Commun. Comput. Phys. Vol. 14, No. 3, pp. 599-620
doi: 10.4208/cicp.110212.021112a September 2013

Comparison of Fifth-Order WENO Scheme and
Finite Volume WENO-Gas-Kinetic Scheme for
Inviscid and Viscous Flow Simulation

Jun Luo, Lijun Xuan and Kun Xu*

Mathematics Department, Hong Kong University of Science and Technology,
Clear Water Bay, Kowloon, Hong Kong.

Received 11 February 2012; Accepted (in revised version) 2 November 2012
Available online 25 January 2013

Abstract. The development of high-order schemes has been mostly concentrated on
the limiters and high-order reconstruction techniques. In this paper, the effect of the
flux functions on the performance of high-order schemes will be studied. Based on the
same WENO reconstruction, two schemes with different flux functions, i.e., the fifth-
order WENO method and the WENO-Gas-kinetic scheme (WENO-GKS), will be com-
pared. The fifth-order finite difference WENO-SW scheme is a characteristic variable
reconstruction based method which uses the Steger-Warming flux splitting for invis-
cid terms, the sixth-order central difference for viscous terms, and three stages Runge-
Kutta time stepping for the time integration. On the other hand, the finite volume
WENO-GKS is a conservative variable reconstruction based method with the same
WENO reconstruction. But, it evaluates a time dependent gas distribution function
along a cell interface, and updates the flow variables inside each control volume by
integrating the flux function along the boundary of the control volume in both space
and time. In order to validate the robustness and accuracy of the schemes, both meth-
ods are tested under a wide range of flow conditions: vortex propagation, Mach 3
step problem, and the cavity flow at Reynolds number 3200. Our study shows that
both WENO-SW and WENO-GKS yield quantitatively similar results and agree with
each other very well provided a sufficient grid resolution is used. With the reduc-
tion of mesh points, the WENO-GKS behaves to have less numerical dissipation and
present more accurate solutions than those from the WENO-SW in all test cases. For
the Navier-Stokes equations, since the WENO-GKS couples inviscid and viscous terms
in a single flux evaluation, and the WENO-SW uses an operator splitting technique, it
appears that the WENO-SW is more sensitive to the WENO reconstruction and bound-
ary treatment. In terms of efficiency, the finite volume WENO-GKS is about 4 times
slower than the finite difference WENO-SW in two dimensional simulations. The cur-
rent study clearly shows that besides high-order reconstruction, an accurate gas evolu-
tion model or flux function in a high-order scheme is also important in the capturing of
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physical solutions. In a physical flow, the transport, stress deformation, heat conduc-
tion, and viscous heating are all coupled in a single gas evolution process. Therefore,
it is preferred to develop such a scheme with multi-dimensionality, and unified treat-
ment of inviscid and dissipative terms. A high-order scheme does prefer a high-order
gas evolution model. Even with the rapid advances of high-order reconstruction tech-
niques, the first-order dynamics of the Riemann solution becomes the bottleneck for
the further development of high-order schemes. In order to avoid the weakness of the
low order flux function, the development of high-order schemes relies heavily on the
weak solution of the original governing equations for the update of additional degree
of freedom, such as the non-conservative gradients of flow variables, which cannot be
physically valid in discontinuous regions.

PACS: 02.60Cb, 47.11.Df, 47.45.Ab

Key words: WENO scheme, gas-kinetic scheme, Euler equations, Navier-Stokes equations, high-
order methods.

1 Introduction

Computational Fluid Dynamics has made great progress in 1970s and 1980s due to the
development of the concept of the nonlinear limiter and the characteristic wave decom-
position of the Euler equations. The 2nd-order schemes are mostly used in practical en-
gineering applications at current stage. On the other hand, with the increasing of compu-
tational power and the requirement of accurate solutions for more challenging problems,
such as compressible turbulent flow and aero-acoustics, the development of reliable high-
order methods has attracted much attention [4]. A direct extension of the concept of non-
linear limiter to high-order is the reconstruction schemes of essentially non-oscillatory
(ENO) and weighted essentially non-oscillatory (WENO) methods [7,10,14,17]. There are
two versions of WENO schemes: finite difference and finite volume. For the rectangular
mesh, the main advantage of the finite difference framework is that multi-dimensional
calculations do not increase the complexity of the algorithm and the computational cost
is much lower than the finite volume version. As tested, a finite volume WENO scheme
is usually 4 times more expensive in 2D than a finite difference WENO method due to
many flux calculations at the Gaussian points of a cell interface. Therefore, in simple
geometry cases, the finite difference WENO scheme is the top choice. The most widely
used WENO scheme is the fifth order WENO method [10]. In comparison with other
high-order methods, such as discontinuous Galerkin method (DG), the WENO scheme is
much more robust and reliable.

The main steps of finite difference WENO scheme are the WENO reconstruction for
the fluxes at the cell interface and the Runge-Kutta time stepping to update the flow
variables. In the WENO reconstruction, a stencil-weighted technique is used to avoid
cross-shock interpolation so as to reduce spurious oscillations. Instead of choosing the
smoothest stencil out of many candidates to get the rth order accuracy in the ENO re-
construction, the WENO uses a convex combination of all candidates by assigning a
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smoothness-dependent weight to each stencil and results in a (2r—1)th order accuracy.
The WENO reconstruction is more accurate, efficient and stable than the ENO reconstruc-
tion.

