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Abstract. We present a multi-phase image segmentation method based on the his-
togram of the Gabor feature space, which consists of a set of Gabor-filter responses
with various orientations, scales and frequencies. Our model replaces the error func-
tion term in the original fuzzy region competition model with squared 2-Wasserstein
distance function, which is a metric to measure the distance of two histograms. The
energy functional is minimized by alternative minimization method and the existence
of closed-form solutions is guaranteed when the exponent of the fuzzy membership
term being 1 or 2. We test our model on both simple synthetic texture images and
complex natural images with two or more phases. Experimental results are shown
and compared to other recent results.
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1 Introduction

Image Segmentation has been one of the most talked about issues in recent decades, due
to its fundamental role in many image processing applications, such as image coding,
image synthesis, pattern recognition and so on. From the point of view of human vision,
most images, including both synthetic ones and natural ones, can be easily segmented
into several phases by human naked eyes. However, this human visual system has com-
plex neurobiological criterion for segmentation that would be challenging to imitate ex-
actly for a computer. In a machine vision system, the segmentation criterion is usually
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based on the difference in intensity value, regional statistics and other features of disjoint
phases.

The general N-phase segmentation problem can be illustrated as follows: Given a
gray scale image I : Ω→ R, where the image domain Ω is a bounded, smooth and open
subset of R

2, the aim is to partition Ω into N disjoint connected open subsets {Ωi}
N
i=1, i.e.,

Ωi
⋂

Ωj=∅, j 6=i and
⋃N

i=1Ωi
⋃

Γ=Ω, by certain suitable measures, where Γ is the union of
the part of boundaries of the Ωi inside Ω. The segmentation is achieved by minimizing
the summary energy functional:

min

{

E(Γ,Ω)=
N

∑
i=1

(

∫

Γi

ds+λ

∫

Ωi

ri(x)dx
)

}

, (1.1)

where the first term is to restrict the boundary of the segment as short as possible and
the second term is to use the error function ri(x) to measure the similarity between the
features of the underlying x and of different phases, so as to determine which phase it
should belong to. Many edge-based and region-based models in literature share this idea
in nature, while differs in the representation of the region Ωi, the error function ri and
some other regularization terms might be added.

Snakes/Active Contours [22] and Balloons [13] are classical edge-based segmentation
methods which minimize the energy through deforming an initial contour towards the
object boundaries. However this energy model cannot deal with topological changes. In-
corporating the techniques of curve evolution and geometric flows, many active-contour-
based models were proposed(e.g., see [5, 6, 24]). These models works for those images
whose object boundaries are smooth and clearly defined by intensity gradient, but in
many cases the boundaries might not be simply defined in such a way, especially for tex-
ture images. This difficulty inspires many researchers to integrate regional features with
edge information. Chan and Vese [7] incorporated the classical Active Contour model
with Mumford-Shah functional [35] and assumed each region can be approximated by a
piece-wise constant function. The difference with the classical Active Contour model is
that its stopping criterion does not rely on gradient of the image. Thus the blurry edges
or gaps caused by missing edges would not be an issue. Later they extended this model
to handle vector-valued images [8] and recently many other variances were proposed
(see [17, 41–43]). M-S model which studied by Mumford and Shah [35] holds the idea
that each sub-region Ωi can be approximated by a piece-wise smooth function si. Hence
their model consists of three terms, one is the error function ri=(I−si)

2, the other two are
regularizer on the approximate function |∇si|

2 and on the total length of the boundaries
|Γ|. It has become one of the most dominating region-based models due to its great com-
patibility with other models and variability of the interpretation, for instance, Bresson
et al. [3] incorporate the boundary information and shape prior to the M-S model, Brox
and Cremers [44] introduced a statistical interpretation of the M-S functional, recently
Sochen and Bar proposed a generalization of the original M-S model in combination of
the Beltrami Framework.
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Since their model is continuous, in terms of implementation, the main questions need
to be considered are the discretization of the edge |Γ| and the representation of the sub-
regions Ωi. The first question can be addressed by some discrete approximation methods
(see [2, 10, 15]). As for the latter question, a general approach is to apply the level set
method of Osher and Sethian [38]. At the beginning, the level set method can only han-
dle two-phase segmentation problem. Later in 2002, Chan and Vese [45] developed a
multiphase level set framework based on M-S model. Recent applications of the level set
method on image segmentation can be found in [12, 26, 27, 39].

