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Abstract. In this paper we describe a new pseudo-spectral method to solve numer-
ically two and three-dimensional nonlinear diffusion equations over unbounded do-
mains, taking Hermite functions, sinc functions, and rational Chebyshev polynomials
as basis functions. The idea is to discretize the equations by means of differentiation
matrices and to relate them to Sylvester-type equations by means of a fourth-order
implicit-explicit scheme, being of particular interest the treatment of three-dimensional
Sylvester equations that we make. The resulting method is easy to understand and ex-
press, and can be implemented in a transparent way by means of a few lines of code.
We test numerically the three choices of basis functions, showing the convenience of
this new approach, especially when rational Chebyshev polynomials are considered.
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1 Introduction

One of the most remarkable properties that distinguish nonlinear evolution problems
from linear ones is the possibility of an eventual occurrence of singularities in a finite
time T, starting from perfectly smooth data. One of the simplest forms of spontaneous
singularities in nonlinear problems appears when one or more of the dependent variables
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tend to infinity as t→T, where T∈ (0,∞) is called the blow-up time. A singularity repre-
sents often an important change in the properties of the models, which explains why it is
important to analyze them and to reproduce them accurately by a numerical method.

In this paper, we consider the classical semi-linear parabolic equation

ut=∆u+up, p>1, x∈R
n, t>0, (1.1)

with initial condition

u(x,0)=u0(x), (1.2)

where u0(x) is continuous, non-negative and bounded.

The local existence in time of positive solutions of (1.1)-(1.2) follows from standard
results, but the solution may develop singularities in finite time. More precisely, we have
the following theorem [13, 23]:

Theorem 1.1. Let pc(n)=1+ 2
n .

1. If 1<p<pc(n), for any non-trivial solution of (1.1)-(1.2), there exists a finite time T, such
that

limsup
tրT

(

sup
x∈Rn

u(x,t)

)

=+∞.

2. If p> pc(n), there exists a global positive solution, if the initial values are sufficiently small
(less than a small Gaussian).

In the first case, we say that u(x,t) blows up in a finite time T, which is called the
blow-up time of u; and pc is the critical exponent of the problem.

Another important question is to determine the asymptotic behavior of the solution,
as the blow-up is approached. There are several references on this topic: in [18], the
different possible asymptotic behaviors for n=1 are described, and in [33], the case n>1
is studied.

In the following pages, we will develop and test a new matrix-based pseudo-spectral
method for (1.1) in two and three spatial dimensions. References on spectral methods can
be found in [5, 7, 11, 29, 31, 32], together with the more classical [6, 15]. One of the main
difficulties of dealing with (1.1) is the unboundedness of the spatial domain; nevertheless,
according to Boyd [5, p. 338], the many options for unbounded domains fall into three
broad categories:

1. Domain truncation (approximation of x∈R by [−L,L], with L≫1);

2. Basis functions intrinsic to an infinite interval (Hermite functions, sinc functions);

3. Mapping of the unbounded interval to a finite one, followed by application of
Chebyshev polynomials or a Fourier series.
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In a previous work [9], we applied successfully the domain truncation technique to (1.1).
There, we assumed periodic solutions over a large enough rectangular domain, in such
a way that the effects due to periodicity were minimal, but one could take advantage of
the Fast Fourier Transform (FFT) to develop an efficient pseudo-spectral method, using a
fourth-order exponential-time differencing (ETDRK4) scheme [22] to advance in time.

On the other hand, in all the theoretical results about (1.1), there always appear Her-
mite functions,

ψn(x)=
1

π1/4
√

2nn!
e−x2/2Hn(x), (1.3)

where Hn(x) are the Hermite polynomials (see Appendix A.1), which encouraged us to
develop a new pseudo-spectral method based on them. Furthermore, since the devised
method can be implemented quite independently from the choice of the class of basis
functions, we have also considered sinc functions (see Appendix A.2),

sinc(x)=
sin(πx)

πx
, (1.4)

as well as a relevant particular case of mapped Chebyshev polynomials Tn(x), the so
called rational Chebyshev polynomials TBn(x) (see Appendix A.3),

TBn(x)≡Tn

(

x√
1+x2

)

. (1.5)

In this paper, we test the proposed method using Hermite functions, sinc functions, and
rational Chebyshev polynomials; moreover, we compare the results with those obtained
in [9]. In this way, all the three cases mentioned by Boyd are covered. The structure
of the paper is as follows. In Section 2, we explain the numerical method for the two-
dimensional case. Section 3 is devoted to numerical tests in two dimensions. In Section
4, the ideas of Section 2 are extended to three-dimensional problems. Numerical tests in
three dimensions are carried in Section 5. In Section 6 we draw the main conclusions,
highlighting the most relevant aspects of the work and some possible applications to
other equations. We finish the paper with two appendices. In Appendix A, we offer a
brief introduction to the classes of functions used in the paper, as well as the differen-
tiation matrices associated to them, incorporating also some new results. Appendix B,
which is of particular interest, is about solving three-dimensional Sylvester equations.

All the algorithms have been implemented in MATLAB, Version 7.14 (R2012a), and
executed in a Dell Precision T7500. They are available upon request.

