2.4) is an analogue of the viscous operator Lµ that acts on pressure-
like degrees of freedom instead of velocity-like degrees of freedom. This has to be con-
structed on a case-by-case basis, and in the constant viscosity setting it corresponds to the
viscous pressure-correction term proposed by Brown, Cortez and Minion [7] in the con-
text of second-order projection methods. For incompressible flow, τ(u)=µ[∇u+(∇u)T],
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the Fourier-space calculation described in Appendix A suggests replacing the term µ0 I
with 2µ, where µ is a diagonal matrix of viscosities corresponding to each pressure degree
of freedom. This gives the Schur complement inverse approximation

S−1≈S−1=−θL−1
ρ +2µ, (2.6)

which is called the “local viscosity” preconditioner in Ref. [24]. Note however that the
prefactor of two suggested by the analysis in Appendix A is not included in Eq. (36) in
Ref. [24]. When bulk viscosity is included, τ(u)=µ[∇u+(∇u)T]+(γ− 2

3 µ(∇ ·u))I, we
take

S−1≈S−1=−θL−1
ρ +

(
γ+

4

3
µ

)
, (2.7)

where γ is the diagonal matrix of bulk viscosities. As we demonstrate in Appendix A,
these approximations are exact for periodic systems if the density and viscosity are con-
stant. In all other cases they are approximations that are expected to be good in regions
far from boundaries where the coefficients do not vary significantly. Our numerical ex-
periments support this intuition.

We have investigated the alternative approximations

S−1≈−θL−1
ρ −L−1

ρ Dρ−1Lµρ−1GL−1
ρ , (2.8)

as well as
S−1≈−θL−1

ρ −L−1
p

(
DLµG

)
L−1

p ,

which is similar to the so-called BFBt preconditioner of Elman [19] in the steady-state
case, and which is also investigated in Ref. [24]. These approximations utilize the veloc-
ity boundary conditions since they involve the viscous operator Lµ, unlike the pressure-
space viscous operator in (2.6) which does not make use of the velocity boundary con-
ditions. We have observed similar behavior for the more expensive approximation (2.8)
as with the simpler and significantly more efficient approximation (2.6). We therefore do
not investigate BFBt-type preconditioners in this work.

As explained in Appendix B, the spectrum of the preconditioned operators for the
preconditioners we consider next is determined by the spectrum of S−1S. In that ap-
pendix, we demonstrate with a combination of analytical techniques and numerical com-
putation that this operator has a very clustered spectrum even in the presence of non-
trivial boundary conditions and large variations in viscosity.

2.1 Projection preconditioner

In the first preconditioner we consider, which we will denote with P1, we use one step
of the classical projection method [3, 11, 27] as a preconditioner. In P1, we use (2.2) to
estimate the pressure, and make a commuting assumption in (2.3),

A−1GS−1=A−1G(−DA−1G)−1≈−A−1Aρ−1GL−1
ρ =−ρ−1GL−1

ρ ,
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which gives the velocity estimate

xu ≈A−1bu−ρ−1GL−1
ρ (DA−1bu+bp). (2.9)

Note that this velocity estimate (2.9) satisfies the divergence condition exactly, Dxu=−bp.

More precisely, xu is the L2 projection of the unconstrained velocity estimate A−1bu onto
the divergence constraint.

In practical implementations, the exact subproblem solvers need to be replaced by

approximations. Specifically, A−1 is approximated by the inexact velocity solver Ã
−1

,

L−1
ρ is approximated by the inexact pressure Poisson solver L̃

−1
ρ , and S−1 is replaced by

S̃−1, which is an approximation to the approximate Schur complement inverse S−1 given
by (2.6) for incompressible flow. In summary, for the variable-coefficient Stokes problem,
the projection preconditioner P1 is defined by the block factorization

P−1
1 =

(
I ρ−1GL̃

−1
ρ

0 S̃−1

)(
I 0

−D −I

)(
Ã
−1

0

0 I

)
. (2.10)

This factorization clearly shows the main steps in the application of the preconditioner.

First, a velocity subproblem is solved inexactly (right-most block) to compute x∗u= Ã
−1

bu.
Second, bc = Dx∗u+bp is computed (middle block). Third, a Poisson problem is solved

approximately to compute L̃
−1
ρ bc and, lastly, the pressure and velocity estimates are eval-

uated (first block). For constant-coefficient periodic problems with exact subsolvers, the
projection preconditioner is an exact solver for the coupled Stokes equations since both
(2.4) and (2.9) are exact.

For the constant viscosity and density Stokes problem, a projection preconditioner
very similar to P1 was first proposed by one of us in Ref. [27]. In this work we generalize
the projection preconditioner to the case of variable viscosity and density. Even in the
constant-coefficient case, there is a small but important difference between P1 and the
previous projection preconditioner in Ref. [27], which uses the following approximation
of the Schur complement inverse,

S−1≈S̃−1=−
(
θρ0 I−µ0Lp

)
L̃
−1
p ,

rather than the approximation (2.5) used here, S̃−1=−θρ0 L̃
−1
p +µ0 I, which we have found

to give a slightly more efficient solver. The two approximations are identical when exact

Poisson solvers are used, L̃
−1
p =L−1

p , but not when an approximate solver is employed.

2.2 Lower triangular preconditioner

For our second preconditioner, which we denote with P2, we use (2.2) for the pressure
estimate, but the velocity estimate takes the simpler form

xu ≈A−1bu, (2.11)
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which is obtained by discarding the second part in (2.3). If we further approximate the

matrix inverses with inexact solves, namely, replacing A−1 by Ã
−1

, L−1
ρ by L̃

−1
ρ , and S−1

by S̃−1, the second preconditioner is given by the block factorization

P−1
2 =

(
I 0

0 −S̃−1

)(
I 0

D I

)(
Ã
−1

0

0 I

)
. (2.12)

By combing all the terms in the right hand side of (2.12), we see that P2 is actually an
approximation of the inverse of the lower triangular preconditioner previously studied
by several other groups [9, 34, 35, 37, 38],

P−1
2 ≈

(
A 0

−D −S

)−1

. (2.13)

Notice that for steady Stokes flow, θ=0, the application of P−1
2 does not require any pres-

sure Poisson solvers, unlike the projection preconditioner. Therefore, a single application
of P−1

2 can be significantly less expensive computationally than an application of P−1
1 .

For unsteady flows P1 and P2 involve nearly the same operations and applying them has
similar computational cost.

2.3 Upper triangular preconditioner

Alternatively, one can assume DA−1bu ≈0 to obtain xp=−S−1bp and

xu=A−1(bu+GS−1bp).

