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Abstract. In this paper, we propose and analyze the interior penalty discontinuous
Galerkin method for H(div)-elliptic problem. An optimal a priori error estimate in the
energy norm is proved. In addition, a residual-based a posteriori error estimator is
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1 Introduction

We are concerned with solving the H(div)-elliptic model problem

−grad(divu)+u= f in Ω, (1.1a)

u·n=0 on Γ, (1.1b)

where Ω is a bounded polyhedral domain in Rd(d= 2,3) with boundary Γ= ∂Ω, n is its
unit outward normal vector, and f∈ (L2(Ω))d.

The weak formulation of (1.1) is to find u∈H0(div;Ω) such that

a(u,v) :=
∫

Ω
(divudivv+u·v)dx=

∫

Ω
f·vdx, ∀v∈H0(div;Ω). (1.2)
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H(div)-elliptic problem (1.1) is ubiquitous in solid and fluid mechanics [11, 18]. It
may arises from, the first-order system least-squares formulation of H1-elliptic prob-
lem [12], the implementation of the sequential regularization method for the nonstation-
ary incompressible Navier-Stokes equations [24], the mixed methods with augmented
Lagrangians [13], or the stabilized formulations of the Stokes equations [37]. For more
background on H(div)-elliptic problem and its applications, please see [5] for details. As
we know, in two dimensions, conforming finite element methods for H(div)-elliptic prob-
lem can be treated by Raviart-Thomas(RT) element [30] or Brezzi-Douglas-Marini (BDM)
element [10]. The extensions of RT element and BDM element to three dimensions were
given by Nédélec in [26] and [27], respectively. Sometimes they are referred to as the first
kind H(div)-conforming element and the second kind H(div)-conforming element.

Recently, there has been increased interest in the discontinuous Galerkin(DG) method
due to its suitability for hp-adaptive techniques. For the applications of this method to a
wide variety of problems, we can see the book [17] for details. An overview and a priori
error analysis of DG for elliptic problems in H1 were provided in [4]. For more details of
the a priori error estimates for H1-elliptic problem, please refer to [31]. A posterior error
estimates of conforming finite element methods have been extensively studied, and we
can refer to a series of monographs [2, 6, 28, 35] for the comprehensive analysis of such
methods for elliptic problems in H1, see also [13] for H(div)-conforming finite element
method and [8] for H(curl)-conforming finite element method. However, a posteriori
error estimates for DG have gained interest only in recent years, see [1,7,22,23,32,34] for
the analysis of elliptic problem in H1, and see [21] for elliptic problem in H(curl).

In this paper, we consider the interior penalty(IP) DG method for H(div)-elliptic prob-
lem (1.1), and provide a priori error estimate and a posteriori error estimate of such
method. The analysis for the a posteriori error estimator is largely based on the refer-
ence [21]. To the best of our knowledge, there exists no work on DG for H(div)-elliptic
problem, here we make an initial work on this direction.

This paper is organized as follows. In Section 2, a discontinuous Galerkin method
for the problem (1.1) is introduced. An optimal a priori error estimate of the DG method
in the energy norm is proved in Section 3. In Section 4, we provide a residual-based
a posteriori error estimator for the DG method. And both the upper bound and lower
bound analysis are proved for the error estimator in the energy norm. Finally, some
numerical experiments are given in Section 5.

2 Discontinuous Galerkin formulation

In this section, we introduce the interior penalty discontinuous Galerkin method for the
problem (1.1). For convenience, we assume that the domain is in R3. Before discussion,
we first give some notations: for a bounded domain D in R3, we denote by Hs(D) the
standard Sobolev space of functions with regularity exponent s≥0 and norm ||·||s,D and
seminorm |·|s,D . For s = 0, H0(D) is written by L2(D). When D= Ω, the norm ||·||s,Ω
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is simply written by ||·||s . Hs
0(D) is the subspace of Hs(D) with vanishing trace on ∂D.

For the space Hs(D)3, the norm is also denoted by ||·||s,D . In addition, we define the
following Sobolev spaces

H(div;Ω)={v∈L2(Ω)
3

: div v∈L2(Ω)},

H0(div;Ω)={v∈H(div;Ω) : v·n=0 on ∂Ω},

H(curl;Ω)={v∈L2(Ω)3 : curl v∈L2(Ω)
3
},

here and hereafter, we use boldface letter to denote vectors and vector spaces. The corre-

sponding norms in H(div;Ω) and H(curl;Ω) are denoted by ||v||div=
(

||v||20+||divv||20
)

1
2

and ||v||curl=
(

||v||20+||curlv||20
)

1
2 respectively. Finally, we denote the standard inner prod-

uct in L2(Ω) or L2(Ω)
3

by (·,·).
Let Th be a regular family of decompositions of Ω into tetrahedra {K}, hK denote the

diameter of K, and

h=max
K∈Th

hK.

F0
h denotes the set of interior faces of elements in Th, and F ∂

h denotes the set of boundary

faces. Set Fh =F0
h ∪F

∂
h . Let F be an interior face in F0

h shared by element K1 and K2,
and define the unit normal vectors n1 and n2 on face F pointing exterior to K1 and K2,
respectively. The diameter of the face F is denoted by hF. We assume that the elements
of Th satisfy the minimum angle condition. This means that there exists a constant θ0>0
such that hK/ρK ≥ θ0, where ρK denotes the diameter of the inscribed ball of K. For a
scalar piecewise smooth function ϕ, with ϕi = ϕ|Ki

, we define the following average and
jump by

{{ϕ}}=
1

2
(ϕ1+ϕ2), JϕK= ϕ1n1+ϕ2n2 on F∈F0

h .

For a vector valued piecewise smooth function v, with vi=v|Ki
, we set

{{v}}=
1

2
(v1+v2),

JvKN =v1 ·n1+v2 ·n2, JvKT =v1×n1+v2×n2.

For a boundary face F∈F ∂
h , we set

JvKN =v·n.