Another dominating representation is based on the theory of fuzzy logic (see [25])
and region competition (see [50]). Zhu and Yuille first illustrate a unified theory of re-
gion competition and analysis in [49]. In [34], Mory and Ardon proposed a convex two-
phase segmentation framework for fuzzy region competition, using the convex relaxation
approach. Moreover, it has been proved that the relaxed convex and the original non-
convex problems share the same global minimizers. Readers can refer to [5,9] and others.
Based on their work, Ng and Li developed two multi-phase segmentation methods using
nonparametric probability density function [29] and piece-wise constant Mumford-Shah
function [28] separately.

In addition to the two questions mentioned above, the feature space chosen to be
based on is another essential aspect. Most of the models, such as classical M-S model
and C-V model, are based on the intensity value itself of the original image, while other
feature spaces often considered includes the regional statistics or histograms, LBP (Local
Binary Patterns) and Gabor-filter responses. Among which the Gabor filter has been
recognized as a good tool for texture analysis [21] formulated in 2-D case as:

Gσ, f ,γ= gσ(x,y)exp
[

2πj f (xcosγ+ysinγ)
]

, (1.2)

where

gσ(x,y)=
1

2πσ2
exp

[

−
x2+y2

2σ2

]

.

It can be viewed as an oriented complex sinusoidal grating modulated by the 2-D Gaus-
sian kernel gσ with the frequency f of the span-limited sinusoidal grating, the orientation
γ and the scale σ. It is a complex function with real and imaginary part as Gσ, f ,γ=GR+jGI .
To obtain the Gabor response of an image, one can just convolve the original image with
the Gabor function and compute the magnitude as Gσ, f ,γ∗I=

√

(GR∗ I)2+(GI∗ I)2. In real
applications on the texture analysis or segmentation, people usually use multiple Gabor
functions with different frequencies, orientations and scales, so called the filter bank, to
achieve a Gabor feature space. It brings the problem of Gabor filter design, which aims
at how to determine the parameters of the Gabor feature space.

In this paper, we take into consideration the histogram of the Gabor feature space
based on the frequency f . For simplicity, we experimentally fix the parameter as f =0.01:
0.01 : 1, σ= 0.5 in most cases and the orientation γ need to be tuned for different image.
The reason we choose this characteristic is that we experimentally find that the most
dominant factor to the segmentation performance is the orientation of the Gabor filter.
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Figure 1: (a): Original Image of size 256×256 (without the red and yellow frame); (b): Segmentation contour
using our method; (c): Local intensity histogram of 50×50 region in red box; (d): Local intensity histogram
of 50×50 region in yellow box; (e): Histogram based on frequency raging from 0.01 to 1 in step length 0.01
calculated from our algorithm of the same region in red box; (f): Histogram based on frequency raging from
0.01 to 1 in step length 0.01 calculated from our algorithm of the same region in yellow box.

Once γ is chosen appropriately, reasonable performance can be obtained while tuning
the other two parameters can achieve subtle improvement, but not be necessary in most
cases. The advantage of this Gabor feature space towards intensity value is shown in
Fig. 1, which consist of two different texture patterns with exactly the same local intensity
histogram. Making use of the Gabor filter and the Wasserstein distance, we proposed a
generalized multi-phase fuzzy region competition model which includes the model of
Chan et al. [36] as a special case.

The other parts of this paper are arranged as follows. In Section 2, some related seg-
mentation models are reviewed, which bring us the inspiration and motivation. Then
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we introduce our proposed model in Section 3, followed by numerical analysis and al-
gorithm. Finally, we test our method on some synthetic and natural images with two or
more phases in Section 4 and present some discussions in Section 5.

2 Related works

In 2007, Mory and Ardon [33] proposed a two-phase segmentation method based on
Fuzzy Region Competition model [34], using λ

∫

A(pi(y)−K(I(x)−y))2dy as the error
function ri to measure the similarity between a probability density function pi(y) and a
symmetric kernel K(I(x)−y). Their model is as following:

min

{

E(u,p1,p2)=
∫

Ω
|∇u|+λ

∫

x∈Ω
u(x)

∫

y∈A
(p1(y)−K(I(x)−y))2dydx

+λ

∫

x∈Ω
(1−u(x))

∫

y∈A
(p2(y)−K(I(x)−y))2dydx

}

subject to
∫

A
K(y)dy=1 and K(y)>0, ∀y∈A.