2 Description of the numerical method in two spatial-dimensions

Let us consider the two-dimensional semi-linear parabolic equation

ut=uxx+uyy+up, p>1, (x,y,t)∈R
2×R

+, (2.1)
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with initial data
u(x,y,0)=u0(x,y), (x,y)∈R

2, (2.2)

and critical exponent pc = 2. The idea of pseudo-spectral methods over unbounded do-
mains is to approximate the solution u by a finite sum:

u(x,y,t)≈
Nx

∑
i=0

Ny

∑
j=0

ûij(t)φi(Lxx)φj(Lyy), (x,y,t)∈R
2×R

+, (2.3)

where Lx, Ly are two positive constants, and φi, φj are basis functions; in our case, Her-
mite functions, sinc functions, or rational Chebyshev polynomials. We introduce this ex-
pression into (2.1), making the residual equal to zero at (Nx+1)×(Ny+1) conveniently
chosen nodes (xi,yj), which are the points at which we calculate the evolution of u. Then,
(2.1) becomes a coupled system of ordinary differential equations for the coefficients
ûij(t).

Equivalently, we can adopt a matrix representation for u, defining U≡ [Uij], which is
the matrix formed by the values of u at the nodes (xi,yj), i.e., Uij(t)= u(xi,yj,t). In that
case, (2.1) becomes

Ut=D
(2)
x ·U+U·(D(2)

y )T+Up, (2.4)

where T denotes the transpose, and D
(2)
x and D

(2)
y are the second-order differentiation

matrices with respect to x and y, respectively (see Appendix A):

uxx(xi,yj)≈D
(2)
x ·U, uyy(xi,yj)≈U·(D(2)

y )T; (2.5)

of course, if the amount of nodes in the axes x and y, Nx+1 and Ny+1, is the same, we can

simply write D(2). Introducing the approximations (2.5) into (2.1), it becomes discretized
as a non-linear matrix differential equation:

Ut=D
(2)
x ·U+U·(D(2)

y )T+Up. (2.6)

At this point, it is straightforward to apply an explicit time-discretization to advance in
time, although we will usually have a severe time-step restriction on ∆t. Therefore, an
implicit-explicit (IMEX) scheme [1], where we treat implicitly the linear parts and explic-
itly the non-linear ones, seems a good choice, because it is relatively easy to advance from
tn to tn+1, yet much smaller constraints on ∆t may be expected.

Let us apply, for instance, a first-order semi-implicit Euler discretization in time to
(2.6), which is the most simple IMEX method:

Un+1−Un

∆t
=D

(2)
x ·Un+1+Un+1 ·(D(2)

y )T+(Un)p. (2.7)

This equation can be rewritten as

(

1

2
Ix−∆tD

(2)
x

)

·Un+1+Un+1 ·
(

1

2
Iy−∆tD

(2)
y

)T

=Un+∆t(Un)p, (2.8)
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i.e., a Sylvester equation of the type

A1 ·X+X·AT
2 =B, (2.9)

with A1=
1
2 Ix−∆tD

(2)
x , A2=

1
2 Iy−∆tD

(2)
y .

Sylvester equations have been extensively studied (see for instance [19,20]). The stan-
dard procedure to solve them is based on the Bartels-Steward algorithm [2], which is
widely implemented (let us mention, for instance, the command lyap in Matlab). Al-
though this algorithm uses the complex Schur form, it is numerically safe to obtain real
solutions [26]. On the other hand, if A1 and A2 are diagonalizable, which is our case,
i.e., A1 = P1 ·D1 ·P−1

1 , A2 = P2 ·D2 ·P−1
2 , with P1 and P2 well conditioned, then, defining

Y=P−1
1 ·X·(P−1

2 )T, (2.9) can be safely transformed into

D1 ·Y+Y·D2=P−1
1 ·B·(P−1

2 )T =C, (2.10)

so we get the trivial equation

Λ◦Y=C, (2.11)

where Λ≡ [λij] is the matrix whose λij element is the i-th eigenvalue of A1 plus the j-th
eigenvalue of A2, i.e., λij = λi(Ai)+λj(Aj); and ◦ denotes the point-wise or Hadamard
product between matrices. In our case, the eigenvalues of A1 and A2 are respectively

λi =
1
2−∆tµi and λj =

1
2−∆tµj, where µi and µj are respectively the eigenvalues of D

(2)
x

and D
(2)
y . On the one hand, for a small enough ∆t, λi and λj will always be positive; on

the other hand, at least for the second-order differentiation matrices we are dealing with,
we have always µi < 0 and µj < 0 (see for instance [34]). Therefore, ∀∆t> 0, λi > 0 and
λj >0, and we conclude that (2.8) has always a unique solution, because the sum of any

eigenvalue of 1
2 Ix−∆tD

(2)
x and any eigenvalue of 1

2 Ix−∆tD
(2)
y is never equal to zero, i.e.,

λi+λj =λij 6=0 in (2.11).

