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Abstract. Despite the efficiency of trajectory piecewise-linear (TPWL) model order re-
duction (MOR) for nonlinear circuits, it needs large amount of expansion points for
large-scale nonlinear circuits. This will inevitably increase the model size as well as
the simulation time of the resulting reduced macromodels. In this paper, subspace
TPWL-MOR approach is developed for the model order reduction of nonlinear cir-
cuits. By breaking the high-dimensional state space into several subspaces with much
lower dimensions, the subspace TPWL-MOR has very promising advantages of re-
ducing the number of expansion points as well as increasing the effective region of the
reduced-order model in the state space. As a result, the model size and the accuracy
of the TWPL model can be greatly improved. The numerical results have shown dra-
matic reduction in the model size as well as the improvement in accuracy by using the
subspace TPWL-MOR compared with the conventional TPWL-MOR approach.

AMS subject classifications: 94C05, 93A15, 68U07, 68U20, 41A21
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1 Introduction

With the continuously increasing complexity of integrated circuits, fast simulation and
verification become an important part in the design flow. Model Order Reduction (MOR)
is one of the most promising approaches for fast simulation of complex systems. The
MOR techniques for linear time invariant systems have been well developed during the
past years [1–4]. On the other hand, the problem of nonlinear system model order reduc-
tion is generally much more difficult and challenging [5–7].
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Trajectory piecewise linear model order reduction (TPWL-MOR) method has been
considered as the standard model order reduction approach for nonlinear circuits. In
TPWL-MOR method [6], the nonlinear system is linearized around multiple expansion
points on its simulated state trajectories driven by some “training inputs”. The nonlin-
ear system is first approximated by the piecewise linear model around these expansion
points, and then reduced to a smaller macromodel by model order reduction approaches.
The TPWL-MOR has been widely applied in many areas including analog circuits [6,8,9],
MEMS [6, 8, 10], bio-chemical system [7], thermal analysis [11], computational fluid dy-
namics (CFD) [12], subsurface flow simulation [13], floorplanning [14, 15], modeling os-
cillators [16] and analog circuits mismatch analysis [17], etc.

There have been many efforts devoted to improving the accuracy and efficiency of the
TPWL-MOR approach. The trajectory piecewise linear model was extended to piecewise
polynomial model in [18, 19], which improves the accuracy by using higher order bases.
A wavelet-collocation based TPWL-MOR method was proposed in [20] to enhance time-
domain simulation accuracy. A novel transistor level macromodel was proposed in [21]
to enhance the coverage of the trajectories in high-dimensional state space for the non-
linear circuits. For finding the proper weighting function for the piecewise linear model,
a time-dependent weighting function was proposed in [22] which was shown to be com-
putationally cheaper, and a weighting scheme was to proposed in [23] to enhance the
stability of the reduced order model. For model order reduction of the piecewise linear
model, the moment-matching approach, TBR and POD were applied in [6], [8] and [24],
respectively. A localized reduction approach was developed in [25], and a nonlinear
projection method was proposed in [9, 26], which can reduce the nonlinear system to
much lower orders. A novel approach proposed in [27] is based on the quadratic-linear
representation of nonlinear systems, which can avoid the accuracy loss and reduce the
computational cost of trajectory piecewise linear approximation for a very wide range of
nonlinear circuits.

One of the key steps in TPWL-MOR approaches is the interpolation of nonlinear sys-
tems in high dimensional state space. Although TPWL-MOR method avoids the expo-
nential explosion in computational cost [6], it still needs a large amount of expansion
points to cover the state trajectory of large-scale nonlinear systems. Despite many great
efforts to improve the efficiency and accuracy of the TPWL model, there are very few
works focusing on the direction of reducing the number of expansion points to improve
the efficiency of the high-dimensional interpolation in TPWL-MOR.

The problem of high-dimensional interpolation has been studied for many decades
in computational science. A novel approach that has been proposed for solving the
multi-dimensional partial differential equation (PDE) is based on the ANOVA decom-
position and expresses the multi-dimensional function as a combination of the functions
of some subgroups of its dimensions [28]. Inspired from this work, the subspace TPWL-
MOR approach is proposed in this paper to improve the efficiency and accuracy for the
high-dimensional interpolation in TPWL-MOR methods. The major advantage of the
subspace TPWL-MOR is that the number of expansion points for the interpolation of



X. Pan et al. / Commun. Comput. Phys., 14 (2013), pp. 639-663 641

high-dimensional nonlinear systems can be greatly reduced, which leads to much smaller
model size as well as less simulation time of the reduced TPWL model. Meanwhile, the
effective region of the subspace TPWL model can be generally larger than that of the con-
ventional TPWL model, which also improves the accuracy of the resulting reduced-order
model.

The idea of subspace TPWL-MOR can be implemented from the system level and the
circuit level as proposed in this paper based on the sub-circuit partition. The system-level
subspace TPWL approach is based on the system equation decomposition. The circuit-
level subspace TPWL approach is based on the port-preserving model order reduction,
which further reduces the model size for the module-based design of nonlinear circuits.

The rest of the paper is organized as follows. The conventional TPWL-MOR method
is reviewed in Section 2. The idea of the proposed subspace TPWL approximation is
presented in Section 3. The system-level subspace TPWL-MOR is developed in Section
4, while the circuit-level subspace TPWL-MOR is developed in Section 5. Some remarks
are addressed in Section 6. The numerical results will be demonstrated in Section 7,
which show great improvement in both efficiency and accuracy of the proposed methods
compared with the conventional TPWL-MOR method. Finally, the conclusions are drawn
in Section 8.

2 Trajectory piecewise-linear model order reduction

Generally, a nonlinear circuit can be formulated as the following nonlinear ordinary dif-
ferential equation (ODE),

d(g(x(t)))

dt
+ f (x(t))=Bu(t), (2.1)

where x(t)∈Rn is a state variable vector representing the node voltages and branch cur-
rents of the circuit at time t, B∈Rn×p is the input matrix and u(t)∈Rp is the input signals.
Function g : Rn →Rn and function f : Rn →Rn are nonlinear vector-valued functions rep-
resenting the charges of the nonlinear capacitance elements and the currents of nonlinear
resistance elements, respectively. The idea of TPWL is to represent the nonlinear sys-
tem (2.1) by its piecewise-linear approximation, and reduce the order of the resulting
piecewise-linear system by the MOR techniques that have been developed for the linear
time-invariant systems.