Their model is non-parametric and utilizes a point-wise distance between two prob-
ability density functions p1 and p2. Those models using this kind of point-wise distance,
such as χ2 statistics, Kullback-Leibler distance (see [18, 19, 48]) and the Bhattacharyya
distance (see [14, 32]), have some certain disadvantage that, for instance the distance be-
tween two delta functions with disjoint supports is the same no matter how close or how
far the two supports are from each other.

In the same year, Chan et al. [9] proposed a level set based model utilizing different
error function which measures the similarity between two cumulative distribution func-
tions instead, so called the Wasserstein distance (or Monge-Kantorovich distance, details
refer to [23] and [40]). Although this distance metric overcomes the drawback mentioned
above, this model would face the problem of non-convexity of the level set functions,
which means the segmentation results are sensitive to initialization. Later in 2009, Ni
et al. [36] modified this model to a convex version with fuzzy membership u∈ [0,1] as
following:

min

{

E(u,P1,P2)=
∫

∂Ω
ds+λ

∫

Ω
W1(P1,Px)u(x)dx+λ

∫

Ω
W1(P2,Px)(1−u(x))dx

=
∫

∂Ω
ds+λ

∫

Ω

∫ L

0
|F1(y)−Fx(l)|u(x)dldx

+λ

∫

Ω

∫ L

0
|F2(l)−Fx(l)|(1−u(x))dldx

}

, (2.1)

where P1 and P2 represent the histograms of intensity of object and background region
separately, F1 and F2 are their corresponding cumulative distribution functions and W1(·)
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is the linear Wasserstein distance. The Wasserstein distance in literature can be defined
in general form:

p−Wasserstein Distance=Wp(Pa,Pb) :=
(

∫ L

0
|Fa(l)−Fb(l)|

pdl
)1/p

, (2.2)

where Pa, Pb stand for two normalized histograms with Fa, Fb being their corresponding
cumulative distributions and l ∈ [0,L] is the bar index of the histogram. However, the
proof of the minimizer existence still remains to be resolved when using W1 distance
and the solution of F1, F2 requires calculation of weighted median for each bar in the
histogram in each iteration. It would be much more costly using the method as they
mentioned when the image is larger.

Other variants of this region-based active contour model in combination with regional
statistics are as follows. In 2010, Xie [47] proposed another level set based model combing
the Gabor filtered feature distribution instead of intensity. Wang et al. [46] extend the
model to vector-valued version, which aims at integrating the responses from a filter
bank with various orientation, scale and frequency and they introduced a way to select
the optimal bins in the histogram. In 2011, Ma and Yu [31] incorporated the global convex
Chan-Vese model with quadratic-chi histogram distance as the error function term, as
well as using feature from Gabor-filter bank.

The afore mentioned works gave us the inspiration to develop a multi-phase model
that overcomes those shortcomings, such as non-convexity, the expensive calculation and
the bias caused by the point-wise distance, while makes an appropriate choice among
different features like intensity, Local Binary Pattern (LBP) map and Gabor feature space.
In the next section, we propose our model which extends Tony et al.’s model to a multi-
phase case using the squared W2 distance based on the Gabor feature space and the proof
of existence is given.

3 Proposed model

Firstly, we can rewrite the multi-phase fuzzy region competition model in [28] based on
the p-Wasserstein distance (2.2) into a general form as following:

min

{

E(ui,Pi)=
N

∑
i=1

∫

Ω
|∇ui|dx+

λ

q

N

∑
i=1

∫

Ω
Wp(Px,Pi)

pu
q
i dx

}

, (3.1)

which incorporates the several previously mentioned model (see [9, 31, 36, 47]) as special
cases: when N = 2, p= q= 1 and ui = {0,1} being the Heavyside Function of a level set
variable, the above model is the one in [9]; with the same setting, if the histogram is
based on the Gabor feature space instead of intensity, this is the model proposed in [47];
when ui = {0,1} changes to a fuzzy membership function ui ∈ [0,1], this is the model
in [36]; further on, if change the Wasserstein distance to quadratic-chi histogram distance,
it becomes the model in [31].
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In our multi-phase segmentation model, we set p = 1 or 2, q = 1 or 2, which means
that the W1 distance or squared W2 distance are both considered and the fuzziness of the
membership function ui is controlled by q and the phase number N can be greater than
2. Thus our model is given as:

min
ui,Pi

{

E(ui,Pi)=
N

∑
i=1

∫

Ω
|∇ui|dx+

λ

q

N

∑
i=1

∫

Ω
Wp(Px,Pi)

pu
q
i dx

=
N

∑
i=1

∫

Ω
|∇ui|dx+

λ

q

N

∑
i=1

∫

Ω

∫ 1

0
|Fx,r(l)−Fi(l)|

pu
q
i dldx

}

(3.2)

subject to:

(i)
N

∑
i=1

ui=1, (ii) 0≤ui ≤1, for i=1 : N,

where ui(x) is the fuzzy membership function representing the probability of each pixel
x∈Ω belonging to the corresponding phase Ωi, Px,r, Pi are the histograms of Gabor-filter
responses corresponding to the local region Nr(x) centered at x and the resulting segment
Ωi, Fx,r(l), Fi(l) are their normalized cumulative histograms with l denoting each bar.

The numerical analysis of the solution of this minimization problem is given in the
next section.

3.1 Numerical analysis

In this section, the existence of the minimizer of the following energy functional in the
case of p = 2 is proved, however, the existence proof when p = 1 still remains to be re-
solved. Here we are trying to minimize the following energy:

min
ui,Fi

{

E(ui,Fi)=
N

∑
i=1

∫

Ω
|∇ui|dx+

λ

q

∫

Ω

∫ 1

0
(Fx,r(l)−Fi(l))

2u
q
i (x)dldx

}

(3.3)

subject to:

(a)
N

∑
i=1

ui=1,

(b) 0≤ui ≤1, for i=1,2,··· ,N,

(c) 0≤Fi ≤1, for i=1,2,··· ,N,

where λ, q, r are positive parameters. The energy functional is well defined in the follow-
ing admissible set: Λ={(ui,Fi)|ui∈BV(Ω), satisfies (a) and (b); Fi∈L2(0,1), satisfies (c)}.
Then for the problem,

min
(ui,Fi)∈Λ

{

E(u1,u2,··· ,uN,F1,F2,··· ,FN)
}

, (3.4)

we have the existence theorem.
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Theorem 3.1. Assume Fx,r ∈ L∞(0,1) for all x∈Ω, then for fixed parameters N, λ, p, r, there
exists at least one solution of the problem (3.4) in the admissible set Λ.

Proof. First, if we let ui and Fi be constants, the energy will be finite, which implies that
problem (3.4) is the correct setting.

Suppose {(un
i ,Fn

i )} is a minimizing sequence of E; then there exists a constant M>0
such that

E(un
1 ,un

2 ,··· ,un
N ,Fn

1 ,Fn
2 ,··· ,Fn

N)≤M.

The above inequality reads as

N

∑
i=1

∫

Ω
|∇un

i |dx+
λ

q

∫

Ω

∫ 1

0
(Fx,r(l)−Fn

i (l))
2(un

i )
qdldx≤M.

The boundedness of
∫

Ω
|∇un

i |dx and the constraint (b) guarantee that the sequence {un
i }

is uniformly bounded in BV(Ω) for each i=1,2,··· ,N. Noting the compactness property
of BV(Ω) with respect to BV∗

w topology, up to a subsequence also denoted by {un
i }, there

exists a function u∗
i ∈BV(Ω) such that,

un
i −−−→

L1(Ω)
u∗

i and un
i →u∗

i a.e. x∈Ω.

Then by using the lower semicontinuity of total variation,

liminf
n→∞

∫

Ω
|∇un

i |dx≥
∫

Ω
|∇u∗

i |dx. (3.5)

Meanwhile since un
i satisfies constraints (a) and (b), by using the convergence result, u∗

i

also satisfies (a) and (b). Noting that Fn
i ∈ L2(0,1), together with the constraint (c) we

can derive that the sequence {Fn
i } is uniformly bounded in L2(0,1) for each i=1,2,··· ,N.

Therefore, there exists F∗
i ∈L2(0,1) such that, up to a subsequence,

Fn
i ⇀F∗

i ∈L2(0,1) and Fn
i →F∗

i a.e. l∈ (0,1).