Replacing the exact solvers with inexact solvers, we obtain our third preconditioner in
block factorization form,

P−1
3 =

(
Ã
−1

0

0 I

)(
I −G
0 I

)(
I 0

0 −S̃−1

)
, (2.14)

which is exactly the same as the “fully coupled” approach with the “local viscosity” pre-
conditioner studied in Ref. [24] and also the block-triangular preconditioner of Ref. [25],
generalized here to time-dependent problems. If we combine all the terms in the right
hand side of (2.14), then we see that P3 is actually an approximation of the inverse of the
upper triangular preconditioner [9, 34, 35, 37, 38],

P−1
3 ≈

(
A G
0 −S

)−1

. (2.15)

The computational cost of applying P−1
3 is very similar to that of applying P−1

2 .
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2.4 Other preconditioners

In addition to the three main preconditioners (projection, lower and upper triangular)
we study here, we have investigated some other preconditioners. The simplest Schur-
complement based preconditioner one can construct is the block diagonal preconditioner
[9, 35, 37, 38]

P−1
4 =

(
Ã
−1

0

0 −S̃−1

)
. (2.16)

This preconditioner has the lowest computational cost of all the preconditioners per
Krylov iteration, but it also yields the poorest approximation to the exact solution (2.2)-
(2.3). Note, however, that the use of a diagonal preconditioner can make the precondi-
tioned operator symmetric and thus allow for the use of more efficient (short-recurrence)
Krylov solvers such as MINRES. This is exploited in Ref. [8] to construct a robust and
highly-scalable finite-element discretization of the variable-viscosity steady Stokes equa-
tions, using a single cycle of algebraic multigrid for a Laplacian approximation to A as
an approximate velocity solver.

In Appendix B, we show that P1, P2 and P3 all give the same spectrum for the precon-
ditioned linear operator. It is also well-known that P1, P2, P3, and P4 are all spectrally-
equivalent if exact solvers are used [20]. Furthermore, if an exact Schur complement
inverse is employed, it can be shown for P2, P3, and P4 that any Krylov subspace itera-
tive method with a Galerkin property will require only a small number of iterations (two
or three) to converge to the exact answer [39].

As an alternative approximation to (2.2)-(2.3) that is more accurate than the previous
approximations, we consider a fifth preconditioner closely-related to the Uzawa method
[33], denoted by P5. The action of the inverse of this preconditioner P−1

5 cannot easily be
written in block-factorization form so we present in the form of pseudo-code:

1. Solve for x∗u= Ã
−1

bu using multigrid with initial guess 0.

2. Estimate pressure as xp≈−S̃−1(Dx∗u+bp).

3. Estimate velocity as xu ≈ Ã
−1
(bu−Gxp) using a multigrid solver, starting with x∗u

as an initial guess.

If exact solvers are employed the only approximation made in P5 is the approximation

S−1≈S̃−1, and as such we expect it to be the best approximation to M−1. It is, however,
also the most expensive of the five preconditioners because it involves two applications

of Ã
−1

. Our goal will be to investigate how well these preconditioners perform in practice
with inexact subsolvers.

3 Numerical implementation

In this section we specialize the relatively general preconditioners from the previous
section to a specific second-order conservative finite-volume discretization of the time-
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dependent Stokes equations on a uniform rectangular grid. We do not discuss here the
inclusion of advection in the full Navier-Stokes equations. Schemes that handle advec-
tion explicitly using a non-dissipative spatial discretization are described in detail in
Refs. [14, 50], and Ref. [27] describes a particular higher-order upwind scheme for uni-
form staggered-grids.

3.1 Staggered-grid discretization

For our numerical investigations of the various preconditioners we employ the well-
known staggered-grid or MAC discretization of the Stokes equations [31, 32]. This is a
conservative discretization that is uniformly div-stable [41, 48]. The scheme defines the
degrees of freedom at staggered locations. Specifically, scalar variables including pres-
sure and density are defined at cell centers, while components of vector variables includ-
ing velocity components are defined at the corresponding faces of the grid [27, 50]. For
illustration, we assume that the domain Ω is rectangular and there are nx cells along the
x direction and ny cells along the y direction, with periodic, no-slip (e.g., u= 0 along a
boundary) or free-slip (e.g., v = 0 and ∂u/∂y = 0 along the south boundary) boundary
conditions specified at each of the domain boundaries. For simplicity, we further assume
that the grid spacing along the different directions is constant, hx =hy =h.

The divergence of u=(u,v)T is approximated at cell centers by Du=Dxu+Dyv with

(Dxu)i,j =h−1
(

ui+1/2,j−ui−1/2,j

)
, (Dyv)i,j =h−1

(
vi,j+1/2

−vi,j−1/2

)
.

The gradient of p is approximated at the x and y edges of the grid cells (faces in three
dimensions) by Gp=(Gx p, Gy p)T with

(Gx p)i−1/2,j=h−1
(

pi,j−pi−1,j

)
, (Gyp)i,j−1/2

=h−1
(

pi,j−pi,j−1

)
.

For periodic domains or where a homogeneous Dirichlet condition is specified for the
normal component of velocity at physical boundaries, the staggered discretization satis-
fies D=−G∗. Note that DG=Lp, where Lp is the standard (five-point in two dimensions,
seven-point in three dimensions) centered finite difference Laplacian.

For constant viscosity, the finite difference approximation to the vector Laplacian ∇
2u

is denoted as Lu=(Lxu, Lyv). In the interior of the domain, ∇2u is discretized using the
standard five-point discrete Laplacian. In the presence of physical boundaries, Lxu is
defined at all interior edges/faces where u are defined, and Lyv is defined at all interior
edges/faces where v are defined. The finite-difference stencils for tangential velocities
next to no-slip and free-slip boundaries are modified to account for the boundary con-
ditions, as described in Refs. [27, 50]. Note that for constant viscosity, if one uses the
Laplacian form of the viscous term, the different components of velocity are uncoupled.

When the viscosity is not a constant, the strain tensor form of the viscous term is
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needed, for which

Lµu=∇·τ(u)=


 2 ∂

∂x

(
µ ∂u

∂x

)
+ ∂

∂y

(
µ ∂u

∂y +µ ∂v
∂x

)

2 ∂
∂y

(
µ ∂v

∂y

)
+ ∂

∂x

(
µ ∂v

∂x +µ ∂u
∂y

)

. (3.1)

The discretization of ∇·τ(u) is constructed using standard (staggered) centered second-
order differences to give the discrete viscous operator Lµ. Note that even for constant
viscosity, there is coupling between the velocity components in (3.1). For the staggered
discretization that we employ here, it can be shown that for constant viscosity µ0, the
viscous operator degenerates to a Laplacian, Lµu = µ0Lu, if Du = 0. That is, for con-
stant viscosity incompressible flow the solution of the Stokes system is not affected by
the choice of the form of the viscous term. (By contrast, in fractional step methods, the
unprojected velocity and therefore the projected velocity is affected by this choice.) How-
ever, the Stokes solver is in general affected by the choice of the viscous term, even for
constant viscosity. As described in Ref. [14], centered differences for the viscous fluxes
that require values outside of the physical domain are replaced by one-sided differences
that only use values from the interior cell bordering the boundary and boundary values.
The tangential momentum flux is set to zero for any faces of the corresponding control
volume that lie on a free-slip boundary, and values in cells outside of the physical domain
are never required. The overall discretization is spatially globally second-order accurate.