In our numerical experiments, we have observed that, for our differentiation matrices,
1
2 Ix−∆tD

(2)
x and 1

2 Iy−∆tD
(2)
y are always diagonalizable, with well-conditioned eigen-

value matrices. Hence, it is numerically save to reduce (2.8) to (2.11). Moreover, since
1
2 Ix−∆tD

(2)
x and 1

2 Iy−∆tD
(2)
y are time-independent, their diagonal decompositions have

to be computed just once for all the time-steps, obtaining an extremely efficient numerical
scheme:

Un+1=P1 ·
[[

P−1
1 ·[Un+∆t(Un)p]·(P−1

2 )T
]

◦Λ−1
]

·PT
2 , (2.12)

where Λ−1 denotes the point-wise inverse of Λ, i.e., Λ−1 ≡ [1/(λi+λj)]. The computa-
tional cost is of just 2Nx Ny(Nx+Ny) multiplications and Nx Ny divisions per time-step,
i.e., of the same order of magnitude as an explicit scheme.

It is also possible to consider higher-order schemes. More precisely, in this paper we
have chosen a fourth-order semi-implicit backward differentiation formula (SBDF4) [1],
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which has good stability properties. Applying it to (2.6), we get the following numerical
scheme:

1

∆t

(

25

12
Un+1−4Un+3Un−1− 4

3
Un−2+

1

4
Un−3

)

=D
(2)
x ·Un+1+Un+1 ·(D(2)

y )T+4(Un)p−6(Un−1)p+4(Un−2)p−(Un−3)p, (2.13)

which can be conveniently transformed into another Sylvester equation of the form

(

25

24
Ix−∆tD

(2)
x

)

·Un+1+Un+1 ·
(

25

24
Iy−∆tD

(2)
y

)T

=4Un−3Un−1+
4

3
Un−2− 1

4
Un−3

+∆t
[

4(Un)p−6(Un−1)p+4(Un−2)p−(Un−3)p
]

. (2.14)

Now, by the same arguments, the eigenvalues are λi=
25
24−∆tµi>0 and λj=

25
24−∆tµj>0,

∀∆t> 0, and, consequently, (2.14) has a unique solution. Moreover, (2.14) can be solved
again computing only 2Nx Ny(Nx+Ny) multiplications and NxNy divisions per time-step.

Since this is a multi-step scheme, additional starting values are required. More specif-
ically, the first value U0 at t=t0 is the initial condition (2.2), but we also need fourth-order
approximations of u at t∈{t1,t2,t3}, i.e., U1, U2 and U3, which are computed by means
of a classical Richardson extrapolation [28]. For instance, to get U1,

U1=
64

21
U

(

t1,
∆t

8

)

− 8

3
U

(

t1,
∆t

4

)

+
2

3
U

(

t1,
∆t

2

)

− 1

21
U
(

t1,∆t
)

, (2.15)

where U(t1,∆t/8) denotes the first-order approximation of u at t= t1, using a time step
equal to ∆t/8, etc.

Since we are dealing with real positive solutions of (1.1), we round to zero those in-
finitesimally small negative values that might appear during the numerical simulations.

2.1 Working in the Fourier side

Sometimes, it can be preferable to consider the evolution of the coefficients ûij(t) in (2.3),
instead of Uij(t). That happens when there is some sort of fast transform that converts
{ûij(t)} into {Uij(t)} and vice-versa, and the differentiation matrix for the ûij(t) coef-
ficients is better structured and, preferably, sparse. As shown in Appendix A.3, these
conditions are satisfied by the rational Chebyshev polynomials, so we use this approach
in our numerical experiments for these functions.

Let F be the discrete transform that converts {Uij(t)} into {ûij(t)}, and F−1 its in-

verse. We denote Û(t) the matrix formed by {ûij(t)}. Then, applying F to (2.4), we
get

Ût=D
(2)
x ·Û+Û·(D(2)

y )T+F
[(

F−1(Û)
)p]

, (2.16)
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where, with some notational abuse, D
(2)
x and D

(2)
x denote now the differentiation matri-

ces in the Fourier side (A.23). At this point, (2.14) and all the other schemes previously
defined can be applied with absolutely no change, and the computational cost is again
of O(NxNy(Nx+Ny)) operations for solving the Sylvester equations of the form

A1 ·X+X·AT
2 =B (2.17)

that appear during the process, plus another O(Nx Ny(log(Nx)+log(Ny)) operations,
which are needed for computing F and F−1.

Alternatively, given the sparse structure of A1 and A2, we can consider an alternating
direction implicit (ADI) iteration [27] to solve (2.17). Indeed, when working with rational
Chebyshev polynomials, our problem closely resembles that in [17]. In our case, provided
an initial guess X0, the iterational ADI scheme would be as follows:

(ω1,νI+A1)X
ν+1/2=Xν(ω2,νI−AT

2 )+B, (2.18a)

Xν+1(ω2,νI+AT
2 )=(ω1,νI−A1)X

ν+1/2+B, (2.18b)

where I are identity matrices. As explained in [17], if A1 =A2=A∈M(N−2)×(N−2), then
(2.17) can be solved exactly after N−1 stages, by taking ω1,ν=ω2,ν=λν, ν=0,1,··· ,N−2,
where λν are chosen to be the eigenvalues of A. On the other hand, the number of itera-
tions can be further reduced to N/2, by using the even-odd uncoupling of the coefficients
of X, to factor (2.17) into four separate equations. In any case, since each stage requires
O(N2) operations, we need again O(N3) operations to solve (2.17), i.e., the same order of
magnitude needed to solve it through a diagonal factorization of A1 and A2. Therefore,
in our opinion, the ADI approach should be preferred rather for larger Systems.