Next, with any l ≥ 1, we associate the discontinuous Galerkin finite element space for
vector valued functions

Vl
h =

{

v∈L2(Ω)3 :v|K ∈Pl(K)3, ∀K∈Th

}

, (2.1)
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where Pl(K) is the space of polynomials of total degree ≤ l. Similarly, with any j≥0, we
introduce the following space for scalar functions

S
j
h=

{

v∈L2(Ω) : v|K ∈Pj(K), ∀K∈Th

}

. (2.2)

Thereby, for the problem (1.1), we propose the following DG method: find uh ∈Vl
h such

that
ah(uh,v)=(f,v), ∀v∈Vl

h, (2.3)

where the bilinear form ah(uh,vh) :Vl
h×Vl

h →R is defined as

ah(uh,vh)= ∑
K∈Th

∫

K

(

divuhdivvh+uh ·vh

)

dx− ∑
F∈Fh

∫

F
JuhKN{{divvh}}ds

− ∑
F∈Fh

∫

F
JvhKN{{divuh}}ds+ ∑

F∈Fh

∫

F
βJuhKNJvhKNds, (2.4)

where β=θh−1
F , here θ is the interior penalty parameter which is to be defined to guaran-

tee the coercivity of bilinear form ah.
For the DG method in (2.3), we can easily obtain the following Galerkin orthogonality

ah(u−uh,v)=0, ∀v∈ Vl
h. (2.5)

3 A priori error analysis

Define the mesh-dependent norm ||·||h by

||v||h =

(

∑
K∈Th

||divv||20,K+||v||20+θ−1 ∑
F∈Fh

hF||{{divv}}||20,F+θ ∑
F∈Fh

h−1
F ||JvKN||

2
0,F

)
1
2

. (3.1)

Let V(h)=H0(div;Ω)+Vl
h. It follows from Cauchy-Schwarz inequality that

|ah(u,v)|≤ ||u||h||v||h, ∀u,v∈V(h). (3.2)

To obtain the coercivity of the bilinear form ah(·,·) on Vl
h, we introduce another mesh-

dependent energy norm |||·|||h defined by

|||v|||h =

(

∑
K∈Th

||divv||20,K+||v||20+θ ∑
F∈Fh

h−1
F ||JvKN||

2
0,F

)
1
2

. (3.3)

Obviously, we have
|||v|||h ≤||v||h, ∀v∈V(h). (3.4)

On the other hand, we have the following result.
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Lemma 3.1. There exists a constant C>0 depending on the minimum angle of Th and the degree
of the polynomial l such that

||v||h ≤C(1+θ−1)
1
2 |||v|||h, ∀v∈Vl

h. (3.5)

Proof. First, we have the following inequality [3]

||φ||20,∂K ≤Ch−1
K ||φ||20,K , ∀φ∈S

j
h. (3.6)

Observing v∈Vl
h, then divv∈Sl−1

h , thus from the above inequality we obtain that

||divv||20,F ≤Ch−1
K ||divv||20,K, ∀v∈Vl

h, (3.7)

where F∈∂K. Therefore, for v∈Vl
h, by the definition of {{divv}}, we have that

∑
F∈Fh

hF||{{divv}}||20,F ≤C ∑
K∈Th

||divv||20,K, (3.8)

where C> 0 is a constant depending on the minimum angle of Th and the degree of the
polynomial l. Then the estimate (3.5) follows from (3.1), (3.3) and (3.8).

Provided the interior penalty parameter θ is sufficient large, the bilinear ah(·,·) is
coercive with respect to |||·|||h , which is showed by the following lemma.

Lemma 3.2. There exists a constant θ∗>0 depending on the minimum angle of Th and the degree
of the polynomial l such that

ah(v,v)≥
1

2
|||v|||2h, ∀v∈V l

h, θ> θ∗. (3.9)

Proof. For any ε>0 and v∈Vl
h, it follows from Cauchy-Schwarz inequality and (3.8) that

∑
F∈Fh

∫

F
{{divv}}JvKNds≤ ∑

F∈Fh

h1/2
F ||{{divv}}||0,Fh−1/2

F ||JvKN||0,F

≤

(

∑
F∈Fh

hF||{{divv}}||20,F

)1/2(

∑
F∈Fh

h−1
F ||JvKN ||

2
0,F

)1/2

≤

(

C ∑
K∈Th

||divv||20,K

)1/2(

∑
F∈Fh

h−1
F ||JvKN ||

2
0,F

)1/2

≤
εC

2 ∑
K∈Th

||divv||20,K+
1

2ε ∑
F∈Fh

h−1
F ||JvKN ||

2
0,F,

where C> 0 is a constant depending on the minimum angle of Th and the degree of the
polynomial l. Thus, from (2.4) we obtain

ah(v,v)≥
(

1−εC
)

∑
K∈Th

||divv||20,K+||v||20+
(

θ−
1

ε

)

∑
F∈Fh

h−1
F ||JvhKN||

2
0,F.

Then we can choose θ∗= 2
ε and ε= 1

2C to make inequality (3.9) be valid.
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The following lemma provides an abstract error estimate for our DG method in the
mesh-dependent norm ||·||h .

Lemma 3.3. Let u denote the solution of the problem (1.1), and uh denote the numerical solution
of the DG method in (2.3). There exists a constant C>0 depending on the minimum angle of Th

and the degree of the polynomial l such that

||u−uh||h ≤C(1+θ−1) inf
v∈Vl

h

||u−v||h. (3.10)

Proof. From the Galerkin orthogonality (2.5), we have

ah(u−uh,v)=0, ∀v∈ Vl
h.

Thus, for any v∈Vl
h, based on (3.2),(3.5),(3.9) and the above equality we have

||u−uh||h ≤||u−v||h+||uh−v||h

≤||u−v||h+C(1+θ−1)
1
2 |||uh−v|||h

≤||u−v||h+C(1+θ−1)
1
2 sup

w∈Vl
h\{0}

|ah(uh−v,w)|

|||w|||h

= ||u−v||h+C(1+θ−1)
1
2 sup

w∈Vl
h\{0}

|ah(u−v,w)|

|||w|||h

≤C(1+θ−1) inf
v∈Vl

h

||u−v||h,

and the lemma follows.

To derive concrete error estimate based on the above lemma, we choose v= Ihu in
(3.10). Here Ihu is the Lagrange interpolation defined by

(Ihu)|K =IK(u|K),

where IK(u|K) is the unique function in Pl(T) which interpolates u|K (componentwise)
at the (l+1)(l+2)(l+3)/6 points of K with barycentric coordinates in {0,1/l,2/l,··· ,1}.
Then we have the following approximation property [9, 15]

||u−Ihu||2i,K ≤Ch2(j−i)|u|2j,K, 0≤ i≤ j≤ l+1, j≥2, (3.11)

thus, we obtain

||div(u−Ihu)||20,K ≤Ch2(j−1)|u|2j,K, 2≤ j≤ l+1, (3.12a)

||div(u−Ihu)||21,K ≤Ch2(j−2)|u|2j,K, 2≤ j≤ l+1. (3.12b)
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We recall the trace inequality [3]

||φ||20,F ≤C
(

h−1
F ||φ||20,K+hF|φ|

2
1,K

)

, (3.13)

where φ can be either scalar or vector valued function. It follows from (3.11), (3.12a),
(3.12b) and (3.13) that

∑
F∈Fh

hF||{{div(u−Ihu)}}||20,F ≤C ∑
K∈Th

h
2(j−1)
K |u|2j,K, 2≤ j≤ l+1, (3.14a)

∑
F∈Fh

h−1
F ||Ju−IhuKN||

2
0,F ≤C ∑

K∈Th

h
2(j−1)
K |u|2j,K, 2≤ j≤ l+1. (3.14b)

In the following theorem, we give a concrete a priori error estimate for the DG method in
(2.3).