Let {x̂i; i=1,··· ,N} denote some expansion points of x in the state space. The nonlin-
ear system in (2.1) can be approximated by its linearized models around these expansion
points,

d

dt
(g(x̂i)+Ci ·(x− x̂i))+( f (x̂i)+Gi ·(x− x̂i))=Bu(t), (2.2)

where Ci ∈ Rn×n and Gi ∈ Rn×n are the Jacobian matrices of nonlinear function g(x)
and f (x) evaluated at the state x̂i. Given some state-dependent weighting functions
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{wi(x); i=1,··· ,N} for the expansion points {x̂i; i=1,··· ,N}, the original nonlinear sys-
tem in (2.1) can be approximated by the “piecewise linear model” as

N

∑
i=1

wi(x)(Ci
d(x(t))

dt
+Gix(t)+ Ii)=Bu(t), (2.3)

where Ii = f (x̂i)−Gi x̂i. The weighting function can be defined as wi(x) = e−β||x−x̂k
i ||/m,

where β takes the constant value and m is the minimal distance between x and the ex-
pansion points {x̂k

i } [6].
For model order reduction, a projection matrix V ∈ Rn×q is calculated by combining

the Krylov subspaces of the linearized systems in (2.2) at expansion points [6], as sum-
marized in Algorithm 2.1. With the projection matrix V, the reduced-order model of the
nonlinear circuit (2.1) can be obtained as

N

∑
i=1

w̃i(x̃)(C̃i
d(x̃(t))

dt
+G̃ix̃(t)+ Ĩi)= B̃u(t), (2.4)

where w̃i(x̃)=wi(Vx̃) for i=1,··· ,α, C̃i=VTCiV, G̃i=VTGiV, Ĩi=VT Ii and B̃=VTB. The
method proposed in [8] follows the same idea of trajectory piecewise linearization, but
employs the TBR algorithm to generate the projection basis.

Algorithm 2.1: Algorithm for the projection basis V

1: Let Vagg =[ ], i=0.
2: for i=1 to N do

3: Construct q-th order orthogonal Krylov bases V1 and V2 from the q-th order Krylov subspaces,

span{V1}=Kq(G−1
i Ci,G

−1
i Bi) and span{V2}=Kq(G−1

i Ci,G
−1
i Ii).

4: Vagg=[Vagg, V1, V2, x̂i]
5: end for

6: V
′
agg= svd(Vagg)

7: V= Columns of V
′
agg corresponding to singular value greater than ǫ

One of the key steps in TPWL model order reduction is the piecewise linear approxi-
mation in (2.3), which is actually a high-dimensional interpolation problem since x∈Rn.
High-dimensional interpolation based on full tensor product suffers from the “curse of
the dimensionality” [28], i.e. the computational cost increases exponentially w.r.t. the
dimensionality. Take the nonlinear system in (2.1) for example, the interpolation of non-
linear function f (x) and g(x) based on the full tensor product needs mn expansion points,
where m is the number of expansion points for each dimension and n is the dimension of
the state variable x.

To avoid this exponential increasing in the computational cost, the expansion points
{x̂i; i=1,··· ,N} in TPWL are selected from the state trajectory instead of uniformly dis-
tributed in the state space [6]. Note that the linearized models in (2.2) are only accurate
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near the expansion points. In order to cover as much reachable state space as possible
while keeping the number of expansion points small, TPWL approach imposes some
representative “training” inputs to simulate the nonlinear system and selects the expan-
sion points {x̂i; i=1,··· ,N} from its state trajectories [6]. The training inputs of TPWL are
generally defined by some current or voltage sources that are connected to the input ports
of the circuits. As a result, the number of expansion points can be dramatically reduced
compared with that of directly discretizing the whole n-dimensional state space. How-
ever, for large scale circuits, it still needs a large number of expansion points to cover
the state trajectories. In some cases, hundreds or even thousands of expansion points
are needed, which will inevitably increase the computational cost and complexity of the
piecewise linear model in (2.3).

3 Subspace TPWL approximation: the idea

One strategy for solving the high-dimensional problems is to attack the “curse of dimen-
sionality” from the lower dimension. For example, the high-dimensional partial differen-
tial equation problems can be solved by the low-dimensional bases in ANOVA decompo-
sition [28]. This strategy can be applied here to reduce the complexity in trajectory linear
model interpolation.

I(t)

1 2

C1

r

id(v) C2id(v)

(a) Nonlinear circuit example

v1

v2

(b) State trajectory

Figure 1: Example of a two-node nonlinear circuit.

Take a very simple two-node nonlinear circuit in Fig. 1(a) as an example. The state

variables of this nonlinear circuit are x=
[

v1 v2

]T
, and the vector-valued functions f

and g in the system equation (2.1) can be formulated as

f (x)=

[ v1−v2
r +id(v1)

v2−v1
r +id(v2)

]

, g(x)=

[
C1v1

C2v2

]

, (3.1)

where id(v)= e20v−1 is the current model of the two diodes. r is the resistance, C1 and
C2 are capacitances, as shown in Fig. 1(a). The RHS of system equation (2.1) is Bu(t)=
[

I(t) 0
]T

.
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v1
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(a) Conventional TPWL

v1
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vl2

vr2

(b) Subspace Interpolation for TPWL

Figure 2: The idea of subspace TPWL.

Given a damping sinusoidal current I(t) as the training inputs, the state trajectory of
this two-node circuit is a spiral in two-dimensional state space as shown in Fig. 1(b). The
TPWL approach selects the expansion points from the state trajectory. At each expansion
point, the nonlinear system is approximated by its linearized model in (2.2). The effective
regions of the linearization models at the expansion points are represented by the circles
in Fig. 2(a). In this case, about 14 expansion points are needed to cover the whole state
trajectory.