3 Numerical experiments in two dimensions

3.1 Numerical tests for problems with known exact solutions

It is a well known fact [5] that Hermite and sinc functions work best for problems with
exponential decay, while rational Chebyshev polynomials are an optimal choice (not
only) for problems with polynomial decay. Hence, we consider two modifications of
ut=∆u+u3:

{

ut=∆u−2exp(4t)[sinh2(x)cosh2(y)+cosh2(x)sinh2(y)]u3,

u0(x,y)=sechxsechy,
(3.1)

whose known exact solution, u(x,y,t)=exp(−2t)sechxsechy, has exponential decay; and







ut=∆u−2exp(4t)
[

(x2+y2+2)2−5
]

u3,

u0(x,y,z)=
1

1+x2+y2
,

(3.2)
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whose known exact solution, u(x,y,t)=exp(−2t)/(1+x2+y2), has polynomial decay. We
test both equations with the three classes of functions considered in this paper, as well
as with the method developed in [9], which combines the domain truncation technique
with a fourth-order exponential-time differencing (ETDRK4) scheme [22] to advance in
time. This is a very exigent test, because the method in [9] is extremely well suited for
the type of equations we are considering, provided that the solutions decay fast enough.

Before proceeding with the experiments, some important remarks are necessary. If we
look at (2.3), we will see that there are two positive constants Lx and Ly. Indeed, if a fam-
ily of functions {φi(x)φj(y)} forms an orthogonal basis of R2, so does {φi(Lxx)φj(Lyy)},
∀Lx,Ly >0. Therefore, in order to specify a pseudo-spectral method over an unbounded
domain, both the number of grid points and the scaling factors are required, i.e., two pa-
rameters. This happens in the domain truncation technique, too, where two parameters
are also required: the dimensions of the domain, and the number of points.

In Appendix A, we describe the differentiation matrices associated to the families of
functions we are dealing with. While our definition of the sinc differentiation matrix is
taken directly from [35], we have constructed a new version of the Hermite differentiation
matrix that is numerically identical (up to the machine accuracy) to that in [35], yet it is
stable for a much larger number of points. We have also developed our own versions of
the rational Chebyshev differentiation matrices, both in space and in the Fourier side. For
the Hermite and rational Chebyshev cases, we give directly the corresponding rescaling
factor L; while it is customary to give the separation between grid points h in the sinc
case. Remark that in the definition of the Hermite differentiation matrix in [35], their
parameter b is the inverse of the rescaling factor, i.e., b=1/L.

In practice, the correct choice of the scaling is a matter of concern. Even if some
theoretical results do exist [3], the optimal values depend on the number of points, the
class of functions, and the type of problem. The optimal scaling can even change during
time [25]. A good working rule of thumb seems to be that the absolute value of the
function at the extremal grid points is smaller than an accuracy threshold ε.

Coming back to our experiments, we have computed the numerical solution for (3.1)
and (3.2) at t= 1, for N = Nx = Ny = 129, and several ∆t. It is convenient to take an odd
number of nodes in the spatial discretization, so that the origin of coordinates, where the
maximum is located, is included. Some extra care may be also needed with (3.1) if ex-
tremely large domains are considered, because the multiplier of the non-linear part grows
as O(exp(2|x|+2|y|)), while u3 decreases as O(exp(−3|x|−3|y|)). Hence, indetermina-
tions of the form ∞·0 may arise when evaluating [sinh2(x)cosh2(y)+cosh2(x)sinh2(y)]u3

at the grid points (xi,yj) with very large values |xi|+|yj |, obtaining eventually NaN values.
In those cases, we have to give the computer the correct value of the indetermination, i.e.,
∞·0≡0.

In order to make the results easier to compare, we have chosen the scalings in such
a way that the grid points satisfy (xi,yj)∈ [−20,20]2 in the truncation, Hermite and sinc
cases, which seems to be an adequate domain for N=129, because sech(20)=4.1223···×
10−9. More carefully chosen discretization domains give slightly better results. On the
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other hand, we have found that a much larger domain is needed to obtain good results
in the rational Chebyshev case; more precisely, we have taken a scaling such that the grid
points satisfy (xi,yj)∈ [−500,500]2. Nevertheless, although the discretization domain for
the rational Chebyshev case is 252 times the size of the discretization domain for the
other cases, the corresponding grid points are much more spread out (x0/x1=y0/y1 ≈3,
x0/x2=y0/y2≈5, etc.), so two thirds of them satisfy (xi,yj)∈ [−20,20]2, too.

Tables 1 and 2 show the respective errors in L∞-norm at t=1. Notice that exp(−2)=
0.1353··· . In the exponentially decaying solutions, the four cases yield good results. The
best ones are given by the rational Chebyshev polynomials, followed by the Hermite
functions, while the sinc functions give an accuracy similar to the truncation method;
even if it is true that the truncation method is slightly more accurate than the other three
for larger ∆t, due to its powerful ETDRK4 discretization in time. The fourth order of the
SBDF4 method [1] that we are using is obvious from the results. Remark that the error of
the rational Chebyshev polynomials further decays to 9.5141·10−13 , for ∆t=1/800.Table 1: Maximum error in L∞-norm at t= 1, maxij |Uij−u(xi,yj,1)|, of the numeri
al solutions with expo-nential de
ay, for Nx = Ny = 129, and di�erent ∆t. The s
alings are: trun
ation, (xi ,yj)∈ [−20,20]2; Her-mite, (xi,yj)∈ [−20,20]2, L= 1.3025031128994204; sin
: (xi,yj)∈ [−20,20]2, h= 0.3125; rational Chebyshev:
(xi,yj)∈ [−500··· , 500···]2, L=6.088658785462852.