So far, the WENO schemes have found wide applications. The general impression
is that the WENO scheme is not sensitive to the fluxes used, such as Lax-Friedrichs or
Steger-Warming. The full accuracy of the scheme mainly depends on the order of the re-
construction. One of the purpose of the current paper is to test the effect of flux functions
on the performance of high-order schemes. It turns out that besides the high-order ini-
tial reconstruction the flux modeling also plays an essential role to capture accurate flow
evolution, and to reduce the sensitive dependence of the solution on the initial recon-
struction, especially in a barely resolved flow region. All flux functions are equivalent in
a well-resolved flow region, because the flux consistency plays a dominant role here. But
their performance may deviate from each other in not well-resolved cases, such as 3 or 4
points inside a boundary layer. Currently, in order to increase the accuracy of the WENO
scheme, many attempts have been tried to develop hybrid schemes, where the WENO is
used in the discontinuous region and high-order compact scheme is used in the smooth
region [13,18]. The aim of the hybrid scheme is to basically develop a method which
could make a smooth transition between the upwind and central difference method, be-
cause the fundamental basis of the 1st-order Riemann solver for wave decomposition and
the flux splitting technique contradicts with the flow physics in the smooth region, where
the high-order spatial and temporal evolution are fully coupled. In the smooth region, the
traditional central difference approximation with Cauchy-Kowalevskaya technique is far
more appropriate to describe flow evolution than upwind concept. The Riemann solu-
tion is a low order dynamic model, which is needed to model discontinuous flow in order
to introduce enough dissipation. And this amount of dissipation is closely related to the
initial jump at the cell interface [26]. Without modifying the 1st-order Riemann dynamic
model, the development of high-order schemes becomes a game of reconstruction, since
the interface jump is the only freedom many high-order schemes are able to control. Un-
fortunately, there is no principle to design such an optimal and universal interface jump,
and this kind of research will be endless. In order to get out of this dilemma, the use of
a high-order dynamic evolution model, which could make a smooth transition between
the upwind and central difference scheme, is necessary. For a second order scheme for
the inviscid flow, we have such a high-order dynamic model, which is the generalized
Riemann solver and the gas-kinetic scheme [1,11].

In the past decades, a gas-kinetic scheme (GKS) based on the kinetic equation has
been developed for the modeling of gas evolution process starting from a discontinu-
ity [12,16,26]. Theoretically, the GKS does not target to solve accurately the gas kinetic
BGK model [2], but uses the kinetic equation to do the modeling around a cell interface.
In the GKS evolution, the whole process from particle free transport to the Navier-Stokes
(NS) or Euler solution formation has been recovered [9,28]. The flow regime of the gas
evolution depends on the ratio of time step to the particle collision time. In the smooth
flow region, based on the Chapman-Enskog expansion, a time dependent gas distribu-
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tion function corresponding to the NS or Euler solutions can be obtained accurately by
the GKS. This limiting formulation is basically the central difference method. In the dis-
continuity region, where the physical solution cannot be well resolved by the numerical
cell size, theoretically it is not necessary to know the precise “macroscopic” governing
equations here, because it is not needed to incorporate a precise amount of numerical
dissipation. But, in such a region the gas evolution model should follow a path which
is consistent with the physical one, such as keeping a non-equilibrium gas distribution
function at a cell interface to cope with the dissipative mechanism of a physical shock
layer [11,29]. This limiting case is the flux vector splitting upwind method. The advan-
tage of the GKS is that the flux function makes a smooth transition from a upwind (kinetic
scale) to a central difference (hydrodynamic scale) method.

Recently, based on the WENO reconstruction and high-order gas-kinetic solution
[12], a finite volume high-order WENO-gas-kinetic scheme (WENO-GKS) has been de-
signed and tested for multi-dimensional flows [15]. Different from the traditional WENO
scheme, the WENO technique is only used in the data reconstruction of the conservative
flow variables at the beginning of each time step. Starting from the high-order recon-
struction, a space and time dependent gas distribution function is obtained along the
tangential direction of a cell interface, from which the numerical flux is evaluated and
used in a finite volume scheme. In GKS, there is no need to use the Runge-Kutta time
stepping and Gaussian point integration along a cell interface for the update of flow
variables inside each control volume.

Among all WENO schemes we tested, the finite difference WENO method with Steger-
Warming flux splitting gives the best results. The detailed formulation of this WENO
scheme is presented in Section 3. In order to show the effect of a flux function on the per-
formance of high-order schemes, the numerical solutions of the finite difference WENO-
Steger-Warming scheme (WENO-SW) will be compared with that of the finite volume
WENO-GKS. The test cases are carefully chosen in order to test the accuracy, the shock-
capturing ability, the robustness, and the stability of the schemes. In order to eliminate
the numerical error due to the complicated geometry, all tests are conducted in rectangu-
lar meshes. The 5th-order WENO reconstruction is used on the characteristic variables
in the WENO-SW, and the same WENO reconstruction is used on the conservative vari-
ables in the WENO-GKS. The reason we use conservative variables for the WENO-GKS
is that the scheme is not sensitive to the variable used in the reconstruction, because the
evolution of the whole reconstructed curves will be followed dynamically in the flux
evaluation.