Therefore,

lim
n→∞

∫ 1

0
Fx,r(l)Fn

i (l)dl=
∫ 1

0
Fx,r(l)F∗

i (l)dy,

then we can easily deduce that for almost every x∈Ω,

∫ 1

0
(Fx,r(l))

2dl(un
i )

p−2
∫ 1

0
Fx,r(l)Fn

i (l)dl(un
i )

q

→
∫ 1

0
(Fx,r(l))

2dl(u∗
i )

q−2
∫ 1

0
Fx,r(l)F∗

i (l)dl(u∗
i )

q.
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Fatou’s lemma gives,

lim inf
n→∞

∫

Ω

(

∫ 1

0
(Fx,r(l))

2dl(un
i )

q−2
∫ 1

0
Fx,r(l)Fn

i (l)dl(un
i )

q
)

dx

≥
∫

Ω

(

∫ 1

0
(Fx,r(l))

2dl(u∗
i )

q−2
∫ 1

0
Fx,r(l)F∗

i (l)dl(u∗
i )

q
)

dx

and

liminf
n→∞

∫

Ω
(un

i )
qdx≥

∫

Ω
(u∗

i )
qdx.

As a consequence of the lower semicontinuity for the L2 norm,

liminf
n→∞

∫ 1

0
(Fn

i (l))
2dl≥

∫ 1

0
(F∗

i (l))
2dl.

Finally

liminf
n→∞

∫

Ω

∫ 1

0
(Fx,r(l)−Fn

i (l))
2(un

i )
qdldx

=liminf
n→∞

∫

Ω

∫ 1

0
(Fx,r(l))

2(un
i )

qdldx−2
∫

Ω

∫ 1

0
Fx,r(l)Fn

i (l)(u
n
i )

qdldx

+
∫

Ω
(un

i )
qdx

∫ 1

0
(Fn

i (l))
2dl

≥
∫

Ω

(

∫ 1

0
(Fx,r(l))

2dl(u∗
i )

q−2
∫ 1

0
Fx,r(l)F∗

i (l)dl(u∗
i )

q
)

dx+
∫

Ω
(u∗

i )
qdx

∫ 1

0
(F∗

i (l))
2dl

=
∫

Ω

∫ 1

0
(Fx,r(l)−F∗

i (l))
2(u∗

i )
qdldx.

Combining the above inequality and (3.5), we have

minE(u1,u2,··· ,uN,F1,F2,c··· ,FN)

=liminf
n→∞

E(un
1 ,un

2 ,··· ,un
N,Fn

1 ,Fn
2 ,··· ,Fn

N)

≥E(u∗
1 ,u∗

2,··· ,u∗
N ,F∗

1 ,F∗
2 ,··· ,F∗

N). (3.6)

Meanwhile, we have (u∗
i ,F∗

i )∈Λ, this completes the proof.

3.2 Numerical algorithm

The alternative minimization method is used in the algorithm, i.e., iteratively minimizing
the energy functional (3.2) in respect to ui or Pi with the other fixed until the stopping
criterion is reached. In the case of q = 1, the model is indeed the relaxed Potts model,
which could been solved by many efficient approach. We adopt the continuous max-flow
approach proposed by Yuan et al. [47], which rewrite the original minimization problem
with respect to the membership function ui as a augmented Lagrangian function of the
max-flow problem with ui being the multiplier. In the case of q=2, we add an auxiliary
variable and follow the method in [27] to find the approximated solution. The details of
each case is as following.
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3.2.1 Solving cumulative histograms Fi

Fix ui, the minimization problem (3.2) with respect to Pi can be simplified as:

min
Pi

{

E1=
L

∑
l=1

∫

Ω
Wp(Px,r,Pi)

pu
q
i dx

}

. (3.7)

Case p=1:

In this case, we are minimizing:

min
Fi

{

E′
1=

N

∑
i=1

∫

Ω

∫ 1

0
|Fx,r(l)−Fi(l)|u

q
i dldx

}

.

For each bar y=1,2,··· ,L, the minimizer is given by:

Fi(l)=weighted (by u
q
i (x)) median of Fx,r(l). (3.8)

As for the details of how to compute the weighted median of a cumulative histogram,
please refer to [36].

Case p=2:

For each bar y=1,2,··· ,L in the normalized histogram Pi, the minimization problem
E1 is similar to that with the Chan-Vese error function:

min
Fi

{

E′′
1 =

N

∑
i=1

∫

Ω

∫ 1

0
|Fx,r(l)−Fi(l)|

2u
q
i dldx

}

.