On the other hand, since the current model of each diode only depends on its voltage,
the system equation can be reformulated as

[
1
r − 1

r

− 1
r

1
r

][
v1

v2

]

+

[
C1

C2

]
d

dt

[
v1

v2

]

+

[
id(v1)

0

]

︸ ︷︷ ︸

f 1(v1)

+

[
0

id(v2)

]

︸ ︷︷ ︸

f 2(v2)

=

[
I(t)

0

]

. (3.2)

To approximate the above system equation, it is more reasonable to use two one-
dimensional piecewise linear models to approximate f 1(v1) and f 2(v2), other than using
a two-dimensional piecewise linear approximation for f (x) in the original system equa-
tion (2.1). We can first project the trajectory into dimension v1 and dimension v2, and
select a few expansion points from the projected trajectories. The nonlinear function
f 1(v1) (or f 2(v2)) in (3.2) can then be approximated by the piecewise linear model at the
expansion points in dimension v1 (or v2) that is similar to (2.3). As illustrated in Fig. 2(b),
6 expansion points are selected in the interval [vl

1,vr
1] and 3 expansion points in [vl

2,vr
2].

As a result, the number of expansion points can be reduced from 14 to 9 in this case.
On the other hand, by decomposing the dependences on the state variables in nonlinear
functions, we can see that the effective region of the subspace TPWL model is actually
larger than that of the conventional TPWL model, as illustrated in Fig. 2(b), which means
higher accuracy of the proposed subspace TPWL approach.
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This idea of subspace TPWL approximation can be applied to more general nonlinear
circuits, based on the fact that 1) the system equation (2.1) of nonlinear circuits is gen-
erally formulated by the “stamping” procedure of Modified Nodal Analysis [29]; and 2)
the nonlinear model of each nonlinear device is generally local that depends only on the
voltages or currents of that device. A system-level and a circuit-level subspace TPWL-
MOR will be explained in the next two sections. The system level subspace TPWL-MOR
is based on the system partition of Eq. (2.1). For the module-based designs where the
nonlinear circuits are designed by some pre-defined modules and the inputs of the same
module are very similar, a circuit-level subspace TPWL-MOR is developed to further re-
duce the model size based on the fact that the multiple instantiations of the same module
can share the same reduced-order model.

4 System-level subspace TPWL-MOR

As shown in the example of Fig. 2, in order to reduce the number of expansion points,
the major idea of system-level subspace TPWL-MOR is to break the nonlinear system in
(2.1) into several small subsystems, each of which only depends on a small subset of the
state variable x.

!"#$%&'()#*"#$%&+

,-./0"&0-"1+2

!"#$%&'()#*"#$%&+

,-./0"&0-"1+345)##$06)#4

Figure 3: Example of nonlinear circuit structure.

It is natural to partition the nonlinear circuits based on its hierarchical/block struc-
ture, of which a typical example is shown in Fig. 3. This nonlinear circuit consists of two
sub-circuits, and the “connection” is a collection of all the common circuit nodes of the
two sub-circuits. In the following, we will use the example of Fig. 3 to develop system-
level subspace TPWL-MOR. A more detailed discussion about the circuit partition for
subspace TPWL-MOR will be given in Subsection 4.4.

4.1 Subsystem formulation

In circuit analysis, the system equation (2.1) is generally formulated by the so-called
“stamping” procedure of Modified Nodal Analysis [29], where each circuit component is
modeled as some linear or nonlinear functions of its node voltages or branch currents in
x. These linear or nonlinear functions represent the contribution of the circuit component
to the net currents or charges at the corresponding circuit nodes, which is “stamped” into
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f and g in Eq. (2.1). As a result, each element in f and g is actually a summation of the
current or charge models of the linear/nonlinear circuit components that connected to
the corresponding circuit node, as shown in the example of (3.1).

Therefore, based on the circuit structure, we can find a subsystem formulation for the
system equation (2.1). Take the circuit structure in Fig. 3 for example, the state variables

x ∈ Rn can be grouped into xb1, xb2 and xc as x =
[

xc xb1 xb2

]T
, where xb1, xb2 and

xc are the node voltages or branch currents within Sub-circuit 1, Sub-circuit 2 and the
“connection”, respectively. By properly arranging the sequence of the equations in (2.1),
the function vector f (or g) can be divided into two parts.

f =





f b1
c + f b2

c

fb1

fb2



=





f b1
c

fb1

0





︸ ︷︷ ︸

f 1

+





f b2
c

0
fb2





︸ ︷︷ ︸

f 2

, (4.1)

where fb1 and fb2 represent the currents of the linear/nonlinear resistances within Sub-
circuit 1 and Sub-circuit 2, respectively. f b1

c (or f b2
c ) represents the currents of the resis-

tances between the “connection” and Sub-circuit 1 (or Sub-circuit 2). Note that the circuit
model of each circuit element representing its current or charge is only related to its node
voltages or branch currents, e.g. the current of a resistance depends on the voltages at its
two nodes. We can find that the functions f 1 ( f 2) in (4.1) only depends on the state vari-
ables in xb1 and xc (xb2 and xc). The same decomposition can be applied to the function
vector g and yields g= g1+g2.

Therefore, based on the sub-circuit partition in Fig. 3, the LHS of (2.1) can be divided
into two parts.

[
d(g1)

dt
+ f 1

]

︸ ︷︷ ︸

S1(x1)

+

[
d(g2)

dt
+ f 2

]

︸ ︷︷ ︸

S2(x2)

=Bu(t), (4.2)

where S1 and S2 represent the subsystems of Sub-circuit 1 and Sub-circuit 2, respectively.

xk =
[

xc xbk

]T
for k=1,2 is the vector of state variables in Sub-circuit k and the “con-

nection”, and can be expressed as
xk =Pk ·x, (4.3)

where the “projection” Pk ∈Rnk×n (n and nk are the dimension of x and xk, respectively)
is a submatrix of identity matrix I∈Rn×n that selects the nk elements from x.

In general, if a nonlinear circuit has M sub-circuits, the system equation can be di-
vided into M parts as

M

∑
k=1

[
d(gk)

dt
+ f k

]

︸ ︷︷ ︸

Sk(xk)

=Bu(t), (4.4)



X. Pan et al. / Commun. Comput. Phys., 14 (2013), pp. 639-663 647

where Sk only depends on the state variables in the kth sub-circuit and its related “con-
nections”.