2 The 5th order WENO reconstruction

The 5th order WENO reconstruction on a uniform rectangular mesh is a standard recon-
struction method [20].
Assume that Q is the variable to be reconstructed. Q; is the cell averaged value in
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the ith cell. Q! and Q! are the two pointwise values reconstructed at the left and right
interfaces of the ith cell. The 5th WENO reconstruction is defined as,

2
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In this paper, in order to distinguish the effect of € on the numerical solution, we will use
different values of €. In the numerical tests, “EPS1” means € =107°% and "EPS2” refers to
e=1072.

For the high-order WENO-GKS, the reconstruction is directly applied on the con-
servative flow variables. The reason is that the reconstruction on the conservative or
characteristic variables will not effect the numerical solution much for the WENO-GKS.
However, for the WENO-SW, it is preferred to use the characteristic variables for the
accuracy and robustness purpose.

Besides the pointwise values at the cell interface, the WENO-GKS needs subcell reso-
lution, or flow distribution inside each control volume in order to get a time-dependent
gas distribution function at a cell interface. Based on the point-wise values and the con-
servation requirement inside each cell, an initial parabola-type flow distributions can be
constructed inside each cell [15].

3 Numerical methods

3.1 High-order WENO-gas-kinetic scheme
3.1.1 High-order gas-kinetic scheme

Here, we briefly introduce the construction of the high-order gas-kinetic scheme. For
those who are interested in the detailed derivation, please refer to [12] and [15].
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The BGK equation in 2-D is
ff+ﬁ-Vf=g—;f, (3.1)

where f is the gas distribution function and g is the equilibrium state approached by f,
V£ is the gradient of f with respect to X, ¥=(x,y), and il = (u,v) is the particle velocity.
The particle collision time 7 is related to the viscosity and heat conduction coefficients,
i.e., T=pu/p where y is the dynamic viscosity coefficient and p is the pressure. The re-
lation between the macroscopic quantities, such as mass density p, momentum density
(pU,pV), and energy density pE, and the distribution function f is

W= / / / pfdudode, (3.2)
where W= (p,oU,pV,pE)T, (U,V) is the macroscopic velocity of the fluid,

D=2 5,90) = (Lo s (247 +2)

d¢ =d¢1d¢y---dCk, and K is the number of degrees of internal freedom, ie., K= (4—
29)/(y—1) for 2-D flow and 7 is the specific heat ratio. Since the mass, momentum,
and energy are conserved during particle collisions, f and g satisfy the conservation con-
straint,

/ / / (9= f)pududodi=0, a=1,2,34, (3.3)

at any point in space and time. The integral solution of (3.1) is
t — /
F(X1,i1,&) = % / g(x! i, &) e /T o7 f (R—iit, i, &), (3.4)
0

where x' = ¥—ii(t—t') is the particle trajectory. The solution f in (3.4) solely depends on
the modeling of fy and g.

Based on the Chapman-Enskog expansion of BGK equation (3.1), up to the NS order
we can get the corresponding NS distribution function. Therefore, based on the initial
discontinuous data, at the cell interface X=(0,0), the initial NS distribution function fj in
the integral solution (3.4) is

(3.5)

é’y(f,ﬁ,g) :gé’y 11— T(all’yu +alz’yv+Al")]
+g¢ [ay —(((ay")?+di] Ju+ (ayay +di) v+ AV ay" +by")]x
+&¢ a5 —T((ay a5 +di)u+((a5) 2 +dz) v+ A ay +b5)]y

1 1
580" (@) + i)+ 280" (a3 +dzy)y* +4 (af'ay" +d)xy.  (3.6)
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Here gl and g}, are two Maxwellian distribution functions which correspond to the left
and right macroscopic variables respectively. For example, g} corresponding to W' =
(o', (o'Uh), (p'Vh),(p'E"))T has the form

!
g =p (A > eAl((u—Ul)2+(v—V1)2+i§2), (3.7)

where A! equals to m/ 2kT!, m is the molecular mass, k is the Boltzmann constant, and T"
is the temperature. For the modeling of the local equilibrium distribution function g, we
can use the Taylor expansion of the equilibrium state and get

-1 - 1 _
§(X,1il,8) =8 +8mx+gmy+gAt+ 58’(61_12+d11)x2+—g(ﬂ_22+d22)y2

2
+g(a1a2+d12)xy+2g(A2+B)t +3(Adi+b1)xt+g(Ad+by)yt,  (3.8)

where ¢ is the Maxwellian corresponding to the equilibrium macroscopic state W =
(0,(p0),(pV), (PE))T on the cell interface. Because of Eq. (3.3), at (¥,¢) = (0,0,0) we have

///gtpdudvdg W= /// £(0, ¢dudvd§+/// £5(0,i,¢)pdudodg. (3.9)