Theorem 3.1. Let u be the solution of the problem (1.1), and uh be the numerical solution of
DG method in (2.3). Assume that θ is greater than or equal to the constant θ∗ in Lemma 3.2.
Then there exists a constant C> 0 depending on the minimum angle of Th and the degree of the
polynomial l such that

||u−uh||h ≤C(1+θ+θ−1+θ−2+θ−3)
1
2 ∑

K∈Th

h
j−1
K |u|j,K, 2≤ j≤ l+1. (3.15)

Proof. Set v=Ihu in (3.10), we obtain

||u−uh||
2
h ≤C(1+θ−1)2 inf

v∈Vl
h

||u−Ihu||2h. (3.16)

The theorem follows by the definition of ||·||h , (3.11), (3.12a), (3.14a), (3.14b) and (3.16).

4 A posteriori error analysis

Recalling that V(h) = H0(div;Ω)+Vl
h, we introduce an auxiliary bilinear form ãh(·,·) :

V(h)×V(h)→R defined by

ãh(u,v)= ∑
K∈Th

∫

K

(

divudivv+u·v
)

dx− ∑
K∈Th

∫

K
L(u)(divv)ds

− ∑
K∈Th

∫

K
L(v)(divu)ds+ ∑

F∈Fh

∫

F
βJuKNJvKNds,

where the lifting operator L :V(h)→S
j
h is defined as

∫

Ω
L(v)ϕdx= ∑

F∈Fh

∫

F
JvKN{{ϕ}}ds, ∀ϕ∈S

j
h. (4.1)
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The lifting operator L(v) can be bounded by [29]

||L(v)||20≤θ−1Clift ∑
F∈Fh

||β
1
2 JvKN||

2
0,F. (4.2)

We may observe that ãh = ah on Vl
h×Vl

h and ãh = a on H0(div;Ω)×H0(div;Ω), then the
DG method in (2.3) is equivalent to: find uh ∈Vl

h such that

ãh(uh,v)=(f,v), ∀v∈Vl
h. (4.3)

Moreover, we have

ãh(v,v)= ||v||2div = |||v|||2h, ∀v∈H0(div;Ω). (4.4)

Furthermore, we can prove that ãh is continuous on V(h) [4, 21].

Lemma 4.1. There exists a constant Ccont > 0 depending on the minimum angle of Th and the
degree of the polynomial l such that

|ãh(u,v)|≤Ccont|||u|||h|||v|||h, ∀u, v∈V(h). (4.5)

Proof. It follows from Cauchy-Schwarz inequality and (4.2) that

|ãh(u,v)|≤ ∑
K∈Th

(

||divu||0,K||divv||0,K+||u||0,K||v||0,K+||L(u)||0,K||divv||0,K

+||divu||0,K||L(v)||0,K

)

+ ∑
F∈Fh

||β
1
2 JuKN ||0,F||β

1
2 JvKN||0,F

≤
(

∑
K∈Th

||divu||20,K

)
1
2
(

∑
K∈Th

||divv||20,K

)
1
2
+
(

∑
K∈Th

||u||20,K

)
1
2
(

∑
K∈Th

||v||20,K

)
1
2

+
(

∑
K∈Th

||L(u)||20,K

)
1
2
(

∑
K∈Th

||divv||20,K

)
1
2
+
(

∑
K∈Th

||divu||20,K

)
1
2
(

∑
K∈Th

||L(v)||20,K

)
1
2

+
(

∑
F∈Fh

||β
1
2 JuKN ||

2
0,F

)
1
2
(

∑
F∈Fh

||β
1
2 JvKN ||

2
0,F

)
1
2

≤
(

∑
K∈Th

||divu||20,K

)
1
2
(

∑
K∈Th

||divv||20,K

)
1
2
+
(

∑
K∈Th

||u||20,K

)
1
2
(

∑
K∈Th

||v||20,K

)
1
2

+θ−
1
2 C

1
2

lift

(

∑
F∈Fh

||β
1
2 JuKN||

2
0,F

)
1
2
(

∑
K∈Th

||divv||20,K

)
1
2

+θ−
1
2 C

1
2

lift

(

∑
K∈Th

||divu||20,K

)
1
2
(

∑
F∈Fh

||β
1
2 JvKN||

2
0,F

)
1
2

+
(

∑
F∈Fh

||β
1
2 JuKN ||

2
0,F

)
1
2
(

∑
F∈Fh

||β
1
2 JuKN ||

2
0,F

)
1
2
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≤Ccont

(

∑
K∈Th

(

||divu||20,K+||u||20,K

)

+ ∑
F∈Fh

||Jβ
1
2 uKN ||

2
0,F

)
1
2

·

(

∑
K∈Th

(

||divv||20,K+||v||20,K

)

+ ∑
F∈Fh

||Jβ
1
2 vKN ||

2
0,F

)
1
2

=Ccont|||u|||h|||v|||h,

and the lemma follows.

The main idea behind our error analysis is that any discontinuous function can be
approximated by a conforming finite element one. Thus, we define the conforming finite
element space

Vc
h=Vl

h∩H0(div;Ω), (4.6)

in fact, Vc
h is the second kind H(div)-conforming Nédélec element [27]. Similar to Propo-

sition 4.1 in [21](see also Theorem 2.2 in [23]), we can obtain the following approximation
property.

Lemma 4.2. Let v∈Vl
h, then there exists a conforming finite element approximation vc∈Vc

h such
that

|||v−vc|||2h ≤
(

2θ−1Capp+1
)

∑
F∈Fh

||β
1
2 JvKN ||

2
0,F, (4.7)

where Capp>0 depends on the minimum angle of Th and the degree of the polynomial l.