Take the derivative of E′′
1 with respect to Fi(l) and setting it to zeros, we can achieve the

closed form solution as:

Fi(l)=

∫

Ω
Fx,r(l)u

q
i dx

∫

Ω
u

q
i dx

. (3.9)

3.2.2 Solving membership function ui

Fixing Fi, the minimization problem (3.2) with respect to ui becomes:

min

{

E2(ui)=
λ

q

N

∑
i=1

∫

Ω
Wp(Px,Pi)

pu
q
i dldx+

N

∑
i=1

∫

Ω
|∇un

i |dx

}

(3.10)

subject to

(a)
N

∑
i=1

ui(x)−1=0,

(b) 0≤ui(x)≤1, for i=1,··· ,N.
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Case q=1:

In this case, we are minimizing indeed the relaxed Potts model subject to (a) and (b):

min
ui

{

E′
2(ui)=λ

N−1

∑
i=1

∫

Ω
Wp(Px,Pi)

puidx+
N

∑
i=1

∫

Ω
|∇un

i |dx

}

. (3.11)

It has been proved in [5, 9] that the above minimization problem is equivalent to the
continuous max-flow model and share the same global minimizer. Thus we can rewrite
(3.11) as its primal-dual formulation:

max
ps,p,q

min
u

{

E′
2,dual(ps,p,q;u)=

∫

Ω
psdx+

N

∑
i=1

∫

Ω
ui(divqi−ps+pi)dx

}

s.t. pi(x)≤Wp(Px,Pi)
p, |qi(x)|≤

1

λ
, i=1,··· ,N, (3.12)

where ps denotes the unconstrained source flow, pi(x) and qi(x) denotes the constrained
sink flow and spatial flow respectively. Then the augmented Lagrangian formulation can
be defined as:

min
u

max
ps,p,q

{

E′
2,dual(ps,p,q;u)=

∫

Ω
psdx+

N

∑
i=1

〈ui,divqi−ps+pi〉

−
c

2

N

∑
i=1

‖divqi−ps+pi‖
2

}

, (3.13)

where c>0. Note that the min and max operators can be interchanged because the condi-
tions of the min-max theorem are all satisfied. Multiplier-based max-flow algorithm [47]
can be adopted to find the final ui(x).

Case q=2:

In this case, we can add an auxiliary variable vi to approximate ui, thus we are mini-
mizing:

min
ui

{

E′′
2 (ui)=

λ

2

N

∑
i=1

∫

Ω
Wp(Px,Pi)

pu2
i dx+

1

2θ

N

∑
i=1

∫

Ω
(vi−ui)

2dx

}

(3.14)

subject to

(a)
N

∑
i=1

ui(x)−1=0,

(b) 0≤ui(x)≤1, for i=1,··· ,N.

In this case, the minimization problem with respect to vi is:

∫

Ω
|∇vi|dx+

1

2θ

∫

Ω
(vi−ui)

2dx. (3.15)



M. Qiao, W. Wang and M. Ng / Commun. Comput. Phys., 15 (2014), pp. 1480-1500 1491

Applying the Chambolle’s fast dual projection algorithm [13], this problem can be solved
by:

vi =ui−θdivp∗i , i=1,··· ,N, (3.16)

where the vector p∗i can be solved by the fixed point method: Initialize p0
i =0 and iterate:

pn+1
i =

pn
i +τ∇(divpn

i −ui/θ)

1+τ|∇(divpn
i −ui/θ)|

with τ≤1/8 to ensure convergence.
We can find an approximate numerical solution for the membership function ui by

considering the relaxation of the original problem without the constraint (b), by adding
point-wise Lagrange multipliers δ(x), thus giving the approximate solution for the relax-
ation problem as (details refer to the method III in [28]):

ui=
vi

1+λθri
−

∑
N
j=1

vj

1+λθr j
−1

∑
N
j=1

1+λθri
1+λθr j

.

And then apply the inequality constraints by projecting ui on [0,1],

ûi :=min{max{ui,0},1}. (3.17)

Although ûi here gives an approximate numerical solution for the membership function
ui due to the difficulty to find an exact solution, we experimentally found that this ap-
proximated ûi could obtain an acceptable segmentation results already. Besides, we also
found that the model with p=2 and q=2 gives the best performance for most cases. In
Section 4, the comparison of the results between these four models and other previous
mentioned algorithms are shown.

3.2.3 Summary algorithm

Here we can summarize the minimization algorithm as the following procedures:

Algorithm 3.1.

1. Calculate the Gabor-filtered responses of the original image I(x,y) with a set of k Gabor filters
Gσ, f ,γ with different frequencies f or orientations γ or scales σ. Denote the smallest and the
greatest magnitude of the responses as Mmin and Mmax separately. Divide the interval between
Mmin and Mmax into L sub-intervals. Each sub-interval value would build a bar in the histogram.