After the modeling of fy and g, the time (f) and tangential coordinate (y) dependent
distribution function along the cell interface is given by the integral solution (3.4).
The two terms of the BGK-NS solver in (3.4) are

t
1/g( ut' y—ot' ,i,&)e /Ty
TJo
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and ]
C —ut,y—ot,i,¢), u>0,
e T fo(—ut,y—ot,il,&) = ho(—uty qC) (3.11)
Crfi(—ut,y—ot,ii,¢), u<O0,
where
Ci=1—e™, C=(t+1)e /™" -1, Cz=t—1+T1e /™, (3.12a)

Cy=(—t*—2tt)e /™, Cs=-21t, Co=—7t(1+e /™), Cr=e /™.  (3.12b)

In any numerical simulation, numerical dissipation is necessary in order to cope with
the limited cell resolution. In order to add numerical dissipation but not change the flow
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property, in (3.12), we distinguish two particle collision times. One is the physical one
(t) which corresponds to the real collision time in the Chapman-Enskog expansion for
the Navier-Stokes solution, and another one is the numerical one (7,) which takes into
account the effect of initial pressure jump at the cell interface. As considered in [15], the
BGK-NS solver uses

T=u/p, Tu=p/p+BAXVAP —p'|/ (P +p"), (3.13)

where B is a constant parameter, Ax is the cell size, p is the pressure correspondmg to the
equilibrium state g, A is given in the equilibrium state §, and p' and p" are the pressure
jump at the cell interface in the initial reconstructed data.

The BGK-Euler solver is a special case when physical collision time 7= 0. In BGK-
Euler solver, the numerical collision time is defined by

Ty =ahxVA+BAXV AP =/ (P +p), (3.14)

where & and B are two constants. The reason for the above construction is the following.
For the inviscid flow, as mesh size goes to zero, T, will go to zero as well. Therefore, the
GKS converges to the Euler solutions. For well-resolved flow without initial discontinu-
ities, due to the small value of 7, the gas will converge to the equilibrium state quickly.
However, in the dissipative shock region, the particle collision time will take a much large
numerical value so as to capture the non-equilibrium numerical shock thickness, which
is on the order of cell size. This dynamics mimics the real physical process inside a shock
layer. This is equivalent to enlarging the physical shock thickness to the cell size scale
through the additional numerical dissipation by increasing the particle collision time.

The calculation of the coefficients all,aq,tﬁ,n-,Al,AV, A,--- in the distribution func-
tions are related to the high-order slopes of macroscopic variables, which are presented
in [15]. The integral solution (3.4) basically describes a gas evolution process from the
collision-less (upwind) transport to the equilibrium state evolution (central difference).
More specifically, the evolution covers from the kinetic scale (particle mean free path) to
the hydrodynamic scale (gradient of macroscopic variables) gas evolution.

3.1.2 Gas-kinetic flow transport

For a finite volume scheme, the fluxes across a cell interface are defined by

j / / / up Fdudod, (3.15)

where F = (F,,Fou, Fyv,Fop)T depend on the gas distribution function f in (3.4) at the cell
interface. For a rectangular cell bounded by the straight lines, x = x;_1,2, x = xj11/2,
Y=y 1,2 and y =y; 1,2, the update of the cell-average conservative variables W;; in-
side a control volume AxAy= (X;y1/2—Xi—1/2) X (Yj+1/2—Yj-1/2) from time step ¢, to t, ;1
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becomes

Wi =W+ /““/ Ax’ 1/2(tX) —Fii1(t,x) ] dxdt
if AxAy _ ] ] ’

Fp1 Ay]
Fo1ya(ty) = Fooa jo(£,y)]dyt, 3.16
AXAy/t,, / Ay] 172(t,y) = Fiy1/2(t,y)]dy (3.16)

where Fj_1/5(t,x), Fiy1/2(t,x), Fi—1/2(t,y), Fiy1/2(t,y) are the fluxes along the four cell in-
terfaces respectively. Because the time-dependent fluxes can be explicitly integrated
along a cell interface in the GKS, the final scheme presents a high-order flow transport
through the interface within a time step without using Runge-Kutta time stepping and
flux construction at Gauss points.

3.2 WENO-Steger-Warming scheme
The WENO-SW solves the hydrodynamic equations
Wi+F(W)x+G(W), =F"(W, Wy, Wy ) +G"(W,W,,W,),, (3.17)

where W is the conservative variables, F and G are the inviscid fluxes, and F? and GY are
the viscous fluxes. For a finite-difference scheme, we need to construct both inviscid and
viscous fluxes at the cell interface.

The following WENO scheme is the 5th order finite-difference WENO-Steger-Warming
scheme, where the Steger-Warming splitting [23] is used to obtain the inviscid fluxes at
the cell interface.