∆t−1 Truncation Hermite Sinc R. Cheb.

25 5.3126·10−7 1.2066·10−6 1.2171·10−6 1.2080·10−6

50 3.0468·10−8 7.1401·10−8 8.6348·10−8 7.1257·10−8

100 1.7258·10−8 4.5719·10−9 2.1372·10−8 4.3203·10−9

200 1.7109·10−8 5.9570·10−10 1.7422·10−8 2.6578·10−10

400 1.7100·10−8 3.5248·10−10 1.718·10−8 1.6411·10−11Table 2: Maximum error in L∞-norm at t= 1, maxij |Uij−u(xi,yj,1)|, of the numeri
al solutions with poly-nomial de
ay, for Nx = Ny = 129, and di�erent ∆t. The s
alings are: trun
ation, (xi,yj) ∈ [−20,20]2; Her-mite, (xi,yj)∈ [−20,20]2, L= 1.3025031128994204; sin
: (xi,yj)∈ [−20,20]2, h= 0.3125; rational Chebyshev:
(xi,yj)∈ [−500··· , 500···]2, L=6.088658785462852.

∆t−1 Truncation Hermite Sinc R. Cheb.

25 1.5772·10−5 8.6635·10−5 2.3734·10−4 1.0270·10−6

50 1.5770·10−5 8.6672·10−5 2.3737·10−4 6.0346·10−8

100 1.5770·10−5 8.6674·10−5 2.3737·10−4 3.6591·10−9

200 1.5770·10−5 8.6674·10−5 2.3737·10−4 4.1954·10−10

400 1.5770·10−5 8.6674·10−5 2.3737·10−4 4.1956·10−10

The situation changes completely for the polynomially decaying solutions, where the
rational Chebyshev polynomials are the only alternative. Indeed, the large discretiza-
tion domain [−500,500]2 is very convenient for those solutions. On the other hand, the
domains for the other three cases, (xi,yj)∈[−20,20]2, are obviously too small, but increas-
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ing them does not significantly improve the results; rather the opposite, because we lose
resolution.

In view of the results, we can summarize by saying that the method developed in
this paper is a serious competitive alternative to the domain truncation technique for
exponentially decaying solutions, and that it really excels in the case of polynomially
decaying solutions.

While the excellent behavior of the rational Chebyshev polynomials for problems in-
volving solutions with polynomial decay makes them the choice par excellence for that
kind of situations, they fit extremely well also with solutions with exponential decay. To
better illustrate this, in Fig. 1 we plot the rational Chebyshev spectrum of sech(x) (in
blue), and also of exp(−x2) (in red), for x∈ [−500,500], L=6.088658785462852, N=129.
Since these functions are even, their corresponding odd modes are equal to zero, so we
only show the even modes, which, according to Fig. 1, decay exponentially. A similar
analysis of the spectrum could be done for other types of functions, like exp(−x2n), n>1,
etc., confirming the rational Chebyshev polynomials as an adequate tool for studying
numerically a wide range of problems.
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Figure 1: Spe
tra of sech(x) (blue) and exp(−x2) (red), for x∈ [−500,500], L=6.088658785462852, N=129.We plot the even modes 0 :2 :128. The ordinate axis is in logarithmi
 s
ale.
3.2 Some blow-up problems in two dimensions

In this section, we consider two examples, for which no exact solution is known. In our
first example, we chose an initial condition of (2.1) with three peaks and Gaussian decay:

u0(x,y)=11.2exp
[

−10((x+2)2+(y+4)2)
]

+10exp
[

−10((x−2)2+(y−2)2)
]

+10exp
[

−15((x+2)2+(y−4)2))
]

.

We take p= 3/2, so, according to Theorem 1.1, the solution will blow up at some finite
time; in this case, at t≈6.13.
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The maximum of U in function of t is plotted in Fig. 2. Initially, all the peaks decrease

until t≈1.623, when the maximum is approximately 0.6. During the evolution, the peak
located at t=0 at (x,y)=(2,2) absorbs the peak located at t=0 at (x,y)=(−2,4). The two
remaining peaks blow up at t≈ 1.63. In Fig. 3, we have plotted the evolution at t= 0.3,
where the three peaks are clearly visible; at t = 1.2, where the smaller peak has been
almost completely absorbed; and at t = 6.1, where the blow-up has almost happened.
There is strong numerical evidence that the Gaussian decay is preserved throughout the
evolution.

Figure 3: Evolution of the three peaks at t=0.3,1.2,6.1.
We have compared the four numerical methods at t=6.12, where the solution is very

close to the blow-up. The two remaining peaks, i.e., those initially located at (x,y)=(2,2)
and (x,y)=(−2,−4) are of almost the same height, but the later is slightly higher.