4.2 Subspace TPWL approximation

The subspace TPWL approximation is developed based on the subsystems Sk, k=1,··· ,M
in (4.4). Take the system formulation in (4.2) for example, similar to the linearization
model in (2.3), the piecewise linear model of the subsystem Sk can be approximated as

Sk(xk)≈
Nk

∑
i=1

wk
i (Pk ·x)

[

Ck
i

dx

dt
+Gk

i x+ Ik
i

]

, (4.5)

based on the expansion points {x̂k
i |i=1,··· ,Nk} in the subspace of xk, and the correspond-

ing weighting function wk
i (Pk ·x).

The expansion points x̂k
i in (4.5) are selected from the subspace trajectory as shown

in Fig. 2(b). Let the trajectory in the full state space be represented by a set of trajectory
points {x̂i|i=1,··· ,α} obtained from the circuit simulation given the training inputs (same
as the conventional TPWL approach). These trajectory points can be projected into the
subspace of xk by applying the “projection” Pk, that is Pk · x̂i for x̂i. The expansion points
for the kth subsystem approximation (4.5) are then selected from the projected trajectory
points as described in Algorithm 4.1.

Algorithm 4.1: Expansion Points Uk ={x̂k
i | i=1,··· ,Nk} for the kth subsystem approximation

1: Let Uk ={Pk x̂1}.
2: for i=2 to α do

3: if the error function ξ(Pkx̂i; Uk) is larger than the predefined threshold δ then

4: Add the trajectory point Pkx̂i to Uk.

5: end if

6: end for

Formally, the error function ξ(Pk x̂i; Uk) in Algorithm 4.1 can be defined by the er-
ror of TPWL approximation (4.5) at the projected trajectory point Pk x̂i substituting the
expansion points in Uk, which may need some efforts for calculation. To reduce the com-
putational cost, an alternation definition of ξ(Pk x̂i; Uk) is the distance function as in [6]. If
the minimal distance between the projected trajectory point and the selected expansion
points in Uk is larger than a predefined grid size δ, the projected trajectory point Pk x̂i is
added to set Uk. The grid size δ can be determined by the nonlinearity of the subsystems.
Take the nonlinear function e4x−1 for example, a grid size δ= 0.2 can actually produce
enough accuracy for the piecewise linear approximation in x∈ [0,1]. As a result, different
numbers of expansion points will be determined for different subsystems according to
their nonlinearity, which is more efficient and flexible for TPWL approximation.
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The weighting function wk
i (Pk ·x) can be defined according to that of the conventional

TPWL approaches.

wk
i (Pk ·x)= e−β||Pkx−x̂k

i ||/m, (4.6)

where β takes the constant value and m is the minimal distance between Pkx and the
expansion points {x̂k

i } as defined [6]. A typical value of β is 25 as explained in [6].
The nonlinear system in (2.1) can then be approximated by substituting (4.5) into (4.2).

In general, for M sub-circuits, the nonlinear system can be approximated by
[

M

∑
k=1

Ck(x)

]

︸ ︷︷ ︸

C(x)

·dx

dt
+

[
M

∑
k=1

Gk(x)

]

︸ ︷︷ ︸

G(x)

·x+
[

M

∑
k=1

Ik(x)

]

︸ ︷︷ ︸

I(x)

=Bu(t). (4.7)

where Ck(x), Gk(x) and Ik(x) are the piecewise linear models for the subsystems,

Ck(x)=
Nk

∑
i=1

wk
i (Pk ·x)Ck

i ,

Gk(x)=
Nk

∑
i=1

wk
i (Pk ·x)Gk

i ,

Ik(x)=
Nk

∑
i=1

wk
i (Pk ·x)Ik

i .

4.3 Model order reduction

The projection matrix V calculated in the conventional TPWL-MOR is actually an “aver-
age” of the Krylov bases at the expansion points, as summarized in Algorithm 2.1. The
Krylov bases [V1,V2] produced in Step 3 and 4 guarantee the moment matching of the
reduced system [3] at the corresponding expansion point, and the truncated SVD in Step
6 and 7 can be interpreted as finding an “average” of these Krylov bases.

The similar idea can be applied in subspace TPWL-MOR. Since the nonlinear system
can be approximated by the linearized system at the projected trajectory points as in (4.7),
it is reasonable to use those trajectory points that have been used in the subspace TPWL
approximation to calculate the “samples” of Krylov bases. In general, the total num-
ber of expansion points for subspace TPWL approximation is from several tens to a few
hundreds, which is sufficient to produce enough “samples” to calculate the “average”
projection matrix V for the reduced system. The reduced order model of (4.7) can then
be expressed as

[
M

∑
k=1

C̃k(x̃)

]

︸ ︷︷ ︸

C̃(x̃)

·dx

dt
+

[
M

∑
k=1

G̃k(x̃)

]

︸ ︷︷ ︸

G̃(x̃)

·x+
[

M

∑
k=1

Ĩk(x̃)

]

︸ ︷︷ ︸

Ĩ(x̃)

= B̃u(t), (4.8)
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1
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1

i
Gand

2

i
C

2

i
Gand

Figure 4: Matrix patterns of Jacobian matrices.

where

C̃k(x̃)=
Nk

∑
i=1

wk
i (PkVx̃)VTCk

i V,

G̃k(x̃)=
Nk

∑
i=1

wk
i (PkVx̃)VTGk

i V,

Ĩk(x̃)=
Nk

∑
i=1

wk
i (PkVx̃)VT Ik

i ,

and B̃=VTB. The weighting function for the reduced system is defined accordingly,

wk
i (PkVx̃)= e−β||PkVx̃−x̂k

i ||/m. (4.9)

For the calculation of reduced-order system, the coefficient matrices C̃k(x̃), G̃k(x̃) and
Ĩk(x̃) can be evaluated very efficiently since the Jacobian matrices Ck

i and Gk
i are all

sparse. Take the circuit partition in Fig. 3 for example, the matrix pattern of Jacobian
matrices as shown in Fig. 4 can help reducing the cost of the calculation of reduced order
model.