3.2.1 Inviscid flux reconstruction
The x-direction flux F can be decomposed as
F=RALW, (3.18)

where A =diag[A1,Az,-++,Ay] is a diagonal matrix with eigenvalues of 0F /oW, R is the
right eigenvector matrix and L is the left one, n is the number of the equations. Then, F
can be split according to

F=F"+F". (3.19)
In the Steger-Warming splitting,
FE=RATLW, A=A"T+A". (3.20)
and
AF =diag[Af,AS,-- AF] with  AF= ——— (i=1-m), (3.21)

where ¢ is a small constant. In our simulation, e=1.0e — 3.
For the construction of the numerical x-direction flux Fi 1,5 at the cell interface
(xi+1/2,y;) of the cell (i,j), we use the following steps.
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1. Split the fluxes F;;; (I=—2,--+,3) in the surrounding cells to get FE . (I=-2,---,3).

i+l,j

2. Use the variable Wi, ;= (Wi,j+Wi+1/j)/2 to calculate the left and right eigenvector matrix
Lit1/2,j and Rjt1/2,; at the cell interface.

3. Change the conservative fluxes Pil’]. (I=—2,---,3) to the characteristic fluxes ﬁif—l,j (I=—-2,---,3)
by
“y n B
Fi=LivipFy, (1==2,-3).

4. Use the 5th order WENO reconstruction (see Section 2) on the characteristic fluxes ﬁiﬁlj

(1= _2/..-,3) to get the characteristic flux F‘iﬁl/zj’ and calculate the final characteristic flux

_ Pt F—
Fivi2j=Fl 10t Fiia o)

5. Construct the fluxes for the conservative variables at the cell interface by
Fit172j=Riv1/2Fi11/2

In a similar way, we can get the y-directional numerical flux éi,j+1 /2 at the cell inter-
face (xi,Yj+1/2)-

3.2.2 Viscous flux reconstruction

The viscous fluxes F? and GY are related to the derivatives of flow variables. For the
NS equations, we need to calculate Ty, Uy, Uy, Vy and V,, in order to get the x-direction
viscous flux F?, where T is the temperature, U is the x-direction velocity, and V is the
y-direction velocity. So, the basic step is to construct the derivatives of a variable 4.

Firstly, in each cell (i,j), we use a 6'"-order central difference to calculate the deriva-
tive, i.e.,

(3.22)

07\ _ 45(qit1,j+qi-1) —9(qiva; —Gi2j) T i3 —Gi-3
0x ) ;i 60Ax '

Then, with all the derivatives, we can calculate the x-directional and y-directional viscous
fluxes F/; and GJ; in each cell. Finally, the numerical viscous fluxes at the cell interfaces

can be calculated by the 6th order central interpolation

v v _ v v v v
SRS 37(E}j + ) ~8(E i_léjo +E o)) HE o+ E 3] (3.23a)
oo GGG+ GY ) TG0+ Cn
ij+1/2~= 0 . )
3.2.3 Time evolution
The final numerical fluxes at the cell interface are denoted by
]:_H—l /2, = Ai-&-l /2, —ﬁzﬂl /2,7 (3.24a)

Gijr12=Gijr12= Gl (3.24b)
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With the above numerical fluxes, we can get the increment

Fiv1pj—Fic1/2) n gz‘,j+1/2 - gz‘,jfl/z

AW, j= Ay Ay (3.25)
A 3"-order TVD Runge-Kutta method is used to finish the time evolution,
Wz-(,}) = Wi — AtAW; ;(W"), (3.26a)
W = ZWZZ + 31 W — ataw; (WD), (3.26b)
Wit = % Wi+ % Wi — AtAW, (W), (3.26¢)

4 Numerical examples

For all tests in this paper, the time step is determined by the CFL condition with CFL
number 0.5.

4.1 Mach 3 step problem

The Mach 3 step problem was first proposed by Woodward and Colella in [25]. The com-
putational domain is [0,3] X [0,1]. A step with height 0.2 is located at x=0.6. The upstream
velocity is (U, V) =(3,0). The adiabatic slip Euler boundary condition is implemented at
all boundaries.

As explained in [25], the corner of the step is the center of a rarefaction fan and it
is a singular point of the flow. The flow will be much affected by the numerical errors
generated just in the neighborhood of this singular point. Almost for all WENO schemes,
in order to get better results, a special treatment introduced in [25] has been applied. Or,
a refined mesh is used around the corner. In order to avoid confusion and compare the
results of the WENO-GKS and the WENO-SW truthfully, there is no special treatment
anywhere in the current study. The parameter € =10~° in the 5th order WENO recon-
struction is used. In the WENO-GKS, o« =0 and =100 for numerical collision time in
(3.14).

Figs. 1, 2 and 3 present the numerical solutions from both WENO-SW and WENO-
GKS with different number of mesh points, i.e., 120 x40,60x20, and 30 x10. All these
results are consistent with the flow structures in [25]. Based on the these figures, the
WENO-SW gives a large tilted Mach stem above the up surface of the step, and the
WENO-GKS presents a much straighter and shorter one. After a few shock reflections,
the shock front of the WENO-SW gets smeared and disappeared in the case with 30 x 10
mesh points case. But, for the WENO-GKS, the shock reflection can be observed clearly
in the coarse mesh case. This illustrates that WENO-SW has large numerical dissipation
in comparison with WENO-GKS. In order to understand why the WENO-SW has a tilted
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Figure 1: Mach 3 step problem: density distribution at t =4.0 with 120 x40 mesh points by the WENO-GKS
(upper one) and the WENO-SW (lower one). In each figure, there are 50 contours from 0.5 to 5.
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Figure 2: Mach 3 step problem: density distribution at t =4.0 with 60x20 mesh points by the WENO-GKS
(upper one) and the WENO-SW (lower one). In each figure, there are 50 contours from 0.5 to 5.