Proof. The proof we provide is constructive. Given v∈Vl
h, we construct a function vc∈Vc

h

as follows: At every node of the mesh Th corresponding to a degree of freedom for Vc
h,

the value of vc is set to be the average of the values of v at that node.
First, we introduce the second kind H(div)-conforming Nédélec element. For a face

f of K, let {q
j
f }

N f

j=1 denote a basis of Pl( f ), and {q
j
K}

Nb

j=1 a basis of Rl−1(K) for element K,

here Rl =P3
l−1⊕Sl , Sl ={p∈(P̃l)

3|x·p=0}, and P̃l denote the homogeneous polynomials

of degree l. For a fixed K ∈ Th and let v ∈ Pl(K)3, we define the following degrees of
freedom:

M
f
k (v)=

{

∫

f
(v·n f )q

j
f ds : j=1,2,··· ,N f

}

, for any face f of K,

Mb
k(v)=

{

∫

K
v·q

j
Kdx : j=1,2,··· ,Nb

}

.

It is well known that above degrees of freedom uniquely define the polynomial v∈Pl(K)3,
see [25, 27]. And for a face f of K, the normal trace v·n f is uniquely determined by the

degrees of freedom M
f
k , see [25, 27]. Thus, any v∈Pl(K)3 can be written by

v= ∑
f∈F (K)

N f

∑
j=1

v
j
K, f φ

j
K, f +

Nb

∑
j=1

v
j
K,bφ

j
K,b, (4.8)
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where F(K) denotes the set of faces of K. The functions {φ
j
K, f } and {φ

j
K,b} are lagrange

basis functions on Pl(K)3 with respect to the degrees of freedom defined above.

For each K∈Th, let GK={x
j
K , j=1,2,··· ,|F(K)|·|N f |} be the face node set to formally

match the corresponding local basic functions of faces φK, f = {φ
j
K, f , j = 1,2,··· ,|F(K)|·

|N f |}, here and in the following |·| denotes the cardinality of corresponding set. Let

HK = {x
j
K, j=1,2,··· ,|Nb|} be the element node set to formally match the corresponding

local basic functions of element interior φK,b={φ
j
K,b, j=1,2,··· ,|Nb|}. Set φK =φK, f ∪φK,b,

G=∪K∈Th
GK. Let G be the union of two disjoint parts:

G0={ν∈G : ν∈ f ∈F0
h},

G∂={ν∈G : ν∈ f ∈F ∂
h }.

For each node ν∈G∪H, let δν ={K∈Th|ν∈K} and its cardinality is denoted by |δν|. We
note that, if ν∈H, then |δν|=1, if ν∈G∂, then |δν|=1, and if ν∈G0, then |δν|=2. Then we
associate each node ν with a basis function φν defined by

supp φν=
⋃

K∈δν

K, φν|K =φν
K, x

j
K =ν.

Now, given v∈Vl
h, assume

v= ∑
K∈Th

(

∑
f∈F (K)

N f

∑
j=1

v
j
K, f φ

j
K, f +

Nb

∑
j=1

v
j
K,bφ

j
K,b

)

,

we construct the function vc∈Vc
h by

vc= ∑
ν∈G∪H

γνφν, where γν=































1

|δν|
∑

x
j
K=v

v
j
K,b, if ν∈H,

1

|δν|
∑

x
j
K=v

v
j
K, f , if ν∈G0,

0, if ν∈G∂.

(4.9)

Set γ
j
K =γj whenever x

j
K =ν.

By application of the Piola transformation (see [25])

Bv̂(x̂)=det(B)v(x), x=Bx̂+t, B∈R3,3, t∈R3, (4.10)

and through a scaling argument, we obtain that ||divφ
j
K, f ||

2
0,K ≤ch−3

K . Since the degrees of
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freedom of v−vc corresponding to the interior nodes of elements is zero, we get

∑
K∈Th

||div(v−vc)||20,K ≤C|F(K)||N f | ∑
K∈Th

h−3
K ∑

f∈F (K)

N f

∑
j=1

|v
j
K, f −γ

j
K|

2

≤ ∑
ν∈G0

h−3
ν ∑

x
j
K=ν

|v
j
K, f −γj|2+ ∑

ν∈G∂

h−3
ν ∑

x
j
K=ν

|v
j
K, f |

2
(

hv =max
K∈δν

hK

)

. (4.11)

Note that

∑
x

j
K=ν

|v
j
K, f −γj|2≤ c|v

j+

K+ , f −v
j−

K−, f |
2, (4.12)

where K+ and K− denote the elements which share the face f , we obtain

∑
K∈Th

||div(v−vc)||20,K ≤C ∑
f∈F 0

h

∑
ν∈ f

h−3
ν |v

j+ν
K+ , f −v

j−ν
K−, f |

2+C ∑
f∈F ∂

h

∑
ν∈ f

h−3
ν |v

j
K, f |

2. (4.13)

By application of the Piola transformation in (4.10), and through a scaling argument, we
have

∑
ν∈ f

h−3
ν |v

j+ν
K+ , f −v

j−ν
K−, f |

2≤Ch−1
f ||JvKN||

2
0, f . (4.14)

Similarly, for ν∈ f ∈G∂, we have

∑
ν∈ f

h−3
ν |v

j
K, f |

2≤Ch−1
f ||v·n f ||

2
0, f . (4.15)

Thus, from (4.13)-(4.15), replacing f by F in the above inequalities, we get

∑
K∈Th

||div(v−vc)||20,K ≤Capp ∑
F∈Fh

h−1
F ||JvKN ||

2
0,F. (4.16)

On the other hand, by similar arguments, we can obtain

∑
K∈Th

||v−vc||20,K ≤Capp ∑
F∈Fh

hF||JvKN ||
2
0,F. (4.17)

Then the lemma follows by the definition of |||·|||h , (4.16) and (4.17).

Before stating the main result, we first introduce some local error indicators. Set

η2
RK

=h2
K||fh+grad(divuh)−uh||

2
0,K, (4.18)

where fh ∈ Vl
h is an approximation of f, here fh ∈ Vl

h may be chosen to be, e.g. the L2

projection of f, for more details see Remark 4.1. This term measures the residual of the
governing partial differential equation (1.1). To measure the error by curl operator, we
introduce ηCK

denoted by
η2

CK
=h2

K||curl(fh−uh)||
2
0,K. (4.19)
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The face residual with respect to the jump of divuh is denoted by

η2
DK

=
1

2 ∑
F∈∂K\Γ

hK||JdivuhK||
2
0,F. (4.20)

We also introduce

η2
TK
=

1

2 ∑
F∈∂K\Γ

hK ||J fh−uhKT||
2
0,F (4.21)

to measure the tangential jump fh−uh over interior face. Furthermore, to measure the
normal jump of numerical solution uh, we introduce ηNK

defined by

η2
NK

=
1

2 ∑
F∈∂K\Γ

||β
1
2 JuhKN||

2
0,F+ ∑

F∈∂K∩Γ

||β
1
2 (uh ·n)||

2
0,F. (4.22)

Then the sum of the above five local error indicators is denoted by ηK,

η2
K =η2

RK
+η2

CK
+η2

DK
+η2

TK
+η2

NK
. (4.23)

4.1 Reliability

The aim in this subsection is to provide an upper bound for the total error |||u−uh|||h,
which is showed in the following theorem.