4.4 Circuit partition for subspace TPWL-MOR

In general, the circuit structure can be used to define the circuit partition for subspace
TPWL-MOR. Take a XOR circuit for example, its four sub-circuits are shown in Fig. 5.
(Node d1 in Sub-Circuit 1 is connected to node d1 in Sub-Circuit 3, node d3 in Sub-Circuit
2 is connected to node d3 in Sub-Circuit 3, etc..) Each sub-circuit has its own functionality,
that is, Sub-Circuit 1 calculates the inversion of A, Sub-Circuit 2 calculates the B̄ and B,
Sub-Circuit 3 evaluates A⊗B, Sub-Circuit 4 inverts the output of Sub-Circuit 3 and gets
A⊗B. Based on this circuit partition, the subspace TPWL-MOR can reduce the number
of expansion points and greatly improve the accuracy as will be shown in Section 7.

Actually, the circuit partition for subspace TPWL-MOR can be carried out automati-
cally. One observation from Fig. 2 is that, if two state variables xi and xj are uncorrelated,
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assigning the two corresponding circuit nodes to two different sub-circuit will help re-
ducing the number of expansion points in TPWL-MOR. One the other hand, if the two
circuit nodes are fully correlated, the state trajectory in Fig. 2 will become a straight line.
Subspace TPWL-MOR that separates the two correlated circuit nodes will not reduce the
number of expansion points. Based on this observation, we propose a “two-step” proce-
dure for finding the proper circuit partition for subspace TPWL-MOR.

1) Given the training inputs of the circuit, the correlation of two circuit nodes can be
evaluated by their simulated waveforms xi(t), xj(t).

cij =

∣
∣
∫

xi(t)xj(t)dt−
∫

xi(t)dt·
∫

xj(t)dt
∣
∣

√
[∫

x2
i (t)dt−

(∫
xi(t)dt

)2
][∫

x2
j (t)dt−

(∫
xj(t)dt

)2
] , (4.10)

which actually defines the similarity for each pair of the nodes.

The circuit nodes can first be categorized by the spectral clustering approach [31]
according to their correlation function cij. Take the XOR circuit for example, the circuit
nodes will be categorized into three groups, that is D1 = {d0,d1}, D2 = {d2,d3,d4} and
D3={d5,d6}.

2) Based on the results of Step 1), we can assign a tag to each circuit components
representing its “dimensionality”. For the example of Fig. 5, the tag of MOSFET M0 is
{D1} and the tag of MOSFET M6 is {D1,D2,D3}, etc.. The circuit partition can then be
defined by grouping the circuit components with the same tags into the same sub-circuit.

d1d0
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M1

Vdd

A

Sub-Circuit 1

d2 d3 d4

M2

M3

M4

M5

Vdd

B

Sub-Circuit 2

d5 d6

Vdd

M10

M11

A BÄ

Sub-Circuit 4

d1 d0d5

M6

M7

M8

M9

d3

d4

Sub-Circuit 3

Figure 5: Circuit partition in XOR circuit example.

It is very interesting that the resulting circuit partition of XOR circuit based on this
“two-step” procedure is actually exactly the same as Fig. 5.

5 Circuit-level subspace TPWL-MOR

An alternative approach to develop the subspace TPWL-MOR is to build the reduced-
order macromodel for each sub-circuit, assuming that the input of each sub-circuit can
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be predetermined by the “training inputs”. The advantage is that the hierarchical/block
structure of the nonlinear circuits can be preserved, and furthermore, the sub-circuits
with the same structure can share one macromodel which will further reduce the com-
plexity of the TPWL model.

5.1 Port-preserving MOR for sub-circuits

One of the major problems of conventional MOR approaches is that the circuit structure
like the external ports of the sub-circuits is not preserved in the reduced system. Once
the macromodels of the sub-circuits are obtained, it is difficult to combine them together
to generate the reduced-order model of the top-level circuit. A port-preserving MOR
approach for linear circuits is developed in [30]. The similar idea is applied here to derive
the reduced-order macromodels of the nonlinear sub-circuits.

As shown in Fig. 3, each sub-circuit is an individual circuit, of which the external ports
include some ports of the top-level circuit and some circuit nodes in the “connection”.
The system equation of each sub-circuit is similar to (2.1), i.e.

d(gk(xk(t)))

dt
+ f k(xk(t))=Bkuk(t), (5.1)

where xk(t)∈Rnk is the vector of the state variables of the sub-circuit, and gk, f k :Rnk→Rnk

are the nonlinear vector-valued functions of the sub-circuit. When two sub-circuits are
designed from the same module, they will have the same system equation (5.1).

The training inputs of the sub-circuit are represented by some current or voltage
sources that connected to the external ports of the sub-circuit, and are formulated as
Bkuk(t) in the system equation (5.1). Let {x̂k

j ; j=1,··· ,N′
k} denote some expansion points

at the simulated state trajectory. The TPWL approximation of the sub-circuit can be for-
mulated as

N ′
k

∑
j=1

wk
j (xk)(Ck

j

dxk

dt
+Gk

j xk+ Ik
j )=Bkuk(t), (5.2)

where Ck
j (or Gk

j ) are the Jacobian matrices of gk (or f k) evaluated at the expansion point

x̂k
j , Ik

j = f k(x̂k
j )−Gk

j x̂k
j , and wk

j (xk) is the weighting function.

A projection matrix Vk ∈ Rnk×qk can be calculated for system (5.2) based on the con-
ventional TPWL-MOR as described in Algorithm 2.1. (Here qk represents the reduced
order.) Suppose pk is the number of the ports of sub-circuit that need to be preserved
after the reduction. For simplicity, we assume that the first pk rows of the circuit equation
(5.1) represent the Kirchhoff Current Law (KCL) equations formulated at the pk ports of
the sub-circuit. The projection matrix Vk can then be split into two parts accordingly.

Vk=

[
Vk

1

Vk
2

]

,
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where Vk
1 ∈Rpk×qk and Vk

2 ∈R(nk−pk)×qk .