Mach stem, the WENO-GKS is tested for the NS solution with Reynolds number 1000,
but with the Euler boundary condition. Fig. 4 shows the comparison of WENO-SW for
the inviscid flow and WENO-GKS for the viscous flow. It shows that the solution given
by the WENO-SW is more close to a viscous solution. This indicates again that a high
level of numerical dissipation exists in the WENO-SW.
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Figure 3: Mach 3 step problem: density distribution at t =4.0 with 30x 10 mesh points by the WENO-GKS
(upper one) and the WENO-SW (lower one). In each figure, there are 50 contours from 0.5 to 5.
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Figure 4: Mach 3 step problem: density distribution at t =4.0 with 120 x40 mesh points. Upper one: NS

solution with Reynolds number 1000 by the WENO-GKS. Lower one: Euler solution by the WENO-SW. In each
figure, there are 50 contours from 0.5 to 5.

4.2 Isentropic periodic vortex propagation

This is a test for the accuracy of the Euler solutions (see [13,20]). The initial condition is
given by

K — _
(U500, V (x,0) = (1) #5307 (7,9,

—1)x2
T('x’ylo):l_(,)/&yin)z’{el_rzl S(x/ylo)zll
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Figure 5: Isentropic periodic vortex propagation: density distribution at t=10 (1 period) by the WENO-GKS
(WGKS) and the WENO-SW (WSW).
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Figure 6: Isentropic periodic vortex propagation: density distribution at f=100 (10 periods) by the WENO-GKS
(WGKS) and the WENO-SW (WSW).

where the temperature T and the entropy S are related to the density p and the pressure
pby

P g_F
P p7
and (%,7) = (x—5,y—>5), r¥> = x> +7?, and the vortex strength x =5. The computational
domain is [0,10] x [0,10]. The periodic boundary condition is used in both directions.
The numerical results with 80 x 80 and 40 x40 cells at t =10 (1 period) and t =100
(10 periods) are shown in Figs. 5 and 6 for both WENO-SW and WENO-GKS. In order
to show the relationship between the parameter € in the WENO reconstruction and the
accuracy of the numerical solution, we test this case with two different €, which are EPS1
(€=107%) and EPS2 (¢ =10"2). Theoretically, a large value of € presents a reconstruction
with more equally weights for different stencils. For a smooth flow, a small € makes the
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reconstruction to reduce to a 3rd order interpretation. A larger € balances the weights of
different stencils and make the reconstruction to be close to the 5th order interpolation.
As shown in Figs. 5 and 6, for such a smooth flow, in general, the reconstruction with
EPS2 will give more accurate and less dissipative results than that from EPSI1 for both
WENO-SW and WENO-GKS. At the same time, for both meshes the results from WENO-
GKS are more accurate than these from WENO-SW, especially at a mesh size 40 x 40 and

=100, see Fig. 6. At time t =10 and 40 x40 mesh points, see Fig. 5, EPS1 introduces
numerical dissipation and presents undershoot for both WENO-SW and WENO-GKS.
However, with EPS2, the WENO reconstruction introduces overshoot for both schemes.
But, in both cases due to the time accurate gas evolution model in the gas-kinetic scheme,
the WENO-GKS could increase the undershoot and decrease the overshoot in compari-
son with WENO-SW. In other words, the WENO-GKS has a better capacity to drive the
solution in the correct direction due to the participation of the subcell flow distribution
in the construction of the dynamical flux function. More specifically, the gas-kinetic flux
function does not only depend on the flow variables at the cell interface, but also takes
into account the whole curve evolution around the interface.

Based on the above test, we can clearly realize that even though the gas-kinetic scheme
is not solving the inviscid Euler equations directly, it gives accurate inviscid solution.
In general, the numerical dissipation of the gas-kinetic scheme is less than the schemes
based on the Riemann solvers, since the GKS can make a smooth transition from the up-
wind to the central difference. This is one of the reason for the reduction of numerical
dissipation in GKS in the smooth flow region.

4.3 Cavity flow

The cavity flow at low Mach number is a standard test case for validating incompress-
ible or low speed NS flow solvers. This is also a good test case for the shock capturing
scheme in validating its capacity in capturing the Navier-Stokes solutions, especially with
the non-linear limiters involved. For a directional splitting finite volume scheme, it will
be difficult to present an accurate viscous solution with strong vortex structure. Fortu-
nately, the finite difference WENO-SW is an intrinsic multi-dimensional scheme due to
its simultaneous evaluation of dx and dy terms of the NS equations at a grid point. At the
same time, the finite volume WENO-GKS has a multi-dimensional flux function as well,
where both x- and y-direction flow derivatives contributes to the flux in the interface
normal direction.