Theorem 4.1. Let u denote the solution of the problem (1.1), and uh denote the numerical solution
of the DG method in (2.3). Assume that θ is greater than or equal to the constant θ∗ in Lemma
3.2. Then there exist constants CR > 0,CP > 0 depending on the minimum angle of Th and the
degree of the polynomial l, such that

|||u−uh|||h ≤CR

(

∑
K∈Th

η2
K

)
1
2

+CP||f−fh||0, (4.24)

where fh ∈Vl
h is an approximation of f, fh∈Vl

h may be chosen to be, e.g. the L2 projection of f.

Before proving the above theorem, we make some preparations. To begin, we can
obtain the following result by using similar ideas to Lemma 4.3 in [21].

Lemma 4.3. The following error bound holds

|||u−uh|||h ≤ sup
w∈H0(div;Ω)

A(w)+(1+Ccont)|||uh−uc
h|||h, (4.25)

where uc
h is the conforming approximation of uh from Lemma 4.2, and A(·) is defined as

A(w)= inf
wh∈Vl

h

|
∫

Ω
f·(w−wh)dx− ãh(uh,w−wh)|

|||w|||h
, ∀w∈H0(div;Ω). (4.26)
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Proof. Using the triangle inequality, we get

|||u−uh|||h ≤|||u−uc
h|||h+|||uh−uc

h|||h, (4.27)

where uc
h is the conforming approximation of uh from Lemma 4.2. Letting w=u−uc

h ∈
H0(div;Ω) and using the coercivity property in (4.4), we obtain

|||w|||2h = ãh(w,w)= ãh(u,w)− ãh(uh,w)+ ãh(uh−uc
h,w).

Since u,w∈H0(div;Ω), we get

ãh(u,w)= a(u,w)=
∫

Ω
f·wdx.

Using (4.3), we have

ãh(uh,wh)=
∫

Ω
f·whdx, ∀wh∈Vl

h.

Thus, we obtain that

|||w|||2h =
∫

Ω
f·(w−wh)dx− ãh(uh,w−wh)+ ãh(uh−uc

h,w)

for any wh∈Vl
h. Using the continuity of ãh(·,·) in Lemma 4.1, we have

|||w|||2h ≤|
∫

Ω
f·(w−wh)dx− ãh(uh,w−wh)|+Ccont|||uh−uc

h|||h|||w|||h

for any wh∈Vl
h. Then we get

|||u−uc
h|||h ≤A(u−uc

h)+Ccont|||uh−uc
h|||h.

Noting that A(u−uc
h)≤ supw∈H0(div;Ω)A(w) and using the triangle inequality in (4.27),

we complete the proof.

Noting that |||uh−uc
h|||h can be bounded as follows

|||uh−uc
h|||h ≤ (2θ−1Capp+1) ∑

F∈Fh

||β
1
2 JuhKN||

2
0,F =(2θ−1Capp+1) ∑

K∈Th

η2
NK

, (4.28)

it leaves us to give an upper bound for A(w). To proceed, we need the following regular
decomposition [13, 19].

Lemma 4.4. Suppose that Ω∈R3 is a bounded Lipschitz domain which is topology equivalent to
a ball, for any P∈H0(div;Ω), there exist Q, φ∈H1

0(Ω)3 such that

P=Q+curlφ. (4.29)

Moreover, there exists a constant Cdec>0 depending only on Ω such that

||Q||1≤Cdec||P||div, ||φ||1≤Cdec||P||div. (4.30)
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We shall also take advantage of the approximation property of the following (quasi)-
interpolation [13].

Lemma 4.5. For any w∈H0(div;Ω)∩H1(Ω)3, there exists a (quasi)-interpolation wh∈Vc
h such

that

∑
K∈Th

(

||div(w−wh)||
2
0,K+h−2

K ||w−wh||
2
0,K+h−1

K ||w−wh||
2
0,∂K

)

≤C2
int||w||21, (4.31)

where Cint>0 is a constant depending on the minimum angle of Th and the degree of the polyno-
mial l.

Furthermore, we need the following result by using Clément or Scott-Zhang interpo-
lation [16, 33].

Lemma 4.6. For any ϕ∈H1
0(Ω)3, there exists a piecewise linear approximation ϕh∈H1

0(Ω)3∩
S1

h such that

∑
K∈Th

(

|ϕ−ϕh|
2
1,K+h−2

K ||ϕ−ϕh||
2
0,K+h−1

K ||ϕ−ϕh||
2
0,∂K

)

≤C2
cle||ϕ||21, (4.32)

where Ccle>0 is a constant depending only on minimum angle of Th.

With the above preparations, we can prove the following result.

Lemma 4.7. For any w∈H0(div;Ω), the following bound for A(w) holds

A(w)≤C

(

∑
K∈Th

η2
K

)
1
2

+C||f−fh||
2
0, (4.33)

where C>0 is a constant depending on the minimum angle of Th and the degree of the polynomial
l.

Proof. For any w∈ H0(div;Ω), noting that |||w|||h = ||w||div, it follows the definition of
A(w) that

A(w)≤
|
∫

Ω
f·(w−wc

h)dx− ãh(uh,w−wc
h)|

||w||div
, (4.34)

for any wc
h∈Vc

h. In terms of Lemma 4.4, we obtain the regular decomposition of w as

w=w0+curlφ.