In order to preserve the ports in the reduced-order model of sub-circuit, a new pro-
jection matrix Wk is defined as

Wk =

[
Ipk×pk

0

0 Vk
2

]

,

where Ipk×pk
represents a pk×pk identity matrix. The state vector xk can also be divided

into two parts as xk =
[

xk
1 xk

2

]T
, where xk

1 represents the nodal voltages at the sub-

circuit ports, and xk
2 represents the nodal voltages of internal nodes. The new state vector

x̃k of the reduced-order model of the sub-circuit, which can be viewed as projecting xk

onto the subspace Wk, is expressed as

x̃k =WkT
xk =

[

Ipk×pk
0

0 Vk
2

T

][
xk

1

xk
2

]

=

[
x̃k

1

x̃k
2

]

, (5.3)

where x̃k
2 =Vk

2
T

xk
2. From Eq. (5.3), we can see that by using the projection matrix W, the

ports of the sub-circuit is preserved in the reduced-order model, while the internal nodes
of the sub-circuit is reduced.

The reduced-order model of the sub-circuit can then be formulated as

N ′
k

∑
j=1

w̃k
j (x̃k)(C̃k

j

d(x̃k)

dt
+G̃k

j x̃k+ Ĩk
j )= B̃kuk(t), (5.4)

where w̃k
j (x̃k)=wk

j (W
k·x̃k) is the weighting function of the reduced system, C̃k

j =WkT
Ck

j Wk,

G̃k
j =WkT

Gk
j Wk, Ĩk

j =WkT
Ik
j and B̃k=Wk T

Bk.

Since the ports of the sub-circuits are preserved in the reduced-order models, the
reduced-order model for the top-level circuit can then be derived by directly combining
the reduced-order models of the sub-circuits, as will be described in the next subsection.

5.2 Reduced-order model for the top-level circuit

The macromodels of sub-circuits can be viewed as physically connected in the reduced-
order model of the top-level circuits. Based on the “stamping” procedure of Modified
Nodal Analysis, the reduced-order model of the top-level circuit can be generated by
“stamping” the reduced-order macromodels of the sub-circuits into its system equation.

Let q denote the number of nodes in the reduced-order model of the top-level circuit,
and x̃ is the state vector. Note that the state variables of the macromodel of the sub-circuit
in (5.4) are only a subset of the top-level circuit. The first step of “stamping” procedure
is to augment the reduced-order macromodels in (5.4) to q dimensional systems. The
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corresponding q dimensional augmented system can be expressed as

N ′
k

∑
j=1

ṽk
j (x̃)(C̃k

j

dx̃

dt
+G̃k

j x̃+Ĩ k
j )= B̃ku(t). (5.5)

The augmented matrices C̃k
j , G̃k

j , and the augmented vector ĨK
j are calculated from C̃k

j , G̃k
j

and Ĩk
j as

C̃k
j (indk,indk)= C̃k

j , (5.6a)

G̃k
j (indk,indk)= C̃k

j , (5.6b)

Ĩ k
j (indk)= Ĩk

j , (5.6c)

where indk represents the indices of the nodes of the sub-circuit in the vector of state vari-
ables x̃. The augmented matrix B̃k is calculated similarly. The new weighting function
ṽk

j (x̃)=wk
j (Pk ·Wk x̃) is calculated from the weighting function w̃k

j (x̃k) in (5.4) based on the
“projection” Pk.

The reduced-order model for the top-level circuit is finally obtained by combining all
the augmented systems for the sub-circuits together.
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︸ ︷︷ ︸

G̃ ′(x̃)
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M

∑
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N ′
k

∑
j=1

ṽk
j Ĩ k
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︸ ︷︷ ︸

Ĩ ′(x̃)

=

[
M

∑
k=1

B̃k

]

︸ ︷︷ ︸

B̃′

·u(t). (5.7)

Instead of applying the model order reduction to the top-level circuit, the reduced-
order model of the original nonlinear circuit is constructed by combining the macromod-
els of sub-circuits. For module-based designs, the model size can be further reduced
taking advantage of the multiple instantiations of the same module in the circuit. Fur-
thermore, from Eq. (5.6) we can find that, the augmented matrices C̃k

j and G̃k
j in the

circuit-level subspace TPWL-MOR are not dense but significantly sparse. Therefore, the
reduced-order model of the circuit tends to be more sparse than the conventional TPWL
model, and the simulation of the reduced-order model will be more efficient.

6 Remarks

One common assumption for TPWL-MOR approaches is that the simulated state trajec-
tory has to cover most of the reachable state space. This depends on the selection of
the training inputs. Generally, they can be defined according to the current or voltage
sources that are connected to the input nodes of the circuits, or some pre-knowledge of
the circuits. Given the training inputs, the simulation of state trajectory may be computa-
tionally costly. A fast approximate approach was proposed in [6] that is able to reduce the
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simulation time for the state trajectory. As will be demonstrated by the example of asyn-
chronous counter in Section 7, the circuit partition in circuit-level subspace TPWL-MOR
can also help reducing the computational cost for state trajectory simulation. Neverthe-
less, the state trajectory is calculated only once in TPWL-MOR and the resulting reduced
model can then be used in the circuit design for analyzing the circuit performance.

An additional premise for subspace TPWL-MOR is that the nonlinearity of the system
can be efficiently separated, which actually requires the nonlinearity of each sub-circuit
to be dependent locally on the state variables. Nevertheless, this is generally true for
nonlinear circuits and many other nonlinear systems like bio-chemical systems, etc.. It
is also worth noting that, in circuit-level subspace TPWL-MOR, the number of ports of
each module is required to be smaller than the number of inner nodes (pk ≪ nk). This
is because the ports will be preserved in the reduced model and too many ports will
comprise the efficiency of model order reduction. For system-level TPWL-MOR, this

requirement can be relaxed to that M×nkmax
n is bounded, where M is the number of sub-

circuits, n is the number of state variables in the top-level circuit and nkmax =max{nk} is
the largest number of state variables in sub-circuits (cf. Appendix).

The two subspace TPWL-MOR approaches can actually be incorporated to solve the
model order reduction problem of large scale nonlinear circuits. In this case, the circuit-
level subspace TPWL-MOR is applied as the top level MOR approach, while the system-
level subspace TPWL-MOR combined with port-preserving technique is applied to the
MOR of each sub-circuit module. Since the external ports of sub-circuits are preserved
in the circuit-level TPWL-MOR, one important feature of the proposed subspace TPWL-
MOR approaches is that it can also preserve the hierarchical/block structure of the non-
linear circuits, which is quite important for nonlinear circuit design.