The flow is bounded by a unit square and is driven by a uniform translation of the
top boundary. In the simulation, the diatomic gas y=1.4 is considered. The boundary is
isothermal and nonslip, and the flow condition is Ma = 0.3 and Re = 3200, where Ma is
the Mach number and Re is the Reynolds number. Since the benchmark solution is from
incompressible NS equations, in order to avoid kinematic dissipation [6,27], most simu-
lations in the past are based on the numerical methods for the incompressible equations
or the artificial compressibility ones, where a continuous initial reconstruction across a
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cell interface is assumed. However, here we are going to use the same shock capturing
WENO reconstruction in the cavity simulation. This is challenge for any shock captur-
ing NS flow solver, because the cell interface discontinuity may generate large numerical
dissipation.

In order to get the best results for the WENO-SW, we tested many boundary condi-
tion treatments and finally choose the following reconstruction. The special treatment is
the following. The temperature and velocities are given directly since the boundary is
isothermal and nonslip. Other data at the boundary are extrapolated from the flow. For
the WENO-SW, the three layer interfaces close to the cavity wall but inside the compu-
tational domain are specially treated. For the first layer cell interface, a 3rd-order extrap-
olation is used to reconstruct the conservative variable fluxes. For the second interface,
a 4th-order interpolation is used to reconstruct the conservative variable fluxes. For the
third interface, a 5th-order upwind interpolation is used to reconstruct the characteristic
fluxes. We use a 4th-order interpolation to reconstruct the viscous fluxes at all of the three
interfaces. For the WENO-GKS, the boundary treatment is relatively simple. A 5th-order
extrapolation for the conservative variables is used at the boundary.

Firstly, we compare the efficiency in the cavity simulation for both schemes. The
results are shown in Table 1. As shown in the table, the WENO-GKS is about 4 times
slower than the WENO-SW. This shows that the speed of WENO-GKS is similar to a finite
volume WENO scheme. As shown in [21], the computational cost of the finite volume
WENO scheme is indeed at least 4 times more expensive than the finite difference one in
a two-dimensional simulation.

Table 1: Average computational time for one time-step.

CPU time (seconds) | WENO-GKS | WENO-SW
33 x 33 cells 1.8776e-002 | 4.3276e-003
65 x 65 cells 7.4369e-002 | 1.6433e-002

For the cavity flow simulations, we use three sets of meshes, which are 101 x101,
65 x 65, and 33 x 33 for both schemes. Fig. 7 shows the distributions of streamline for both
schemes with a mesh of 65x 65 points. Except around the up left corner, the streamlines
from both WENO-SW and WENO-GKS are close to each other.

The results of U-velocity along the vertical symmetric line at x =0.5 and V-velocity
along the horizontal symmetric line at y=0.5 with different mesh sizes will be presented
in detail. Fig. 8 shows U and V velocity distributions for a mesh with 101 x 101 points.
The benchmark solution is from [5,24]. As shown in this figure, the results from both
WENO-SW and WENO-GKS are consistent with the reference solutions. The reconstruc-
tion with EPS1 presenting a better shock capturing property turns out to be more dissipa-
tive than those with EPS2. This is clearly observed in the V-velocity for the WENO-SW.
The WENO-GKS solutions are less sensitive to the values of €. At such a refined mesh,
it is hard to distinguish the two solutions from WENO-GKS. The overall solutions from
WENO-GKS are closer to the benchmark ones than the WENO-SW results.
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Figure 7: Cavity flow (Re=3200, Ma=0.3): streamlines with 65x 65 mesh points. The left one: streamline by
the WENO-GKS. The right one: streamline by the WENO-SW.
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Figure 8: Cavity flow at Re=3200 and Ma=0.3 with 101 x 101 mesh points. U-velocity along the vertical
symmetric line at x=0.5 (upper figure) and V-velocity along the horizontal symmetric line at y=0.5 (lower
figure) by the WENO-GKS(WGKS) and the WENO-SW(WSW). The benchmark solution is from [5].
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Figure 9: Cavity flow at Re=3200 and Ma = 0.3 with 65x65 mesh points. U-velocity along the vertical
symmetric line at x=0.5 (upper figure) and V-velocity along the horizontal symmetric line at y=0.5 (lower
figure) by the WENO-GKS (WGKS) and the WENO-SW (WSW). The benchmark solution is from [5].
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Figure 10: Cavity flow at Re =3200 and Ma = 0.3 with 33 X33 mesh points. U-velocity along the vertical
symmetric line at x=0.5 (upper figure) and V-velocity along the horizontal symmetric line at y=0.5 (lower
figure) by the WENO-GKS (WGKS) and the WENO-SW (WSW). The benchmark solution is from [5].

As the mesh points reduce to 65 x 65, the results from both scheme are shown in Fig. 9.
As seen in this figure, the distinction between the results from different schemes and
different € becomes much clear. Same as Fig. 8, the schemes with EPS1 present more
dissipative results than that using EPS2. Both results from WENO-SW with EPS1 and
EPS2 are worse than the corresponding ones from WENO-GKS. This figure confirms the
previous conclusion that the WENO-GKS has less numerical dissipation than WENO-SW.
The WENO-SW is more sensitive to the WENO reconstruction.