We build the discrete velocity operator A = θρ−Lµ from the above centered finite-
difference operators. We assume that the density ρ is specified at the cell centers. The
density matrix ρ is constructed by defining the discrete momentum density ρu at the
cell faces, where the corresponding velocity components are defined. Here we follow
Ref. [14] and average the density from cell centers to cell faces,

(ρu)i+1/2,j=

(
ρi,j+ρi+1,j

2

)
ui+1/2,j and (ρu)i,j+1/2

=

(
ρi,j+ρi,j+1

2

)
vi,j+1/2

,

giving a diagonal density matrix ρ with the interpolated face-centered densities along
the diagonal. We will assume here that the shear µ and bulk γ viscosities are specified
at the cell centers; typically they are an explicit function of other scalar variables such
as density, temperature, and/or composition. The matrices µ and γ that appear in the
approximation to the Schur complement (e.g. Eq. (2.7)) are diagonal matrices containing
the cell-centered values of the shear and bulk viscosities. The discretization of the vis-
cous operator Lµ requires a shear viscosity at both cell-centers and nodes (edges in three
dimensions). The value of µ at a node is set to be the average of the four neighboring
cell-centered values [14]. Note that the Schur complement approximation uses only the
cell-centered and not the node-centered viscosities.

3.2 Krylov solver

Having defined the discrete operators appearing in the Stokes system (2.1), we briefly
discuss some issues that arise when solving this saddle-point problem using an itera-
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tive Krylov solver. The basic operation required by the Krylov solver is computing Mx,
which amounts to a straightforward direct evaluation of the appropriate finite-difference
stencils at every interior face and every cell center in the computational grid.

Application of any of the preconditioners requires implementing approximate solvers

for the pressure and velocity subproblems (i.e., application of L̃
−1
ρ and Ã

−1
). Here we

employ geometric multigrid techniques to implement these solvers. For the cell-centered
pressure solver we use standard variable-coefficient Poisson multigrid solvers [1]. For the
face-centered velocity solver we develop a vector variant of a standard scalar Helmholtz
solver based on a generalized red-black Gauss-Seidel smoother. The details of the multi-
grid algorithms are given in Appendix C. Our implementation is based on the Fortran
version of the BoxLib library [45].

Note that because the preconditioners in Krylov methods are applied to a residual-
correction system, zero is an appropriate initial guess for the multigrid subsolvers. Note
also that for certain choices of boundary conditions the pressure subproblem has a null
space of constant vectors. Similarly, for periodic steady-state problems the velocity equa-
tion has a (d-dimensional) null-space of all constant velocity fields. In these cases some
care is needed in the implementation of the preconditioners to ensure that the null-space
is handled consistently and the mean pressure and momentum are kept constant at cer-
tain prescribed values (e.g., zero). When non-homogeneous velocity boundary condi-
tions are specified, the viscous operator is an affine operator because the viscous stencils
near the boundary use the specified boundary values. Because Krylov solvers require
a linear rather than an affine operator, we apply the Krylov solver to the homogeneous
form of the Stokes problem by subtracting the boundary terms in a pre-processing step.

Here we employ left preconditioning and apply the iterative solver to the precondi-
tioned system P−1Mx=P−1b. The convergence criterion for the Krylov solver is there-
fore most naturally expressed in terms of either the absolute or relative reduction in the
magnitude of the preconditioned residual rP = ‖P−1(Mx−b)‖2. A more robust alterna-
tive is to base convergence criteria on the value of the unpreconditioned (true) residual
r=‖Mx−b‖2. For the problems studies here we observe r and rP to exhibit similar con-
vergence for well-scaled problems.

3.3 Rescaling of the linear system

Another issue that arises when solving saddle-point problems is that of scaling of the
system to minimize the loss of floating point precision occurs when adding the differ-
ent terms. This is particularly important when the equations are solved in dimensional
form (with physical units), but can also be important even when the equations are non-
dimensionalized. We consider rescaling the velocity equations by some constant c and
rescaling the pressure unknowns by the same factor, to obtain the rescaled system

(
cA G
−D 0

)(
xu

cxp

)
=

(
cbu

bp

)
. (3.2)
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Intuitively, a well-scaled Stokes system is one in which both velocity-like and pressure-
like unknowns have elements of similar typical magnitude. In order not to lose precision
when evaluating the left-hand-side of the velocity equation, we would like the viscous
cAxu and pressure Gxp contributions to have similar magnitude. This suggests choosing
cµ0h−2 ∼ h−1, giving c ∼ h/µ0, where µ0 is the typical magnitude of viscosity. Numer-
ical experiments confirm that rescaling the viscosity from a typical value µ0 to cµ0 ∼ h
can dramatically improve the numerical conditioning of the Stokes system. Note that no
rescaling of the divergence constraint is necessary since Dxu has magnitude ∼h−1 as the
rest of the terms. Similarly, using equal weighting for velocity and pressure residuals in
the residual-space inner product will not pose any problems because the two components
of the residual cbu and bp already have similar magnitude. If there is a very broad range
of viscosities present in the problem, a uniform rescaling of the equations will not be suf-
ficient and diagonal scaling matrices should be used to rescale the velocity and pressure
separately, see Eq. (31) in Ref. [24] for a specific formulation. To avoid loss of accuracy, in
extreme cases extended precision arithmetic may need to be used in the solver [24].

In the numerical experiments reported in the next section we utilize dimensionless
well-scaled values (h=1, µ0=1, ρ0 =1) for all of the coefficients, so that no explicit rescal-
ing of the unknowns or the equations is required. We have verified that after the rescaling
(3.2) we get similar results for other choices of reference values for the viscosity and grid
spacing. We emphasize that if the rescaling is not applied (i.e., c = 1 is used), multiple
linear algebra issues arise when solving the Stokes problem. For example, GMRES may
not converge, or if it converges, there may be a large difference between the precondi-
tioned and unpreconditioned residuals, and lastly, the computed solution may have a
large error due to ill-conditioning.

4 Results

In this section we perform detailed numerical experiments to determine the most robust
and efficient preconditioner over a broad range of parameters. Because the precondi-
tioned system is not necessarily symmetric, as a Krylov solver for the saddle-point sys-
tem (2.1) we use the left-preconditioned GMRES (Generalized Minimal Residual) method
with a fixed restart frequency m [46, 47]. A more robust and flexible method is FGMRES
(Flexible GMRES). In particular, FGMRES allows the use preconditioners that are not
necessarily constant linear operators (e.g., another Krylov solver or a variable number of
multigrid cycles). A notable drawback of FGMRES is that it requires twice the storage of
GMRES. Since one of our goals is to develop solvers for large-scale calculations, we do
not consider FGMRES here and use the less memory-intensive GMRES method. GMRES
requires the storage of m vectors like x. For a d-dimensional regular grid with N cells, the
memory storage requirement is thus at least (d+1)mN floating-point numbers since there
are d velocity degrees of freedom (DOFs) and one pressure DOF per grid cell. It is there-
fore important to explore the use of restarts to reduce the memory requirements of the
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Krylov solver. For testing purposes, we generate a random x and then compute b=Mx,
with zero velocity along all non-slip boundaries. Similar convergence (not shown) is
observed for other right-hand sides or boundary velocities.