In (4.34), we choose wc
h ∈Vc

h to be

wc
h =w0

h+curlφh,
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where w0
h is defined by the (quasi)-interpolation in Lemma 4.5 and φh is defined by the

Clément interpolation in Lemma 4.6. For the reason of curlφh ∈Vc
h, please refer to ( [13],

page 1876). Hence we obtain

∫

Ω
f·(w−wc

h)dx− ãh(uh,w−wc
h)≡B1+B2,

with

B1=
∫

Ω
f·(w0−w0

h)dx− ãh(uh,w0−w0
h), (4.35a)

B2=
∫

Ω
(f−uh)·curl(φ−φh)dx. (4.35b)

We next establish bounds for B1 and B2, respectively. For B1, by the definition of ãh(·,·)
we obtain

B1=
∫

Ω
(fh−uh)·(w

0−w0
h)dx− ∑

K∈Th

∫

K
divuhdiv(w0−w0

h)dx

− ∑
K∈Th

∫

K
L(uh)div(w0−w0

h)dx+ ∑
K∈Th

∫

K
(f−fh)·(w

0−w0
h)dx

with fh ∈Vl
h. For the second term on the right hand of the above equality, integrating by

parts, and using the conformity of w0−w0
h, we see that

− ∑
K∈Th

∫

K
divuhdiv(w0−w0

h)dx

= ∑
K∈Th

∫

K

(

grad(divuh)
)

·(w0−w0
h)dx− ∑

K∈Th

∫

∂K
divuh

(

(w0−w0
h)·nK

)

ds

= ∑
K∈Th

∫

K

(

grad(divuh)
)

·(w0−w0
h)dx− ∑

K∈Th

∑
F∈∂K\Γ

1

2

∫

F
JdivuhK·(w

0−w0
h)ds,

where nk denotes the outward unit normal vector on ∂K. Thus,

B1= ∑
K∈Th

∫

K

(

fh+grad(divuh)−uh

)

·(w0−w0
h)dx− ∑

K∈Th

∫

K
L(uh)div(w0−w0

h)dx

− ∑
K∈Th

∑
F∈∂K\Γ

1

2

∫

F
JdivuhK·(w

0−w0
h)ds+ ∑

K∈Th

∫

K
(f−fh)·(w

0−w0
h)dx

≡B11+B12+B13+B14.

Clearly, we have that

B11≤ ∑
K∈Th

ηRK
h−1

K ||w0−w0
h||0,K, (4.36)
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where ηRK
is the residual defined by (4.18).

By Cauchy-Schwarz inequality and the boundness of the lifting operator in (4.2), we
obtain

B12≤
(

∑
K∈Th

||L(uh)||
2
0,K

)
1
2
(

∑
K∈Th

||div(w0−w0
h)||

2
0,K

)
1
2

≤ θ−
1
2 C

1
2

lift

(

∑
F∈Fh

||β
1
2 JuhKN ||

2
0,F

)
1
2
(

∑
K∈Th

||div(w0−w0
h)||

2
0,K

)
1
2

= θ−
1
2 C

1
2

lift

(

∑
K∈Th

η2
NK

)
1
2
(

∑
K∈Th

||div(w0−w0
h)||

2
0,K

)
1
2

(4.37)

with ηNK
the jump residual defined in (4.22).

Also, using Cauchy-Schwarz inequality, we obtain that

B13≤ ∑
K∈Th

(

∑
F∈∂K\Γ

1

2
hK||JdivuhK||

2
0,F

)
1
2
(

∑
F∈∂K

1

2
h−1

K ||w0−w0
h||

2
0,F

)
1
2

≤ ∑
K∈Th

ηDK
h
− 1

2
K ||w0−w0

h||0,∂K, (4.38)

where ηDK
is the jump residual defined in (4.20). Similarly, we have

B14≤ ∑
K∈Th

hK||f−fh||0,Kh−1
K ||w0−w0

h||0,K. (4.39)

Combining (4.36), (4.37), (4.38) and (4.39) together, using Cauchy-Schwarz inequality and
approximation property in (4.31), we see that

B1≤C

(

∑
K∈Th

(η2
RK

+η2
NK

+η2
DK

)

)
1
2

||w0||1+ChK||f−fh||0||w
0||1. (4.40)

For B2, integrating by parts, we obtain

B2=
∫

Ω
(f−fh)·curl(φ−φh)dx+

∫

Ω
(fh−uh)·curl(φ−φh)dx

=
∫

Ω
(f−fh)·curl(φ−φh)dx+ ∑

K∈Th

∫

K
curl(fh−uh)·(φ−φh)ds

− ∑
K∈Th

∫

∂K

(

(fh−uh)×nK

)

·(φ−φh)ds

=
∫

Ω
(f−fh)·curl(φ−φh)dx+ ∑

K∈Th

∫

K
curl(fh−uh)·(φ−φh)ds

− ∑
K∈Th

∑
F∈∂K\Γ

1

2

∫

F
Jfh−uhKT ·(φ−φh)ds

≡B21+B22+B23.
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Obviously, we have

B21≤||f−fh||0||curl(φ−φh)||0. (4.41)

By Cauchy-Schwarz inequality, we get that

B22≤ ∑
K∈Th

hK||curl(fh−uh)||0,Kh−1
K ||φ−φh||0,K

= ∑
K∈Th

ηCK
h−1

K ||φ−φh||0,K, (4.42)

where ηCK
is the residual defined in (4.19).

For B23, we have

B23≤ ∑
K∈Th

(

∑
F∈∂K\Γ

1

2
hK ||Jfh−uhKT||

2
0,F

)
1
2
(

∑
F∈∂K

1

2
h−1

K ||φ−φh||
2
0,F

)
1
2

≤ ∑
K∈Th

ηTK
h
− 1

2
K ||φ−φh||0,∂K, (4.43)

with ηTK
defined in (4.21).

Combining (4.41), (4.42), and (4.43) together, using Cauchy-Schwarz inequality and
approximation property in (4.32), we see that

B2≤C

(

∑
K∈Th

(η2
CK
+η2

TK
)

)
1
2

||φ||1+C||f−fh||0||φ||1. (4.44)

Finally, based on (4.40) and (4.44), we conclude that

B1+B2≤C

(

∑
K∈Th

η2
K

)
1
2
(

||φ||21+||w0||21

)
1
2

+C||f−fh||0

(

||φ||21+||w0||21

)
1
2

. (4.45)

The desired result (4.33) follows from the above estimate and the stability bounds of
regular decomposition in (4.30).

From the above mentioned, we can obtain Theorem 4.1.