2. For each pixel (x,y) compute the counts of magnitude of responses belong to each sub-interval,
in a local region Nr(x,y) centered at (x,y) with pre-determined radius r, to build a histogram
P(x,y),r with L bars. Normalize it and compute the cumulative histogram F(x,y),r. Hence a
histogram map can be obtained finally for the original image.

3. Initialize the membership function ui by random matrices where each entry follows a uniform
distribution in [0,1] and then normalize them such that membership constraints (a) and (b) are
both satisfied.
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4. Iteratively update each bar value in the histogram Fk
i (l), l = 1,2,··· ,L by formula (3.8) when

p=1 and by (3.9) when p=2; update vk
i by formula (3.16); update uk

i by solving (3.13) when
q=1, or by formula (3.17) when q=2.

5. Repeat updating iteration till ∑
L
l=1‖Fk−Fk−1‖≤ ǫ, where ‖·‖ denotes the Euclidean distance

and ǫ is a small positive number defined by the user.

4 Numerical results

4.1 Gabor filter selection

Theoretically the full Gabor feature space should be calculated from a filter bank with
different frequencies, orientations and scales. It can be imagined that the resulting his-
tograms have three dimensions, like a tensor of histograms, with each dimension repre-
sents the histogram of Gabor filter responses with one varying parameter (say frequen-
cies) and the other two parameters (say orientations and scales) fixed. It would be com-
putationally costly to do so. To avoid such a time-costly prestage, many related Gabor
filter design techniques could be applied. However, whether to choose the best Gabor
filter bank is not our greatest concern, since the essence of our method is to build a larger
histogram containing more information about how each texture phase responds with the
varying feature (orientation or frequency or scale). In our experiments, we fix the ori-
entation of the Gabor filter at some certain angle and set the frequency f ranging from
0.01 to 1 in step length of 0.01, thus building the final histogram with 100 bars. As for
the choice of the orientation γ, one can follow the simple scheme in [30] to get a hint,
which seeks for the biggest Fisher ratio separability measure of features between differ-
ent texture phases. As for the segmentation iterations, the initial fuzzy membership was
randomly uniform distributed within [0,1], the stopping criterion ǫ = 1×10−6. The lo-
cal histograms of the Gabor feature space need to be calculated for only once before the
segmentation iterations.

4.2 Numerical examples

Firstly we test our model (3.2) with p = 2, q = 2 on two-phase, three-phase and four-
phase synthetic texture images, as shown in Figs. 2-4, where the segmentation results are
represented by contours. The parameters need to determined are the frequency f , the ori-
entation γ, the radius R of the Gaussian kernel in the Gabor filter and two regularization
parameters λ and θ. The local histograms are usually computed in a neighborhood block
region Nr(x) centered at each x with the size of (2r+1)×(2r+1). For simplicity, we fix
f=0.01:0.01:1, R=6, r=5, λ=0.05, θ=0.1 in most cases, thus only the orientation γ need to
be tuned for each test image. Experimentally we found that this parameter setting could
achieve an reasonable segmentation result, except for some certain cases where different
sizes of texture patterns are included in the same phase, as in the Fig. 8. In order to il-
lustrate the efficiency of our model, the average computational time for segmenting the
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(a) Original Image (b) Segmentation

Figure 2: Two-phase texture segmentation (size: 160×160).

(a) Original Image (b) Segmentations

Figure 3: Three-phase texture segmentation (size: 256×256).

(a) Original Image (b) Segmentations

Figure 4: Four-phase texture segmentation (size: 256×256).

same two-phase texture image with different scales is shown in Table 1. The experiments
are implemented on computer with Intel Core i7-2600 CPU 3.40GHz (8 Cores) and 16GB
RAM.

Table 1: Scales and average computational time.

Avg. Comp. Time Models

Scales p=2, q=2 p=2, q=1

64×64 0.13s 0.05s

128×128 0.82s 0.14s

192×192 2.11s 0.31s

256×256 4.33s 1.24s
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(a) Original Image

(b) p=1, q=1 (c) p=1, q=1

(d) p=1, q=2 (e) p=1, q=2

(f) p=2, q=1 (g) p=2, q=1

(h) p=2, q=2 (i) p=2, q=2

Figure 5: Performance Comparison based on Gabor feature space (left column) and Intensity (right column).
(The parameters are tuned differently for each case trying to achieve the best visual performance).