Because the position of the peaks changes with time, and the grid points chosen in
each method are different, each method will locate the summits of the peaks at slightly
different positions, so the results will be necessarily different. In Table 3, together with the
elapsed times, we show the heights of the summits obtained with the four methods; it is
remarkable that these values only change in the second decimal place. Moreover, to com-
pare them graphically, we have intersected the three dimensional graphics (x,y,u(x,y))
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alings are: trun
ation, (xi,yj)∈[−20,20]2;Hermite, (xi,yj)∈ [−20,20]2, L = 0.93438423130303103; sin
: (xi,yj)∈ [−20,20]2, h = 0.16528925619834711;rational Chebyshev: (xi,yj)∈ [−309.39··· , 309.39···]2, L=2.
Method First peak Second peak Elapsed time

Truncation 1.1376·105 1.0617·105 138 s.

Hermite 1.1095·105 1.0491·105 51 s.

Sinc 1.1336·105 1.0510·105 51 s.

Rational Chebyshev 1.1450·105 1.0552·105 140 s.

with the plane parallel to the OZ axis and that contains both summits, obtaining the
curves show in Fig. 4, which are practically coincident. It is also interesting to note that
the Hermite and sinc methods, which do not use FFT, are much faster. This is no surprise,
because schemes like (2.12) are as efficient as an explicit method.
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In our second example, we simulate the evolution of (2.1) for different p, but the same

initial data,
u0(x,y)=exp(−x2−y2),

using Hermite functions, together with N = 199, L = 2, (xi,yj) ∈ [−38.58··· , 38.58··· ],
∆t = 10−2. In order to estimate the blow-up time in function of p, we have executed
the code for p= 1 : 0.01 : 1.99, and stored the t when maxij(Uij)> 1010, maxij(Uij)> 1015,
and maxij(Uij)>1020, which are plotted in Fig. 5. For p=1, there is obviously no blow-up,
but an exponential growing of the maximum of u. For 1<p<2, there is indeed explosion,
but two situations have to be distinguished. Until p≈1.365, the blow-up time decreases,
as p increases, while from p≈1.365, the blow-up time increases with p, tending to infinity
as we approach the critical exponent pc=2.

In Fig. 6, we have depicted in logarithmic scale the evolution of the maximum of U

in function of time. The left hand-side corresponds to p = 1 : 0.01 : 1.36. The case p = 1
yields obviously a straight line in logarithmic scale, because of the exponential growing.
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Then, the curve immediately to its left corresponds to p= 1.01 and so on, until the left-
most curve, which corresponds to p=1.36. Observe that for p close to p=1, the blow-up
time can be calculated only very roughly, which is also evident from Fig. 5. Indeed, Fig. 5
suggests that the actual blow-up time would tend to infinity also as p→1+.

The right hand-side of Fig. 6 corresponds to p=1 : 39 : 0.05 : 1.99. Unlike the previous
case, the left-most curve corresponds to p=1 :39; the next one to its right, to p=1.44; the
next one, to p=1.49, and so on. In all of them, the explosion in finite time happens very
sharply and, hence, the blow-up time can be estimated accurately. Observe also that, as
we approach p=2, the distance between two curves becomes bigger and bigger.
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Figure 6: Maximum of U in logarithmi
 s
ale, in fun
tion of t, for p=1:0.01:1.36 (left), and for p=1.39:0.05:1.99(right).
We have also repeated the experiments with the method from [9], obtaining very

similar results. It seems that the blow-up time can be approximated reasonably well,
even with rather small N and large ∆t. Obviously, should we want to obtain very accurate
estimates of the blow-up time, larger N and smaller ∆t would be required, especially for
p very close to pc.
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4 Description of the numerical method in three

spatial-dimensions

An important feature of the scheme that we have developed is that it can be extended to
higher dimensions. More precisely, in this section, we apply it to the three-dimensional
semi-linear parabolic equation

ut=uxx+uyy+uzz+up, p>1, (x,y,z,t)∈R
3×R

+, (4.1)

with initial data
u(x,y,z,0)=u0(x,y,z), (x,y,z)∈R

3. (4.2)

Remember that, in three dimensions, the critical exponent is pc =5/3. To discretize (4.1),
we need to approximate uxx, uyy and uzz. Again, using the second-order differentiation

matrices D
(2)
x , D

(2)
y and D

(2)
z ,

uxx(xi,yj,zk)≈D
(2)
x ✷1U=∑

β

[

D
(2)
x

]

iβ
Uβjk,

uyy(xi,yj,zk)≈D
(2)
y ✷2U=∑

β

[

D
(2)
y

]

jβ
Uiβk,

uzz(xi,yj,zk)≈D
(2)
z ✷3U=∑

β

[

D
(2)
z

]

kβ
Uijβ,

where U ≡ [Uijk], Uijk(t) = u(xi,yj,zk,t) is a three-dimensional array, and ✷α, α = 1,2,3,
denotes the matrix-array product along the α dimension of U [24]. Using this approxi-
mations, the discretized version of (4.1) is

Ut=D
(2)
x ✷1U+D

(2)
y ✷2U+D

(2)
z ✷3U+Up. (4.3)

The numerical method is exactly the same as in the two-dimensional case. The first-order
semi-implicit Euler discretization in time for (4.3) is

Un+1−Un

∆t
=D

(2)
x ✷1Un+1+D

(2)
y ✷2Un+1+D

(2)
z ✷3Un+1+(Un)p, (4.4)

which can be rewritten as
(

1

3
Ix−∆tD

(2)
x

)