The multigrid algorithms used in the pressure and velocity subsolvers iteratively ap-
ply V cycles, each of which consists of successive hierarchical restriction (coarsening),
smoothing, and prolongation [6]. In our tests, we will use the same constant number
n of V cycles in both the pressure and the velocity solvers. This ensures that the pre-
conditioners are constant linear operators and allows for the use of the GMRES method.
The velocity (vector) multigrid V cycle has a cost very similar to d independent pressure
(scalar) V cycles. Therefore, as a proxy for the CPU cost of a single application of the
preconditioner we will use the number of scalar multigrid cycles. The cost of the pressure

subsolver (application of L̃
−1
ρ ) is n scalar V cycles, and the cost of the velocity subsolver

(application of Ã
−1

) is d·n scalar V cycles. All preconditioners require at least one veloc-
ity solve per application; however, they differ in whether they require a pressure Poisson
solve for steady flow.

A fundamental “easy” test problem we employ is constant coefficient steady Stokes
flow in a periodic domain or a domain with no-slip condition along all boundaries. As
a more challenging variable-coefficient test problem we use a bubble test, in which we
embed a sphere (disk in two dimensions) of one fluid in another fluid with different vis-
cosity and density. The bubble is placed in the center of a cubic (square) domain of length
nc cells with no-slip boundaries along all domain boundaries. For the bubble problem,
the viscous stress is taken to be τ(u) = µ[∇u+(∇u)T], and the diagonal elements of
the viscosity matrix µ and the density matrix ρ at cell centers are generated from the
spatially-dependent functions µ(x)=µ0 f (x;rµ) and ρ(x)=ρ0 f (x;rρ) respectively, where

f (x;r)=
1

2
(r+1)+

1

2
(r−1)tanh

(
d(x,Γ)

ǫ

)
+0.1R. (4.1)

Here rµ and rρ are the viscosity and density contrast ratios, Γ is the interface, a sphere
of radius L/4 placed at the center of a cube with side of length L = nch, d(x,Γ) is the
distance function to the interface, ǫ=h is a smoothing width used to avoid discontinuous
jumps in the coefficients, and R is a random number uniformly distributed in (0,1). Here
we focus on the case of no bulk viscous term; we have also done tests including a bulk
viscous term and observed similar behavior. Unless otherwise indicated, the bubble test
is steady-state (θ=0), and we use a contrast ratio rµ = rρ =100; we have observed similar
behavior with a ratio of 1000, at least for sufficiently smooth jumps (i.e., sufficiently large
ǫ). It is important to note that the types of preconditioners we use here have been shown
to effective even with much larger viscosity contrasts (∼106) in the context of geophysical
flow problems [8,24,25]. For the target applications we have in mind, such as phase-field
models of fluid mixtures, viscosity contrasts of 102−103 are more relevant (for example,
the viscosity ratio of water and air is only 55, while the density ratio is 1000).
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4.1 Multigrid subsolvers

Before comparing the different preconditioners, we optimize the key parameters in the
multigrid pressure and velocity approximate subsolvers, specifically, the number of
smoothing (relaxation) sweeps per V cycle and the number of V cycles per application
of the preconditioner.

4.1.1 The effect of the number of smoothing sweeps

One of the key aspects of geometric multigrid is the smoother used to perform relax-
ation of the error at each level of the multigrid hierarchy. As explained in more detail in
Appendix C, we employ a red-black Gauss-Seidel smoother. This ensures that all com-
ponents of the error are damped to some extent for constant-coefficient problems, and,
more importantly, makes the smoother highly parallelizable. The optimal number of
smoothing (relaxation) sweeps to be performed at each multigrid level (we use the same
number of sweeps going down and up the multigrid hierarchy) has to be determined by
numerical experimentation.

In Fig. 1 we show the convergence of the pressure (left panels) and velocity multigrid
solvers (right panels) for constant viscosity but for the stress-tensor form of the viscous
term (3.1). In the upper row we show results in two dimensions, and in the lower row
we show results for three dimensions. Similar results are obtained for different types of
boundary conditions. We see a large increase in the rate of convergence when increasing
the number of smoothing sweeps from one to two, and only a modest increase thereafter.
Since the cost of geometric multigrid is in large part dominated by smoother, henceforth
we use two applications of the smoother at each level of the multigrid hierarchy in each
V cycle.

The speed of convergence of the multigrid iteration for the component solvers is the
standard against which one should measure convergence of the Krylov solver for the
Stokes problem. As we can see in Fig. 1, each V cycle reduces the residual by at least an
order of magnitude, so that only about a dozen V cycles are needed to reduce the residual
to near roundoff. Therefore, a Stokes solver that uses only 10(d+1) scalar multigrid
cycles to reduce the residual by more then 10 orders of magnitude should be considered
excellent.

4.1.2 The effect of the number of multigrid cycles

As detailed in Appendix B, for constant-coefficient Stokes problems with periodic bound-
aries, GMRES will converge in a single iteration with preconditioner P1 and in two iter-
ations with P2 and P3. The same holds for any choice of boundary condition for the
time-dependent case in the inviscid limit. However, in the majority of cases of interest,
multiple GMRES iterations will be required even if the subsolvers are exact. It is there-
fore important to explore the use of inexact pressure and velocity solvers. Specifically, it
is important to determine the optimal number of multigrid V cycles per application of the
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Figure 1: The log of the relative residual for the pressure (left) and velocity (right) multigrid solvers as a
function of the number of multigrid V cycles, for different numbers of smoothing (relaxation) sweeps. A

constant coefficient steady Stokes problem is solved on a 5122 grid in two dimensions (top panels), and 1283

grid in three dimensions (bottom panels), with no-slip conditions at all domain boundaries.

preconditioner. We use the preconditioner P1 for these tests; similar results are observed
for all of the preconditioners.

In the left panels of Fig. 2 we show the convergence of the relative preconditioned
residual, as estimated by the GMRES algorithm, for steady Stokes problems in two and
three dimensions, as a function of the total number of scalar V cycles. We recall that the
number of V cycles is a good proxy for the total computational effort, so that the most
rapid convergence in these plots corresponds to the most efficient solvers. In the top left
panel we show results for constant viscosity but for the stress-tensor form of the viscous
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Figure 2: The relative residual (on a log scale) as a function of the total number of scalar multigrid V cycles,
for different number of multigrid cycles per application of the pressure and velocity subsolvers in preconditioner
P1. GMRES convergence is shown in the left panels, and pressure (squares) and velocity (triangles) multigrid

convergence is shown in the right panels, in both two (5122 grid, empty symbols) and three (1283 grid, filled
symbols) dimensions. Restarts are not employed in the GMRES solver. The top panels show results for a
constant-coefficient periodic steady-state Stokes problem, and the bottom panels show results for the bubble
test problem.

term (3.1) for a periodic system, and in the bottom left panel we show results for the
variable-viscosity bubble problem described earlier. In the corresponding right panels
we show the convergence of the pressure and velocity multigrid subsolvers on the same
problem, to serve as a reference point for what one may expect for a projection-like split
solver.