We didn’t show the computational time for the other two models with p=1 because
sometimes these models using the linear 1−Wasserstein distance might not lead to a
satisfying segmentation results. To illustrate the difference of the four models with p=1
or p=2 and q=1 or q=2, we show the comparison of the segmentation performance on
a natural image corresponding to the four models based on intensity and Gabor feature
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(a) (b) (c)

(d) (e) (f)

Figure 6: (a), (b): Our model with p= 2, q= 1 and p= 2, q= 2; (c): Result by F. Li and M. Ng [29]; (d):
Result in C. Sagiv et al. 2006 [42]; (e): Result in N. Houhou et al. 2008 [18]; (f): Result in N. Houhou et al.
2009 [19].

(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j)

(k) (l) (m)

Figure 7: (a), (b): Our model with p=2, q=1 and p=2, q=2; (c): Result in C. Sagiv et al. 2006 [42]; (d):
Result in N. Houhou et al. 2008 [18]; (e): Result in N. Houhou et al. 2009 [19]; (f): Result in X. Xie 2010 [47];
(g): Result by F. Li and M. Ng [29]; (h)-(m): Comparison of details selected from the same position of the fish
corresponding to (a)-(f).
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(a)

(b) (c) (d)

(e)

(f) (g)

(h) (i)

(j) (k)

(l) (m) (n)

Figure 8: (a)-(d): Result by our model assuming N=3 and the resulting fuzzy membership; (e)-(i): Result by
our model assuming N = 4 and the resulting fuzzy membership; (j): Result in C. Sagiv et al. 2006 [42]; (k):
Result in N. Houhou et al. 2008 [18]; (l): Result in N. Houhou et al. 2009 [19]; (m): Result in Kangyu Ni et
al. 2009 [36]; (n): Result by F. Li and M. Ng [29].
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(a) (b) (c)

Figure 9: (a): Original Image; (b): 4-phase segmentation results by our method; (c): 4-phase segmentation
results by F. Li and M. Ng [29].

(a) (b) (c)

Figure 10: (a): Original Image; (b): 4-phase segmentation results by our method; (c): 4-phase segmentation
results by F. Li and M. Ng [29].

(a) (b) (c)

Figure 11: (a): Original Image; (b): 3-phase segmentation results by our method; Parameters setting: (c):
3phase segmentation results by F. Li and M. Ng [29].

space separately in Fig. 5, where (a) is the original image, the left column (b), (d), (f), (h)
are the segmentation results based on the Gabor feature space and the right column (c),
(e), (g), (i) based on the intensity. Overall speaking, the segmentation performances based
on Gabor feature space surpass that on intensity due to that the Gabor transform itself
has the ability to distinguish the texture pattern of the fish body from that of the coral at
the bottom right corner. From the left column, we can find that the model (f), (h) using the
squared 2−Wasserstein distance would lead to better results than that (b), (d) using the
linear 1−Wasserstein distance. In terms of the choice of q=1 or q=2, the performance (f)
and (h) are close to each other while setting q=2 would give more flexibility to modify the
segmentation a little by choosing different threshold for the resulting fuzzy membership.

Nextly, we test our models on some natural images out from the Berkeley segmenta-
tion database BSDS 500 [1] as shown in Figs. 5-8 and some multi-phase natural texture
image in Figs. 9-10. The competitive results illustrate the advantages of using the squared
2−Wasserstein distance and the Gabor feature space.
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5 Conclusions and discussion

We developed a multi-phase segmentation model using the squared 2−Wasserstein dis-
tance based on the Gabor feature space, which combines the advantages of the Gabor
filter and the fuzzy region competition model both of which are good tools for texture
image segmentation. The computational time are shorten due to that the closed form
solution of Fi(l) is to take the mean value instead of the weighted median in the case of
using linear 1−Wasserstein distance. Besides, the existence proof is given for our model.

The segmentation performance are competitive to others within an acceptable com-
putational cost.However, we only apply our model on the Gabor feature space with vary-
ing frequencies and the other two parameters are manually tuned and fixed. Of course
the full Gabor feature space is also useable and beneficial for enhancement of the per-
formance, but might increased the computational cost. So it still remains in our future
work. Another question worthy of consideration is that the use of non-convex regular-
izer on the membership function, which is hopeful to preserve the geometric shapes of
the homogeneous regions and prevent the over-smoothing problem.
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