✷1Un+1+

(

1

3
Iy−∆tD

(2)
y

)

✷2Un+1

+

(

1

3
Iz−∆tD

(2)
z

)

✷3Un+1=Un+∆t(Un)p, (4.5)

i.e., we get a three-dimensional Sylvester equation of the form

A1✷1X+A2✷2X+A3✷3X=B. (4.6)
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Of course, if Nx=Ny=Nz, then A=A1=A2=A3. In a recent paper by Li et al. [24, p. 1199],
they claim to have solved this kind of equations for the first time. In fact, we have taken
the useful notation ✷α from them. On the other hand, they solve Sylvester equations of
the form

A1✷1X+X✷2A2+X✷3A3=B, (4.7)

losing the symmetry of (4.6). Indeed, writing all the addends in the form of A✷αX,
α = 1,··· ,n, allows us to extend naturally our algorithms to an arbitrary number of di-
mensions, reducing the difficulty of dealing with higher dimensions to just a notational
problem and, hence, avoiding the curse of dimensionality.

Following the reasoning of the two-dimensional case, the eigenvalues of A1 =
1
3 Ix−

∆tD
(2)
x , A2 =

1
3 Iy−∆tD

(2)
y and A3 =

1
3 Iz−∆tD

(2)
z are respectively λi =

1
3−∆tµi > 0, λj =

1
3−∆tµj>0 and λk=

1
3−∆tµk>0, ∀t>0, which guarantees that a unique solution for (4.5)

exists.
To solve (4.5), the most robust option is to compute the Schur decomposition of A1, A2

and A3, combined with a three-dimensional algorithm inspired on the Bartels-Steward
algorithm [2], which is offered, for the sake of completeness, in Appendix B. This algo-
rithm is much shorter and clearer than the one in [24] and can be easily generalized to
N-dimensional problems [8].

On the other hand, as we pointed out in the two-dimensional case, if the matrices Aα

are diagonalizable, Aα=Pα ·Dα ·P−1
α , with their eigenvalue matrices Pα well conditioned,

then it is possible to trivialize (4.6), obtaining a three-dimensional version of (2.12):

Un+1=P3✷3

[

P2✷2

[

P1✷1

[[

P−1
3 ✷3

[

P−1
2 ✷2

[

P−1
1 ✷1[U

n+∆t(Un)p]
]]]

◦Λ−1
]]]

, (4.8)

where Λ−1≡ [1/(λi+λj+λk)]. The computational cost is of just 2Nx NyNz(Nx+Ny+Nz)
multiplications and NxNyNz divisions per time-step.

It is also immediate to adapt the fourth-order scheme (2.14) to the three-dimensional
case; for the sake of briefness, we omit the details, which can be easily completed by the
reader. The ideas in Section 2.1 are also valid here, when dealing with rational Chebyshev
polynomials.

5 Numerical experiments in three dimensions

5.1 Numerical tests for problems with known exact solutions

As in the two dimensional case, we have considered two modified equations of ut =
∆u+u3:











ut=∆u−2exp(6t)[sinh2(x)cosh2(y)cosh2(z)

+cosh2(x)sinh2(y)cosh2(z)+cosh2(x)cosh2(y)sinh2(z)]u3,

u0(x,y,z)=sechxsechysechz,

(5.1)
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and














ut=∆u−3exp(6t)

[

(

x2+y2+z2+
4

3

)2
− 25

9

]

u3,

u0(x,y,z)=
1

1+x2+y2+z2
,

(5.2)

whose known exact solutions are respectively u(x,y,z,t) = exp(−3t)sechxsechysechz,
with exponential decay, and u(x,y,z,t)=exp(−3t)/(1+x2+y2+z2), with polynomial de-
cay. As predicted in the theory, Hermite and sinc functions are very well suited for solu-
tions with exponential decay; while rational Chebyshev polynomials work well in both
cases, but are the obligatory choice for solutions with polynomial decay.

We have computed the numerical solution at t=1, for N=Nx =Ny=Nz =129. Tables
4 and 5 show the respective errors in discrete L∞-norm at t= 1, for several ∆t. All and
each one of the comments in Section 3.1 fully apply here.Table 4: Maximum error in L∞-norm at t = 1, maxijk |Uijk−u(xi,yj,zk,1)|, of the numeri
al solutions withexponential de
ay, for Nx =Ny =Nz=129, and di�erent ∆t. The s
alings are those used in Table 1.

∆t−1 Hermite Sinc R. Cheb.

25 2.5985·10−6 2.6001·10−6 2.5987·10−6

50 1.4491·10−7 1.5379·10−7 1.4496·10−7

100 8.6909·10−9 1.7938·10−8 8.5380·10−9

200 7.0123·10−10 9.9484·10−9 5.1775·10−10

400 2.1718·10−10 9.4644·10−9 3.1850·10−11Table 5: Maximum error in L∞-norm at t = 1, maxijk |Uijk−u(xi,yj,zk,1)|, of the numeri
al solutions withpolynomial de
ay, for Nx =Ny =Nz=129, and di�erent ∆t. The s
alings are those used in Table 2.
∆t−1 Hermite Sinc R. Cheb.