The top left panel in Fig. 2 shows that for periodic constant coefficient problems there
is no significant difference between using an exact subsolver (in effect, many V cycles per
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application of the preconditioner), and using only a single V cycle in the preconditioner
but doing more GMRES iterations. This is not unexpected because the standard multigrid
algorithm takes the form of a simple Richardson iterative solver, and we expect GMRES
to perform at least as well as Richardson iteration. Note that for more difficult Poisson
problems, such as problems with large jumps in the coefficients, it is well-known that a
Krylov solver preconditioned with multigrid is more robust than multigrid alone, see for
example the discussion in Ref. [24].

In the bottom left panel in Fig. 2 we show the convergence of GMRES for the variable-
coefficient bubble problem, which is typical of the behavior we observe when there are
non-periodic boundary conditions or variable coefficients. Similar behavior is observed
for the other preconditioners (not shown). The results clearly demonstrate that when
using exact subsolvers in the preconditioner does not yield an exact solver for the Stokes
problem, the extra cost of performing more than a single V cycle of multigrid does not pay
off in terms of overall efficiency. The optimal rate of convergence is observed when using
only a single V cycle in the preconditioner. We have observed no advantage to using a
different number of cycles in the pressure and velocity solvers, except for nearly inviscid
problems where performing more than one pressure cycle may be somewhat beneficial.
By comparing the left and right panels, we see that when using a single multigrid cycle
in the preconditioner the total number of scalar V cycles is at most 2-3 times larger than
that used in fractional step (projection) methods (for example, ∼ 50+15 = 65 in three
dimensions for projection methods as seen in the right panel, and ∼170 cycles for coupled
solver as seen in the left panel).

Based on these observations, henceforth we use only a single multigrid cycle in the
subsolvers employed by the preconditioners.

4.2 Comparison of preconditioners

Having empirically determined the optimal settings for the pressure and velocity sub-
solvers, we now turn to exploring the performance of the different preconditioners. We
begin by settling an issue regarding the proper choice of sign in the upper/lower trian-
gular and block-diagonal preconditioners.

4.2.1 The effect of the sign of Schur complement

In the literature [34, 39], the following Schur complement based preconditioners have
been proposed and studied,

P±=

(
A 0

−D ±(−DA−1G)

)
,

where the sign of the lower diagonal block can be either positive or negative. It was
proven that T+=P−1

+ M satisfies (T+−I)(T++I)=0 and T−=P−1
− M satisfies (T−−I)2=0

[34, 39]. If a block-diagonal preconditioner such as P4 is used, by changing the sign it is



M. Cai et al. / Commun. Comput. Phys., 16 (2014), pp. 1263-1297 1283

possible to either make the preconditioned operator symmetric but indefinite (allowing
the use of methods such as MINRES), or non-symmetric but positive semi-definite [23].

Because the GMRES method possesses a Galerkin property [16], the total number of
GMRES iterations is equal to the degree of the characteristic polynomials of the precon-
ditioned systems. Therefore, using both P−1

+ M and P−1
− M, GMRES converges in 2 itera-

tions if the inverses of A and the Schur complement are exact [39]. However, when inex-
act subsolvers are employed, we observe significant difference between the two choices
of the sign of the Schur complement. Our numerical results (not shown) indicate that
the preconditioners with “-” sign in front of Schur complement give almost twice faster
GMRES convergence than those with “+” sign. This is consistent with our original choice
in Eqs. (2.13) and (2.15).

4.2.2 The effect of restarts

For large-scale problems, particularly in three dimensions, the memory requirements of
the GMRES algorithm can be excessive. Restarts of the GMRES iteration offer a simple
way not only to avoid convergence stalls, but also to limit the memory use. In Fig. 3 we
compare the behavior of P1, P2 and P3 for restart intervals of 5 or 10 GMRES iterations. In
the left panel of the figure we show the behavior for an inviscid time-dependent bubble
test problem (Lµ = 0, relevant to simulations of large Reynolds number flows) and in
the right panel we show the behavior for a steady Stokes bubble problem (relevant to
small Reynolds number flows). A two dimensional calculation is shown in the figure but
similar results are observed in three dimensions as well. In the left panel of Fig. 3 we
see that the performance of P3 significantly deteriorates for the small restart interval for
the inviscid problem. In the right panel of the figure we see some deterioration of the
convergence for the small restart interval for all three preconditioners.

Based on these results, henceforth we use a restart interval of 10 iterations.

4.2.3 Comparisons of different preconditioners

Having empirically determined the optimal subsolver settings and the optimal sign of
the Schur complement in the lower diagonal block of the preconditioners, we can now
compare the performance of the five preconditioners on the bubble test problem in two
and three dimensions. The GMRES convergence results shown in Fig. 4 demonstrate
that for steady Stokes problem the lower and upper triangular preconditioners P2 and P3

yield the most efficient GMRES solver. The projection preconditioner P1 is seen to give
robust convergence but is less efficient for the steady flow case because it requires one
additional scalar (pressure) V cycle per GMRES iteration. The results in the figure also
clearly show that P4 and P5 are much less efficient. This shows that including an upper
or lower triangular block in the Schur complement based block preconditioners improves
convergence, and also shows that the extra work in P5 over P1 is not justified in terms
of overall efficiency, similarly to how the additional pressure solve in P1 does not yield
improvement.
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Figure 3: The GMRES convergence history for preconditioners P1, P2 and P3 in two dimensions (5122 grid)
for the bubble test problem, for GMRES restart frequency 5 (open symbols) and 10 (filled symbols). In the left
panel we set the viscosity to zero (unsteady inviscid flow) and in the right panel we set density to zero (steady
viscous flow).
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Figure 4: The GMRES convergence history for preconditioners P1, P2, P3, P4 and P5 in two (left panel, 5122

grid) and three (right panel, 1283 grid) dimensions, for the bubble test problem. The restart frequency is 10
GMRES iterations.

Based on these observations, henceforth we do not consider P4 and P5. Since we find
very similar behavior between P2 and P3, while P3 shows poorer behavior with frequent
restarts, henceforth we focus on examining in more detail the performance of P1 and P2.
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4.3 Robustness

In this section we examine in more detail the robustness of P1 and P2 under varying
importance of the viscous contribution to A, and changing problem size.

4.3.1 Effects of viscous CFL number

One of the goals of our study is to design preconditioners that work not just in the steady
state limit but also for time-dependent problems. While one can use a suitably-defined
Reynolds number to measure the importance of the inertial term θρ in A relative to the
viscous term Lµ, the best dimensionless number to use for this is the viscous CFL number

β=
ν0

θh2
=

µ0

θρ0h2
.