Remark 4.1. We observe that Theorem 4.1 is valid for any fh ∈ Vl
h. To ensure that the

data approximation term ||f−fh||0 does not dominate the overall a posteriori error bound
stated in (4.24), we should choose fh to make ||f−fh||0 tends to zero, at least, has the same
convergence rate as the first term on the right-hand side of (4.24) (and thus also, at least,
the same rate as |||u−uh|||h, see Theorem 4.2 in Subsection 4.2) as the mesh is refined. We
can choose fh ∈Vl

h, e.g. the L2 projection of f to satisfy the above property.
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Remark 4.2. In the case when the source term f belongs to H(curl;Ω), the data approxi-
mation term ||f−fh||0 in Theorem 4.1 may be replaced by

(

∑
K∈Th

h2
K

(

||f−fh||0,K+||curl(f−fh)||0,K

)

)
1
2

. (4.46)

Indeed, integrating by parts, B21 can be bounded by hK ||curl(f−fh)||0h−1
K ||φ−φh||0, and

all other terms in Theorem 4.1 remain unchanged. We then get the data approximation
term defined by (4.46). In this case, the tangential jump error indicator ηTK

is defined by

η2
TK
=

1

2 ∑
F∈∂K\Γ

hK||JuhKT||
2
0,F, (4.47)

which indicates the fact that the tangential components of f across the element faces are
continuous.

4.2 Efficiency

In this subsection, we shall discuss the efficiency of the error estimator. To prove the ef-
ficiency bound, we take advantage of bubble function technique introduced by Verfürth
[35]. Let bK be the standard polynomial bubble function on element K, and bF the stan-
dard polynomial bubble function on an interior face F, shared by two elements K and K′.
Then we have the following results [21, 36].

Lemma 4.8. For any vector valued polynomial function v, there exists a constant C>0 depending
on the minimum angle of Th and the degree of the polynomial l such that

||bKv||0,K ≤C||v||0,K, (4.48a)

||v||0,K ≤C||b
1
2
Kv||0,K, (4.48b)

||div(bKv)||0,K ≤Ch−1
K ||v||0,K, (4.48c)

||curl(bKv)||0,K ≤Ch−1
K ||v||0,K. (4.48d)

Similarly, for any vector valued polynomial function w on interior face F, there exists a constant
C>0 depending on the minimum angle of Th and the degree of the polynomial l such that

||w||0,F ≤C||b
1
2
F w||0,F. (4.49)

Furthermore, there exists an extension Wb∈H1
0(K̄∪K̄′)3 of bFw such that Wb|F =bFw and

||Wb||0,K ≤Ch
1
2
F ||w||0,F, (4.50a)

||divWb||0,K ≤Ch
− 1

2
F ||w||0,F, (4.50b)

||curlWb||0,K ≤Ch
− 1

2
F ||w||0,F, (4.50c)
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where C > 0 are some constants depending on the minimum angle of Th and the degree of the
polynomial l.

To begin, we obtain the following local bounds.

Lemma 4.9. Let u be the solution of the problem (1.1), and uh be the numerical solution of the
DG method in (2.3). Assume that θ is greater than or equal to the constant θ∗ in Lemma 3.2.
Then the following local bounds hold:

(i) For any K∈Th, we have

ηRK
≤C

(

||div(u−uh)||0,K+hK||u−uh||0,K+hK||f−fh||0,K

)

. (4.51)

(ii) For any K∈Th, we have

ηCK
≤C

(

||u−uh||0,K+||f−fh||0,K

)

. (4.52)

(iii) For any interior face F∈Fh which belongs to two elements K and K′, we obtain

h
1
2
F ||JdivuhK||0,F ≤ ∑

K∈UF

(||div(u−uh)||0,K+hK||u−uh||0,K+hK||f−fh||0,K

)

. (4.53)

with UF ={K,K′}.

(iv) For any interior face F∈Fh which belongs to two elements K and K′, we obtain

h
1
2
F ||Jfh−uhKN||0,F ≤ ∑

K∈UF

(||uh−uh||0,K+||f−fh||0,K

)

. (4.54)

(v) For any interior face F, we have

||β
1
2 JuhKN||0,F = ||β

1
2 Ju−uhKN||0,F. (4.55)

For any boundary face F, we have

||β
1
2 (uh ·n)||0,F = ||β

1
2
(

(u−uh)·n
)

||0,F. (4.56)

All the constants C>0 appear in the above inequalities depend on the minimum angle of Th and
the degree of the polynomial l.

Proof. (i) Let vh = fh+grad(divuh)−uh, and vb = bKvh. Noting that −grad(divu)+u= f

in L2(K)3, we have

||b
1
2
Kvh||

2
0,K =

∫

K

(

fh+grad(divuh)−uh

)

·vbdx

=
∫

K
(f+grad(divuh)−uh)·vbdx+

∫

K
(fh−f)·vbdx

=
∫

K

(

−grad(div(u−uh))+(u−uh)
)

·vbdx+
∫

K
(fh−f)·vbdx

=
∫

K
div(u−uh)divvbdx+

∫

K
(u−uh)·vbdx+

∫

K
(fh−f)·vbdx,
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where in the last step we used integration by parts and the fact that vb = 0 on ∂K. Then
from Cauchy-Schwarz inequality we obtain

||vh||
2
0,K ≤

(

||div(u−uh)||0,K||divvb||0,K+||u−uh||0,K||vb||0,K+||f−fh||0,K||vb||0,K

)

.

Moreover, using (4.48c) and (4.48a), we get

||vh||0,K ≤C
(

h−1
K ||div(u−uh)||0,K+||u−uh||0,K+||f−fh||0,K

)

.

Observing that ηRK
=hK||vh||0,K, the above inequality gives (i).

(ii) Let vh=curl(fh−uh), and vb =bKvh. Then from (4.48a) we have

||vh||
2
0,K ≤C||b

1
2
Kvh||

2
0,K ≤C

∫

K
curl(fh−uh)·vbdx.

Moreover, noting that curl(f−u)=0 in L2(K)3, we obtain

||vh||
2
0,K ≤C

∫

K
curl

(

(fh−f)+(u−uh)
)

·vbdx.

Integrating by parts and combining Cauchy-Schwarz inequality with (4.48d), we have

||vh||0,K ≤C(h−1
K ||f−fh||0,K+h−1

K ||u−uh||0,K).

Noting that ηCK
=hK||vh||0,K , the above inequality yields (ii).

(iii) Let wh = JdivuhK, wb = bFwh. Defining Wb ∈ H1
0(K̄∪K̄′)

3
be the extension of wb

which satisfies (4.50a), (4.50b) and (4.50c). Using the fact that JdivuK=0, we obtain

||b
1
2
F wh||

2
0,F =

∫

F
JdivuhK·wbds

=
∫

F
Jdiv(uh−u)K·wbds

= ∑
K∈UF

∫

K

(

grad(div)(uh−u)
)

·Wbdx+
∫

K
div(uh−u)divWbdx

= ∑
K∈UF

∫

K

(

(fh−f)+
(

grad(div)(uh−u)
)

+(u−uh)
)

·Wbdx

+
∫

K
div(uh−u)divWbdx−

∫

K
(fh−f)·Wbdx−

∫

K
(u−uh)·Wbdx.