7 Numerical results

Numerical results will be illustrated in this section to demonstrate the efficiency and
accuracy of the proposed subspace TPWL-MOR approaches. All the experiments are
carried out on a UNIX workstation with 3.0-GHz CPU and 4-GB RAM.

7.1 Convergence of subspace TPWL approximation

The convergence behavior of subspace TPWL approximation is first illustrated using the
simple example of two-node circuit in Fig. 1(a). In this test case, the training input I(t)
for the two TPWL approximations is a damping sinusoidal function 20sin(t)exp(−0.05t),
which is also used as the testing input to estimate the errors of two TPWL approxima-
tions.

The standard deviation errors of the voltage waveform at node 2 in the conventional
and the subspace TPWL approximations are compared in Fig. 6. With the number of
expansion points increases, the subspace TPWL approximation converges much faster
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Figure 6: The standard deviation errors for the two-nodes circuit w.r.t. points number.

than the conventional TPWL approximation. The convergence rate is about O(N−2.1) for
the subspace TPWL approximation compared with O(N−1.8) for the conventional TPWL
approximation in this test case.

7.2 Efficiency and accuracy of subspace TPWL-MOR

The efficiency and accuracy of the subspace TPWL-MOR approach are further validated
through three test cases that come from real designs, including a XOR circuit, a nonlinear
transmission line and an asynchronous counter circuit. The system-level TPWL-MOR
approach is applied in the first two test cases, while the last one is an example of module-
based design and the circuit-level TPWL-MOR approach is applied.

7.2.1 XOR

The first test case is a XOR gate as shown in Fig. 5. In this experiment, a sinusoidal
signal and a pulse signal are applied to XOR gate’s two inputs as the training inputs.
The expansion points are extracted from the state trajectories in the full state space for
the conventional TPWL-MOR and the sub-state space for the proposed system-level sub-
space TPWL-MOR. To compare the accuracy of the two methods, a sinusoidal signal and
a pulse signal with different frequency and pulse width are used as testing inputs to the
nonlinear circuit.

The results in Fig. 7(a) have shown that, even with all 499 trajectory points from the
training trajectory, the conventional TPWL approach (before model order reduction) fails
to match the result of SPICE simulation. The functionality of the conventional TPWL
model is totally incorrect. On the other hand, the accuracy can be greatly improved by
the subspace TPWL-MOR approach. The nonlinear circuit can be reduced from 35 nodes
(including internal nodes of the MOSFETs) to 18 nodes by subspace TPWL-MOR, and the
simulation result fits SPICE simulation very well as shown in Fig. 7(b). In this case, the
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(a) Conventional TPWL (before MOR) (b) Subspace TPWL-MOR

Figure 7: XOR: time domain responses of the TPWL models compared with SPICE simulation.

number of expansion points that are used in subspace TPWL model is 90+23+26+38=177
for the four sub-circuits.

7.2.2 Nonlinear transmission Line

The second test case is a nonlinear transmission line as shown in Fig. 8, which is com-
posed of several repeated units of resistor, capacitor and diode. All the values of resistors
and capacitors are set to 1, and the constitutive equation of diode is id(v)= exp(40v)−1.
In this test case, the number of units is equal to 400, and the whole circuit is divided into
5 sub-circuits each containing 80 units.

...

...

1 2 3 N

r r r r

C
r

C C

( ) ( ) ( ) ( )

I(t)

C

Figure 8: Schematic of the nonlinear transmission line.

A square wave current with duty ratio 0.25 is used as the training input for the sub-
space and the conventional TPWL-MOR approaches, while a square wave current with
duty ratio 0.75 is used as the testing input. We have compared the number of expan-
sion points that is needed to achieve the general accuracy for both TPWL models. The
conventional TPWL-MOR method uses totally 731 expansion points, while the system-
level subspace TPWL-MOR method uses 33+27+23+13+13=109 for the five sub-circuits,
respectively. Totally, the subspace TPWL model uses only about 1/7 expansion points
compared with the conventional TPWL model.
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Table 1: Memory cost (model size) of reduced TPWL models.

test cases conventional TPWL model subspace TPWL model
Nonlinear Transmission Line 594KB 127KB

Asynchronous Counter 21.5MB 319KB

For model order reduction, the circuit is reduced from 402 nodes to 10 nodes in both
the subspace and the conventional TPWL-MOR. From Table 1, the model size of subspace
TPWL model is 127KB compared with 594KB of the conventional TPWL model. The
time domain responses of two TPWL models are compared with SPICE simulation in
Fig. 9(a). More careful comparison of the accuracy of two TPWL models are shown by
their logarithm errors in Fig. 9(b). The results in Fig. 9 show that even with 1/7 expansion
points, the subspace TPWL-MOR can be more accurate than the conventional TPWL-
MOR approach. This is mainly because of the larger effective region of the subspace
TPWL model. The simulation time in this test case is 8.0 seconds for the subspace TPWL
model compared with 23.3 seconds for the conventional TPWL model.

(a) Time domain responses (b) Logarithm errors

Figure 9: Nonlinear transmission line: time domain responses of TPWL models compared with SPICE simulation.

7.2.3 Asynchronous counter

The last test case is a module-based design of the asynchronous counter as shown in
Fig. 10(a). The circuit is composed of four D-Flip-Flops (DFF), of which the inputs are
clock signals. In the circuit-level subspace TPWL-MOR approach, each DFF is considered
as a nonlinear sub-circuit as shown in Fig. 10(b) and shares the same macromodel. A
square wave clock signal is used as the training input of the full circuit in Fig. 10(a) for
the conventional TPWL-MOR approach, and the sub-circuit of DFF in Fig. 10(b) for the
subspace TPWL-MOR approach.