A small β ≪ 1 indicates an easier problem where inertial effects dominate, with β = 0
corresponding to inviscid flow. A large β> n2

c indicates a viscous-dominated problem,
where nc is the grid size, with the hardest case being a steady-state problem β→∞. In
Fig. 5 we study the performance of the GMRES Stokes solver for varying viscous CFL
numbers for the bubble test problem, in both two and three dimensions, for both precon-
ditioners P1 and P2. As expected, we see most rapid convergence for β=0, and slowest
convergence for β→∞. For the steady state case θ=0, we do not need a pressure Poisson
solve for P2 and therefore this preconditioner is somewhat more efficient than P1. For
intermediate β’s we get somewhat better convergence for P1, although the difference is
small. In our experience both preconditioners show rather robust behavior for varying

0 20 40 60 80 100 120

−15

−10

−5

0

 

 

log(r
n
/r

0
)

total no. of scalar V−Cycles

P1, CFL=∞
P2, CFL=∞
P1, CFL=102

P2, CFL=102

P1, CFL=1
P2, CFL=1

P1, CFL=10−2

P2, CFL=10−2

P1, CFL=0
P2, CFL=0

0 50 100 150 200

−15

−10

−5

0

 

 

log(r
n
/r

0
)

total no. of scalar V−Cycles

P1, CFL=∞
P2, CFL=∞
P1, CFL=102

P2, CFL=102

P1, CFL=1
P2, CFL=1

P1, CFL=10−2

P2, CFL=10−2

P1, CFL=0
P2, CFL=0

Figure 5: The GMRES convergence history for preconditioners P1 (empty symbols) and P2 (filled symbols)

in two dimensions (left panel, 5122 grid) and in three dimensions (right panel, 1283 grid) for the bubble test
problem. We vary θ to change the viscous CFL number β from the inviscid limit β=0 to the steady limit β→∞.
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viscous CFL number, viscosity and density contrast ratios, and different combinations of
boundary conditions (periodic, free-slip, or no-slip).

4.3.2 Effects of problem size

An important goal in designing solvers suitable for large-scale calculations is to ensure
that the total number of multigrid cycles remains essentially independent of the system
size (or, equivalently, under grid refinement). In Fig. 6 we show convergence histories
of GMRES for varying grid sizes for the steady state bubble problem in both two and
three dimensions. In the left panels we show results for P1 and the right panels for P2.
For this challenging variable-viscosity problem (recall that the viscosity and density con-
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Figure 6: The GMRES convergence history for preconditioners P1 (left panels) and P2 (right panels) in two
dimensions (top panels) and in three dimensions (bottom panels) for the steady-state bubble test problem with
contrast ratio rµ = rρ =100, as the grid size is varied.



M. Cai et al. / Commun. Comput. Phys., 16 (2014), pp. 1263-1297 1287

0 20 40 60 80 100 120

−14

−12

−10

−8

−6

−4

−2

0

 

 

log(r
n
/r

0
)

total no. of scalar V−Cycles

83

163

323

643

1283

2563

5123

0 20 40 60 80 100 120

−14

−12

−10

−8

−6

−4

−2

0

 

 

log(r
n
/r

0
)

total no. of scalar V−Cycles

83

163

323

643

1283

2563

5123

Figure 7: Same as bottom two panels of Fig. 6 but for contrast ratio rµ = rρ=2.

trast ratio is rµ = rρ = 100), P1 shows robust convergence for all of the grid sizes tested
here in both two and three dimensions, requiring no more than 200 multigrid V cycles
(i.e., no more than 200/4 = 50 GMRES iterations) to reduce the residual to essentially
roundoff tolerance even for a 5123 grid. The convergence for preconditioner P2 shows
a very mild deterioration with increasing system size, although the overall efficiency is
still somewhat higher than P1 for all system sizes tested here. We have confirmed that
making the subsolvers nearly exact does not aid the overall GMRES convergence, despite
the substantial increase in the computational cost (data not shown).

It is important to point out that the exact convergence and its behavior on system size
depends sensitively on the details of the multigrid algorithm (e.g., how the bottom level
of the multigrid hierarchy is handled, which is typically affected by parallelization), the
restart interval (here set to 10 iterations), and, most importantly, on the contrast ratio.
In Fig. 7 we show scaling results in three dimensions for a much weaker contrast ratio
rµ=rρ=2. In this case we see little to no effect of the system size on the convergence rate,
and the total number of GMRES iterations is less than 30.

5 Conclusions

We studied several preconditioners for solving time-dependent and steady discrete
Stokes problems arising when solving fluid flow problems on a staggered finite-volume
grid. All of the preconditioners we studied are based on approximating the inverse of the
Schur complement with a simple local operator and have been proposed before, though
often limited to either constant coefficient or steady flow. By suitably approximating the
inverse of the Schur complement in the case of time-dependent variable-viscosity flow
we were able to easily generalize these preconditioners and thus substantially enlarge
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their practical applicability. Herein, we modified and extended a previously proposed
projection-based preconditioner P1 to variable-coefficient flows [27], we generalized a
well-known lower triangular preconditioner P2 to variable-coefficient flow, and we ex-
tended a previously-studied “fully coupled” solver with a “local viscosity” precondi-
tioner [24] to time-dependent flows to obtain an upper triangular preconditioner P3. The
preconditioners investigated here can be generalized to other stable or stabilized spatial
discretizations of the time-dependent Stokes equations, such as finite-element schemes
or adaptive mesh finite-volume discretizations.

Our primary focus was on studying the performance of these preconditioners when
the pressure and velocity subsolvers are performed on a uniform staggered grid using ge-
ometric multigrid algorithms. We showed that optimal convergence rates of the GMRES
Stokes solver were obtained when a single multigrid V cycle is employed as an inexact
subdomain solver. We numerically observed that all three preconditioners are effective
for both time-dependent and steady flow problems, with the lower and upper triangular
preconditioners being more efficient for steady problems and P1 being somewhat more
efficient for time-dependent problems, which is consistent with the findings of Ref. [27].
All three preconditioners were found to handle variable-coefficient problems rather well,
with little deterioration in convergence from the case of constant-coefficient problems.
Our observations are consistent with the conclusion of the authors of Ref. [24], who “find
that it is advantageous to use the FC [fully-coupled] approach utilizing relaxed tolerances
for solution of the sub-problems, combined with the LV [local viscosity] preconditioner.”