Since f+grad(divu)−u=0 in L2(K)3, in view of (4.49), (4.50a) and (4.50b), we obtain

||wh||0,F ≤C ∑
K∈UF

(

h
1
2
F ||fh+grad(divuh)−uh||0,K+h

− 1
2

F ||div(u−uh)||0,K

+h
1
2
F ||f−fh||0,K+h

1
2
F ||u−uh||0,K

)

.
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Making use of the bound for ηRK
and the shape-regularity of the mesh, we get

h
1
2
F ||JdivuhK||0,F ≤C ∑

K∈UF

(

||div(u−uh)||0,K+hK ||f−fh||0,K+hK||u−uh||0,K

)

.

This yields (iii).

(iv) Let wh=Jfh−uhKT, wb=bFwh, and Wb∈H1
0(K̄∪K̄′)

3
be the extension of wb which

satisfies (4.50a), (4.50b) and (4.50c). Noting that Jf−uKT =0 in L2(K)3, we have

||b
1
2
F wh||

2
0,F =

∫

F
Jfh−uhKT ·wbds

=
∫

F
Jfh−uh−f+uKT ·wbds

= ∑
K∈UF

(

∫

K
curl(fh−uh)·Wbdx+

∫

K
(fh−uh−f+u)·curlWbdx

)

.

In view of (4.49), (4.50a) and (4.50c), we obtain

||wh||0,F ≤C ∑
K∈UF

(

h
1
2
F ||curl(fh−uh)||0,K+h

− 1
2

F ||fh−f||0,K+h
− 1

2
F ||u−uh||0,K

)

.

Using the bound for ηCK
and the shape-regularity of the mesh, we obtain

h
1
2
F ||Jfh−uhKT||0,F ≤C ∑

K∈UF

(

||u−uh||0,K+||f−fh||0,K

)

.

This gives (iv).
(v) Since JuKN =0 on interior faces and u·n=0 on the boundary faces, we can imme-

diately obtain (4.55)-(4.56).

We formulate the main result of this subsection in the following theorem, which fol-
lows immediately from the above lemma.

Theorem 4.2. Let u denote the solution of the problem (1.1), and uh denote the numerical solution
of DG method in (2.3). Assume that θ is greater than or equal to the constant θ∗ in Lemma 3.2.
Then there exists a constant CEFF depending on the minimum angle of Th and the degree of the
polynomial l such that

(

∑
K∈Th

η2
K

)
1
2

≤CEFF

(

|||u−uh|||h+||f−fh||0
)

. (4.57)

Remark 4.3. In the case when the source term f belongs to H(curl;Ω), similar efficiency
bound may also be derived. In fact, bounds (i), (iii) and (v) in Lemma 4.9 remain un-
changed. On the right-hand side of bounds in (ii) and (iv), the term ||f−fh||0,K may
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be replaced by hK||curl(f−fh)||0,K. In the latter case, the term h
1
2
F ||Jfh−uhKN ||0,F on the

left-hand side of the inequality (4.54) must be replaced by h
1
2
F ||JuhKN||0,F. The data ap-

proximation term ||f−fh||0 in Theorem 4.2 may be replaced by

(

∑
K∈Th

h2
K

(

||f−fh||0,K+||curl(f−fh)||0,K

)

)
1
2

. (4.58)

5 Numerical experiments

In this section, we report some numerical experiments using MATLAB. We only choose
the linear discontinuous finite element to show the numerical results. In each adaptive fi-
nite element procedure, we refine the marked triangles by the bisection algorithm, which
derives from the AFEM@Matlab implementation [14].

Example 5.1. The test problem is two-dimensional equation of (1.1) in Ω= (0,1)×0,1).
We set the right-hand side function side so that the exact solution is given by

u(x,y)=

(

u1(x,y)
u2(x,y)

)

=

(

sin(πx)
sin(πy)

)

.

First, we present the a priori results for the penalty parameter θ = 15. Fig. 1 describes
the energy errors |||u−uh|||h with respect to the mesh size h in logarithmic scale. We can
see that the slope is 1.0052, these results confirm Theorem 3.1. Moreover, we provide the
error between the exact solution u1(x,y)=sin(πx) and its numerical solution in Fig. 2.

We also provide the a posteriori results for this example. The true error |||u−uh|||h
and the error estimator

η=
(

∑
K∈Th

η2
K

)
1
2
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Figure 1: The convergence rate for linear discontinuous finite element.
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Figure 2: The error between the exact solution u1(x,y)= sin(πx) and its numerical solution for the h= 1
32 .

are computed on a sequence of adaptive meshes as functions of number of degrees of
freedom and then showed in Fig. 3. The effectivity index given by

η
|||u−uh |||h

is computed

as a function of the number of degrees of freedom and then plotted in Fig. 4. It is between

10
1

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

Degrees of Freedom

 

 
True Error
Error Indicator

Figure 3: Performance of the indicator for Example 5.1.
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Figure 4: Efficiency index for Example 5.1.
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Figure 5: Adaptive mesh of level 20 for Example 5.1.

6 and 7. These results agree with the Theorem 4.1 and Theorem 4.2. Finally, in Fig. 5, we
show the adaptive mesh of 20 level used in the computation. From Fig. 3, we observe
the quasi-optimality of the adaptive algorithm in the sense that |||u−uh|||h ≈ CN−1/2

asymptotically, where N is the number of degrees of freedom.

Example 5.2. We consider the problem of (1.1) defined on the L-shaped domain Ω =

(−1,1)2\([0,1]×[−1,0]) with the exact solution given by u=grad(r
2
3 sin( 2

3 θ)) (in cylindri-
cal coordinates).

As in Example 5.1, Fig. 6 displays actual errors |||u−uh|||h and the error estimator η
as functions of the number degrees of freedom. And the effectivity index as a function
of the number of degrees of freedom is plotted in Fig. 7. It is between 5 and 6. These
results confirm the Theorem 4.1 and Theorem 4.2. Furthermore, we can see from Fig. 8
that the singularity of the solution u at the re-entrant corner is captured by the error
estimator. From Fig. 6, we observe that the adaptive algorithm have the quasi-optimality
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Figure 6: Performance of the indicator for Example 5.2.
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Figure 7: Efficiency index for Example 5.2.

Figure 8: Adaptive mesh of level 18 for Example 5.2.

in the sense that |||u−uh|||h ≈CN−1/2 asymptotically, where N is the number of degrees
of freedom.
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