Fig. 10 shows the results with a mesh of 3333 points. Even though the solution
from WENO-SW deteriorates quickly, the general conclusion is the same as that from
the previous figures. It is surprising that with EPS2, even with such a coarse mesh the
WENO-GKS can present very accurate solution. A small € increases the shock capturing
capacity, but does introduce more numerical dissipation, such as reducing the peak V
velocity around the left boundary for both schemes. However, with such a coarse mesh,
the boundary layer thickness of WENO-GKS is still correct. The solutions inside the
cavity can be kept much better by the WENO-GKS.

Theoretically, the cavity flow should reach a steady-state solution, where the solution
differences at time (t—4t) and t should become smaller and smaller as ¢ increases, and
Ot is a fixed time interval. Hence, we can check the time-convergence rate of a scheme in
this case. Fig. 11 shows the error defined by

Yij

p(xi/yjlt) _p(xi/yjlt - 10) ‘

1N /
where p is the density, N is the total number of mesh points. For the WENO-GKS, the
error decreases continuously in the case with 65x 65 mesh points. But, it keeps a con-
stant value around 10° in the case with 33 x 33 mesh points. The WENO-SW has a much
larger error than WENO-GKS. With a mesh size 65 x 65, the error from WENO-SW keeps
increasing with time. The main reason for the good performance of gas kinetic scheme

Error(t) =
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Figure 11: Cavity flow at Re=3200 and Ma=0.3. The convergence history of the numerical solution with mesh
sizes 65X 65 and 33 x 33 by the WENO-SW (WSW) and the WENO-GKS (WGKS) schemes.

is that it gives a NS solution directly from a single initial reconstruction without splitting
the inviscid and viscous terms. For the WENO-SW, the two flux construction are based
on two different initial flow condition. At a refined mesh, the initial data for the con-
struction of inviscid and viscous terms in the WENO-SW are close to each other, and the
results become acceptable. However, as the mesh points are reduced, the initial data for
the inviscid and viscous terms will deviate away each other for the WENO-SW due to
their different construction. As a result, the inconsistency in the evolution model from
two different initial data prevents the WENO-SW from converging. To keep a consistent
discretization for the inviscid and viscous terms of the NS equations is a challenge prob-
lem for any high-order scheme, especially in the regions where the flow structure can be
barely resolved. This problem will persist because in a practical flow simulation not all
flow structures can be well-resolved, such as the turbulence. Therefore, much attention
should be paid to develop un-splitting high-order methods for the NS equations.

The cavity case clearly demonstrates the superiority of the WENO-GKS over the
WENO-SW. Even though it is more expensive, the WENO-GKS is much more accurate
and robust. Certainly, there are many 5th WENO schemes. The scheme we tested here
may not be an optimal one. In order to reduce a systematic error due to biased selection
of WENO schemes, we also tried the WENO methods in [8, 19]. The WENO-SW solu-
tions presented in the current paper are more accurate than those WENO solutions in the
literature. In [8,19], the cavity solutions from other WENO schemes are presented.

5 Conclusion

In this paper, two high-order WENO-type schemes are tested in a few cases from smooth
vortex propagation to the strong shock interactions. The schemes compared are the fi-
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nite difference WENO-Steger-Warming scheme and the finite volume WENO-gas-kinetic
scheme. Since the main purpose of this comparison is to figure out the importance of a
flux function on the accuracy, robustness, and the stability of a numerical method, both
schemes are based on the same 5th-WENO reconstruction. Any difference is solely com-
ing from the different modeling of the flux function.

The numerical results show that both WENO-SW and WENO-GKS yield quantita-
tively similar solutions and agree with each other when a sufficient number of mesh
points is used to resolve the flow structure. However, with the reduction of mesh points,
the WENO-GKS appears to have less numerical dissipation than the WENO-SW, and it
gives more accurate solutions in all cases. For the Navier-Stokes solution, the WENO-
GKS couples inviscid and viscous terms in a single flux evaluation from an initial WENO
reconstruction. However, the WENO-SW, like many other shock capturing schemes, uses
operator splitting approach to discretize the inviscid and viscous terms. Due to the dif-
ferent stencil used for the inviscid and viscous terms, in the cavity flow simulation, it
shows that the solution of the WENO-SW is more sensitive to the boundary treatment
or the reconstruction scheme. With a coarse mesh, the cavity simulation clearly shows
the superiority of the WENO-GKS in the capturing of flow structures in comparison with
the WENO-SW. Even with 3 mesh points in the boundary layer, the WENO-GKS seems
present an accurate viscous solution. Also, the WENO-SW has difficulty in obtaining
steady state solution. For the flow interaction from the coupled effect of transport, in-
viscid, viscous and heat conducting terms, the use of an operator-splitting approach in
a high-order scheme is problematic, especially in the barely resolved flow region. In
summary, the WENO-GKS is more robust and accurate than WENO-SW, but it is more
expensive. Due to its smooth transition from the upwind to the central difference in its
flux construction, the WENO-GKS is not sensitive to the reconstructed initial discontinu-
ities, because the whole reconstructed curve inside each cell will participate in the gas
evolution around a cell interface. It is noted that more accurate numerical solutions can
be obtained from GKS with the use of a large time step, i.e., a large domain will effect
the flux, because the whole curve inside each cell is more reliable than point-wise values
at the cell interface. In conclusion, besides high-order reconstruction, a high-order gas
evolution model is important in the construction of high-order schemes.
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