All of our empirical observations are consistent with the general observation that
solving the coupled Stokes problem is comparable to a single step of a fractional step
method, and not more than 2-3 times more expensive than a fractional step even for dif-
ficult cases of large contrast ratio, large viscous CFL number and non-trivial boundary
conditions. We believe that this mild increase in cost is more than justified given the im-
portant advantages of the coupled approach when solving the Navier-Stokes equations.
Furthermore, we observed robust behavior of the projection and lower triangular pre-
conditioners for large systems with relatively frequent restarts. This demonstrates that
GMRES with preconditioners P1 and P2 provides a robust solver for large-scale com-
putations. In future studies, the robustness of these preconditioners with respect to the
variability of viscosity and density should be studied more carefully. One aspect of this is
whether the spectrum of the preconditioned operator can be provably bounded for arbi-
trary contrast ratios. More importantly, however, the performance of the preconditioners
in practical applications, should be accessed. Experience with steady Stokes geodynam-
ics applications, which have extreme viscosity contrasts, are very promising [24].
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A Fourier analysis of Schur complement

The most important element in the preconditioners we study here is the approximation
of the Schur complement inverse. In previous work, Fourier analysis [9], operator map-
ping properties and PDE theory in [37, 38], and commutator properties (2.4) [17, 27, 35]
have been used to justify approximations to the Schur complement inverse. Here we use
Fourier analysis to justify our approximation to the Schur complement inverse for the
stress form of the viscous operator (3.1). This analysis assumes periodic boundaries but
should also inform the case with physical boundary conditions.

For simplicity, we use two dimensional steady state Stokes equations for illustration
but extensions to three dimensions and time-dependent flow are trivial. We denote the

discrete Fourier transform of velocity as v̂ = [û, v̂]T, and denote the (purely imaginary)
Fourier symbol of the staggered divergence operator as D̂= [D̂x D̂y], where Dx and Dy

represent the staggered finite difference operator along the x and y axes. The Fourier
transform of the staggered gradient operator is Ĝ=−D̂

⋆

=[D̂x D̂y]T , and similarly,

L̂p= D̂Ĝ= D̂
2
x+D̂

2
y=−

(∣∣D̂x

∣∣2+
∣∣D̂y

∣∣2
)

.

Our goal is to approximate the Schur complement inverse with a Laplacian-like local
operator LS, i.e., to find (DL−1

µ G)−1 = LS. This is only an approximation in general but
should be exact for periodic constant-coefficient problems. In Fourier space,

L̂S =
(

D̂L̂
−1
µ Ĝ

)−1
. (A.1)

When the Laplacian form of the viscous term is used, Lµ =µ0L, we have

L̂µ =µ0

[
D̂

2
x+D̂

2
y 0

0 D̂
2
x+D̂

2
y

]
,

which combined with (A.1) gives L̂S =µ0. Applying an inverse Fourier transform gives
the well-known result LS =µ0 I.

When Lµ is the discrete operator for the stress tensor form of the viscous term (3.1)
and the viscosity is constant, we have

L̂µ=µ0

[
2D̂

2
x+D̂

2
y D̂yD̂x

D̂xD̂y D̂
2
x+2D̂

2
y

]
,
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which gives L̂S = 2µ0, and therefore LS = 2µ0 I. This motivates our variable-viscosity
generalization (2.6). When Lµ is the discrete operator for the viscous term with bulk
viscosity and assuming both the shear viscosity and the bulk viscosities are constant, we
have

L̂µ=

[
( 4

3 µ0+γ0)D̂
2
x+µ0D̂

2
y ( 1

3 µ0+γ0)D̂yD̂x

( 1
3 µ0+γ0)D̂xD̂y γ0D̂

2
x+( 4

3 µ0+γ0)D̂
2
y

]
,

which gives L̂S =((4/3)µ0+γ0) and therefore LS =((4/3)µ0+γ0)I. This motivates our
variable-viscosity generalization (2.7).

B Analysis of preconditioners with exact subsolvers

In this Appendix we give some analysis of the spectrum of the preconditioned operators
when exact pressure and velocity subsolvers are used. To see how well the different
preconditioners approximate the original saddle point form (2.1), we formally calculate

P−1
1 M=

(
I (I−ρ−1GL−1

ρ D)A−1G

0 S−1S

)
, (B.1)

P−1
2 M=

(
I A−1G
0 S−1S

)
, (B.2)

P−1
3 M=

(
I−A−1GS−1D A−1G

S−1D 0

)
, (B.3)

and lastly

P−1
4 M=

(
I A−1G

S−1D 0

)
. (B.4)

Recall that for constant-coefficient problems with exact subsolvers, S−1=−θρ0L−1
p +µ0I.

For periodic domains, the finite-difference operators G, D, L and Lp commute,

GLp=LG and LpD=DL, (B.5)

and therefore P−1
1 M is exactly the discrete identity operator, and similarly, the (1,1) diag-

onal block of P−1
3 M is zero.

From (B.1), we see that the preconditioned system is block upper triangular. There-
fore, the eigenvalues of the preconditioned system are either unity or the eigenvalues
of S−1S. Similarly, we can derive the eigenvalues of the preconditioned system using
(B.2) and (B.3). Alternatively, one can write down the generalized eigenvalue system, for
instance,

M

(
u
p

)
=λP3

(
u
p

)
.
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Again, one can see that the eigenvalues are either 1 or the eigenvalues of S−1S.

When µ0=0, or equivalently, ∆t→0, we have that P−1
1 M= I, regardless of the bound-

ary conditions. If P2 is used, we have

P−1
2 M=

(
I ∆t

ρ0
G

0 I

)
, (B.6)

and therefore (P−1
2 M−I)2=0. This proves that in the inviscid case, the GMRES algorithm

converges in 1 iteration when preconditioner P1 is used, and in 2 iterations when P2 or P3

are used. When inexact subsolvers are used our numerical results showed that all three
preconditioners exhibit exactly the same convergence rate in the inviscid case.

Furthermore, for constant viscosity (µ = 1) steady state (θ = 0) problems on a two-
dimensional domain of nx×ny grid cells with no-slip boundaries, one can prove the fol-

lowing property for the eigenvalues of the Schur complement S=DL−1G:

1. λ(S)∈{0}∪[η2,1], where η is the inf-sup constant independent of grid size [20,41].

2. The multiplicity of the 0 eigenvalue is 1.

3. There are at most 2(nx−1)+2(ny−1) non-unit eigenvalues of S.

This is a quantitative statement of the intuitive expectation that a few cells away from
the boundaries S is close to an identity operator, just as for a periodic system (see
Eq. (B.5)). The lower bound of the eigenvalues is a consequence of the uniform div-
stability [19,20,51]. From (B.1) (and also (B.2) and (B.3)), we see that the same conclusions
hold for the preconditioned systems. This analysis explains the good performance of the
simple Schur complement approximation even in the presence of nontrivial boundary
conditions [27]. Below we numerically compute the spectrum of the eigenvalues of S−1S
for both constant and variable viscosity steady flow, and confirm the theoretical predic-
tions above.

B.1 Spectrum of the preconditioned operator

Convergence analysis of the preconditioned GMRES method is not straightforward and
there is no simple link to the spectrum of the eigenvalues. Nevertheless, it is generally
accepted and widely observed that having closely clustered eigenvalues of the precondi-
tioned operator P−1M leads to faster convergence. Furthermore, the ratio of the largest to
the smallest eigenvalue (excluding the trivial zero eigenvalue arising from the fact pres-
sure is only determined up to a constant) should be bounded from above by a constant
essentially independent of grid size, and, possibly, viscosity and density contrast ratio.