In our experiment, the conventional TPWL-MOR uses totally 296 expansion points
while the circuit-level subspace TPWL-MOR can use only 31 expansion points for model-
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Figure 10: Asynchronous counter test case.

ing the DFF sub-circuit. Furthermore, unlike the coefficient matrices of the reduced-order
model in conventional TPWL-MOR which are all full matrices, the coefficient matrices in
reduced circuit-level subspace TWPL model are pretty sparse. The matrix pattern of the
coefficient matrices (C and G) in this test case is shown in Fig. 11. As a result, the size
of the reduced-order model from the subspace TPWL-MOR can be orders of magnitude
smaller than that of the conventional TPWL-MOR as listed in Table 1.
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Figure 11: Circuit matrices in circuit-level subspace TPWL-MOR are sparse.

For the model order reduction, the nonlinear circuit is reduced from 84 nodes to 68
nodes by the conventional TPWL-MOR approach, and can be reduced to 64 nodes by
subspace TPWL-MOR approach. The results of the circuit response of the testing input
are shown in Fig. 12(a), from which we can see that the subspace TPWL model is still
slightly more accurate than the conventional TPWL model. For the simulation time of
the subspace TPWL model, there would be some overheads due to the extra calculation
that is needed to “stamp” the reduced macromodels into the system coefficient matrices
in Fig. 11. The simulation time for the circuit-level subspace TPWL model is 59.9 seconds
compared with 85.2 seconds of the conventional TPWL model.

Furthermore, in TPWL-MOR approaches, the training input must be selected very
careful in order to cover as much reachable state space as possible. For each DFF in
Fig. 10(a), the circuit needs to experience both “falling” and “rising” during the training,
that is two periods of clock signal input for a DFF. In general, for a chain of M DFFs,
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(b) 2-period training inputs

Figure 12: Asynchronous counter: time domain responses of TPWL models compared with SPICE simulation.

the training input of 2M clock periods is needed to cover the state space, which increases
exponentially w.r.t. the circuit size. In this test case, the conventional TPWL-MOR ap-
proaches needs a training input with at least 16 clock periods, otherwise the result of the
resulting model will have totally incorrect functionality. On the other hand, the circuit-
level subspace TPWL-MOR can reduce the training time to only two clock periods, as
shown in Fig. 12(b). Therefore, the modeling time of the nonlinear circuits can also be
reduced by the circuit-level subspace TPWL-MOR approach. This becomes especially
important when the nonlinear circuit consists of a series of sub-circuits and the last one
is extremely difficult to be driven from the training inputs.

8 Conclusion

The system-level and the circuit-level subspace TPWL-MOR approaches are proposed in
this paper for the model order reduction of nonlinear circuits. Both of these approaches
are based on the idea of separating the nonlinear dependence on state variables in the
system formulation, which can greatly reduce the number of expansion points as well
as improve the accuracy. The system-level subspace TPWL-MOR approach can be ap-
plied to general nonlinear circuits. For module-based designs, the circuit-level subspace
TPWL-MOR approach can be applied to further reduce the model size taking advantage
of the multiple instantiations of the same module in the circuit.

The advantages of the proposed subspace TPWL-MOR approaches have been demon-
strated in the paper. The model size is greatly reduced compared with the conventional
TPWL-MOR method. In the module-based design of asynchronous counter, the model
size of the subspace TPWL model is about two orders of magnitude smaller than that of
the conventional TPWL model as shown in Table 1. This is also the main reason that the
simulation of subspace TPWL model can be much faster than the conventional TPWL
model. In addition to the reduction in model size, the accuracy of subspace TPWL model
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is also improved due to larger effective region in the state space. Last but not least, the
proposed subspace TPWL-MOR can preserve the hierarchical/block structure of nonlin-
ear circuits, which is very helpful in nonlinear circuit design.
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Appendix: A simple analysis of system-level TPWL-MOR

A simple analysis is presented here to show how the circuit partition affects the efficiency
of the system-level subspace TPWL-MOR. Let M denotes the number of sub-circuits, n
and nk denote the number of state variables of the top-level circuit and the kth sub-circuit,
respectively. Suppose the number of expansion points that is needed for the conventional
TPWL approach can be represented as NT=(ηm)n, where mn is the number of expansion
points of the full tensor product method, η is the average coverage rate of the trajectory
at each dimension, and ηm actually represents the average number of expansion points
of the conventional TPWL-MOR for each state variable.

Similarly, the number of expansion points for the kth sub-circuit in the system-level
subspace TPWL-MOR can be represented as (ηkm)nk . Therefore, the efficiency of the
system-level subspace TPWL-MOR can be represented by the improving rate r

r=
(ηm)n

∑
M
k=1(ηkm)nk

. (A.1)

Suppose M×nkmax
n is less than some constant, let’s say B. The lower bound of this

improving rate can be formulated as

r>
(ηm)n

M(ηkmaxm)nkmax
>

1

B
· nkmax (ηm)n

n(ηkmaxm)nkmax

=
1

B
· nkmax

n
(ηm)n−nkmax

︸ ︷︷ ︸

R1(nkmax)

×
(

η

ηkmax

)nkmax

︸ ︷︷ ︸

R2(ηkmax,nkmax)

, (A.2)

where ηkmax =max{ηk} and nkmax =max{nk}.
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When ηm ≪ n, which is generally true, R1(nkmax) is a decreasing function in [1,n]
and takes the maximum value at nkmax = 1. As a consequence, smaller sub-circuit size
is preferred to get a better improving rate. On the other hand, the average coverage
rate of the trajectory in the sub-state space (ηk) is generally larger than that in the full
state space (η). Actually, this is the reason that the subspace TPWL-MOR can be more
accurate than the conventional TPWL-MOR. But as to the improving rate, the second
term R2(ηkmax,nkmax) presents a loss of the improving rate in circuit partition.

One extreme example is when two state variables x1 and x2 are fully correlated. In
this two-dimensional state space, the trajectory is a straight line and η=1/

√
m. But when

projecting the trajectory to two directions of x1 and x2, we could see that the coverage rate
will increase to ηk=1. These correlated state variables are grouped in the circuit partition
algorithm proposed in Section 4.4, which makes sure that the value of

η
ηkmax

is not too

small and the improving rate r is greater than 1.

So we can conclude from (A.2) that, when B is not a very large number, the system-
level subspace TPWL-MOR can generally be more efficient (r≫ 1) and accurate (ηk > η)
than the conventional TPWL-MOR.
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