We focus on the steady-flow case θ=0 in two dimensions, for a square domain of n2
c

cells with four no-slip boundaries. We consider using exact subdomain solvers, Ã
−1

=

A−1 and L̃
−1
ρ =L−1

ρ instead of multigrid, relying on the fact that a well-designed multigrid
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Figure 8: Histogram of the eigenvalues of M (left panels) and P−1M (more precisely, S−1S) (right panels)
for a steady Stokes problem on a grid of 32×32 cells with four no-slip boundaries. The vertical axis gives the
number of eigenvalues, truncated for the eigenvalue λ= 1 in the right panels due to the large number of unit
eigenvalues. The case of constant viscosity is shown in the upper panels, and the case of variable viscosity with
contrast ratio 100 is shown in the lower panels.

cycle is (essentially) spectrally-equivalent to an exact solver. We explicitly form M and
S−1S in MATLAB as dense matrices and compute their eigenvalues.

In Fig. 8, we show a histogram of the eigenvalues of the unpreconditioned and pre-
conditioned operators for a square domain of length nc=32 cells with no-slip boundaries.
In the upper row in Fig. 8 we study the constant viscosity case. The total number of DOFs
is Ndof=n2

c+2nc(nc−1)=3008. Since the original Stokes system is of saddle point type, M
has both positive eigenvalues and negative eigenvalues, and there are n2

c=1024 eigenval-
ues that are smaller than or equal to zero. While the unpreconditioned spectrum shows a
broad spectrum of eigenvalues with conditioning number that grows with the grid size,
the preconditioned spectrum shows that most eigenvalues are unity, with the remaining
4(nc−1)/Ndof ≈4% nonzero eigenvalues remaining well-clustered.



M. Cai et al. / Commun. Comput. Phys., 16 (2014), pp. 1263-1297 1293

In the lower row in Fig. 8 we study the variable viscosity case for the bubble prob-
lem with viscosity contrast ratio rµ = 100. The unpreconditioned system is seen to be
very badly conditioned, with a broad spectrum of eigenvalues. By contrast, the precon-
ditioned operator is well-conditioned, with around 87% of the eigenvalues in the inter-
val (0.99,1.01). While some eigenvalues are larger than unity in this case, the spread in
the eigenvalues is not much different from the constant-coefficient case. This suggests
that the spectrum remains localized around unity and bounded away from zero even for
rather large contrast ratios. It may be possible to extend the finite-element theory devel-
oped in Refs. [29,30] to prove that S−1S is spectrally-equivalent to the identity matrix for
the staggered grid discretization we employ here.

C Multigrid algorithms

We employ a standard V-cycle multigrid approach [6] for both the cell-centered multigrid
subsolver for the weighted Poisson operator Lρ and the staggered velocity multigrid sub-
solver for the viscous operator Lµ. We use the standard residual formulation, so that on
all coarsened levels we are solving for the error in the coarsened residual from the next-
finer level. In our implementation, the multigrid coarsening factor is 2, and coarsening
continues until the problem domain represented on the coarsest grid contains two grid
points (with respect to cell-centers) in any given spatial direction. At the coarsest level of
the multigrid hierarchy, we perform a large (8 or more) number of relaxations, to ensure
that the preconditioner is a constant linear operator.

Multigrid consists of 3 major components: (i) choice of relaxation at a particular level,
(ii) coarsening/restriction operator, and (iii) interpolation/prolongation operator.

Relaxation. Both the staggered and cell-centered solvers use multicolored Gauss-
Seidel smoothing. The cell-centered solver uses standard red-black relaxation, whereas
the staggered solver uses a 2d-colored relaxation, where d is the dimensionality of the
problem. Because the coupling between the degrees of freedom corresponding to a given
component of velocity is the same as for the cell-centered Poisson equation, by coloring
each component of the velocity separately, as in the standard red-black coloring (i.e.,
coloring odd grid points with a different color from the even grid points), we obtain
decoupling between the 2d colors so that each color can be relaxed separately (improving
convergence and aiding parallelization). We relax the components of velocity in turn
(i.e., in three dimensions, we order the relaxations as red-x, black-x, red-y, black-y, red-z,
black-z), although other orderings of the colors are possible. Refer to Fig. 9 for a physical
representation of the viscous operator stencils. Given a cell-centered operator of the form,
∇·β∇φ≡Lφ= r, or a staggered operator of the form, αφ−∇·β[∇φ+(∇φ)T]≡Lφ= r,
the relaxation takes the form

φk+1=φk+ωD−1(r−Lφk), (C.1)

for each color in turn, where the superscript represents the iterate, and D−1 is the inverse
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Figure 9: (Left panel) The stencils for the x-component of ∇·β∇φ (left) and ∇·β(∇φ)T (right), in two
dimensions. The black circles indicate locations of u. The black triangles indicate locations of v. The red dots
indicate the location of the β and the gradients of velocity. (Right panel) The stencils for the x-component

of ∇·β∇v (left) and ∇·β(∇v)T (right), in three dimensions. The black circles indicate locations of u. The
black triangles indicate locations of v and w. The red dots indicate the location of the β and the gradients of
velocity.

of the diagonal elements of L. We use unit weighting factor‡, ω = 1 (suggested to be
near-optimal in numerical experiments) for both subsolvers.

Restriction. For the cell-centered solver, restriction is a simple averaging of the 2d

fine cells. For the staggered solver, we use a slightly more complicated 6-point (d=2) or
12-point (d=3) stencil. For example, for x-faces we use

φc
i,j=

1

8

(
φf

2i−1,2j+φf
2i−1,2j+1+φf

2i+1,2j+φf
2i+1,2j+1

)
+

1

4

(
φf

2i,2j+φf
2i,2j+1

)
. (C.2)

As seen in Fig. 9, for the staggered solver we require α at faces, and β at both cell-centers
and nodes (d=2) or edges (d=3). When creating coefficients at coarser levels, we obtain
α by averaging the overlaying fine faces, cell-centered β by averaging the overlaying fine
cell-centered values, β on nodes through direct injection, and β on edges by averaging
the overlaying fine edges.

Prolongation. For the cell-centered solver, prolongation is simply direct injection
from the coarse cell to the overlaying 2d fine cells. For the staggered solver, we use
a slightly more complicated stencil that involves linear interpolation for fine faces that
overlay coarse faces, and bilinear interpolation for fine faces that do not overlay coarse
faces. For example, for x-faces we use

φf
i,j=

3

4
φc

i/2,j/2+
1

4
φc

i/2,j/2−1, for i and j both even, (C.3)

φf
i,j=

3

8

(
φc

i/2,j/2+φc
i/2+1,j/2

)
+

1

8

(
φc

i/2,j/2−1+φc
i/2+1,j/2−1

)
, for i odd and j even, (C.4)

where we use integer division in the index subscripts.

‡Note that for Jacobi relaxation with the stress form of the viscous operator, a standard analysis suggests
ω=1/2 as the optimal relaxation parameter (ensuring damping of all modes).
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