25 2.5756·10−5 8.1165·10−5 1.5839·10−6

50 2.5778·10−5 8.1181·10−5 8.7469·10−8

100 2.5779·10−5 8.1183·10−5 5.1298·10−9

200 2.5779·10−5 8.1183·10−5 3.1624·10−10

400 2.5779·10−5 8.1183·10−5 2.3078·10−10

5.2 A blow-up problem in three dimensions

We have simulated the evolution of
{

ut=uxx+uyy+uzz+up, (x,y,z,t)∈R3×R+,

u0(x,y,z)=exp(−x2−y2−z2),

using Hermite functions, for N = 99, L= 3, (xi,yj,zk)∈ [−40.00··· , 40.00··· ]3, ∆t= 10−2.
As in the last example of Subsection 3.2, we have considered different p, and all the
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Figure 7: Maximum of U in logarithmi
 s
ale, in fun
tion of t, for p=1:0.01:1.2 (left), and for p=1.22:0.02:1.6(right).
conclusions of the two-dimensional case are valid here. For p=1, there is no blow-up, but
an exponential growing. Then, the blow-up time decreases as p increases, until p≈ 1.2
(left hand-side of Fig. 7). On the other hand, from p ≈ 1.2, the blow-up time quickly
increases with p, tending to infinity as p tends to the critical exponent pc = 5/3 (right
hand-side of Fig. 7). As in the two-dimensional case, for p close to 1, the blow-up time
can be estimated only very roughly; while the blow-up happens very sharply for larger
p.

6 Conclusions

In this paper, we have developed a new method to simulate numerically ut = ∆u+up

in two and three spatial-dimensions, using Hermite functions, sinc functions and ratio-
nal Chebyshev polynomials. On the one hand, it is theoretically interesting, because it
relates several disconnected areas of applied mathematics, such as numerical spectral
methods and Sylvester matrix equations, and can be implemented elegantly in an arbi-
trary number of dimensions; of particular interest is the pretty careful treatment of the
third-dimensional case that we do, which involves the resolution of third-dimensional
Sylvester equations. Indeed, solving higher-dimensional Sylvester equations is a new,
yet unexplored area that might be extremely powerful in many mathematical domains.

On the other hand, the method reveals itself as a practical alternative for solutions
with polynomial or exponential decay. To better justify this point, we have compared the
results of the two-dimensional case with those obtained by using the method from [9],
which combines a domain truncation technique with an ETDRK4 scheme; let us mention
that ETDRK4 schemes can be regarded as an optimal choice for the kind of equations
that we are studying. While our new method, with any of the aforementioned families
of functions, competes well when exponentially fast decaying solutions are considered,
it really excels for polynomially fast decaying solutions, being the rational Chebyshev
polynomials the only possible choice in that case.
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At this point, two important comments are needed. First, some preliminary tests,
and ideally some sort of theorem, may be needed to check that the decay of the initial
solution of ut=∆u+up, or a modified version of it, does not change with time, or that the
support does not expand. This is vital to choose an adequate class of functions and/or
an adequate numerical method. Second, the implicit-explicit scheme (SBDF4) that we
have chosen decreases the stability restrictions on ∆t by dumping the higher frequency
modes. This may be of concern when studying blow-up problems, because the high
frequency modes become extremely relevant. In those cases, a very small ∆t might be
needed to track the infinitesimally fast changing dynamics, so an explicit scheme which is
stable for that small ∆t and which does not dump the highest nodes might be preferable,
especially if an extremely refined grid were required. Obviously, it is always possible
to use a numerical scheme for a small time-interval close to the blow-up, and another
scheme for the rest of the simulation. Therefore, even in those cases when a tremendous
resolution is required, our method can still be very useful.

To finish this paper, let us mention that the method can be applied, with slight modi-
fications, to other types of nonlinear parabolic equations like, for instant, the exponential
reaction model

ut=∆u+λeu, λ>0,

which is important in combustion theory and also in other areas (see [14] and its refer-
ences).
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Appendices

A Pseudo-spectral methods over unbounded domains

A.1 Hermite functions

The Hermite polynomials Hn(x) [5,29] are a very important class of orthogonal functions.
They are defined by the three-term recurrence relation:











Hn+1(x)=2xHn(x)−2nHn−1(x), n≥1,

H0(x)=1,

H1(x)=2x,

(A.1)
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and are orthogonal with respect to the weight ω(x)=exp(−x2):
∫ +∞

−∞
Hm(x)Hn(x)ω(x)dx=δmn

√
π2nn!, (A.2)

where δmn is the Dirac delta. Moreover, they satisfy

H′
n(x)=2nHn−1. (A.3)

However, in practice, they are not very useful, due to their wild behavior at infinite.
Instead, we consider the normalized Hermite functions, which are defined by

ψn(x)=
1

π1/4
√

2nn!
e−x2/2Hn(x); (A.4)

then
∫ +∞

−∞
ψm(x)ψn(x)dx=δmn. (A.5)

Moreover, from (A.1), we obtain the recurrence relation






















ψn+1(x)=

√

2

n+1
xψn(x)−

√

n

n+1
ψn−1(x), n≥1,

ψ0(x)=π−1/4e−x2/2,

ψ1(x)=
√

2xψ0(x).

(A.6)

Furthermore, from this last expression, together with (A.3), we obtain recurrence rela-
tions also for ψ′(x) and ψ′′(x):

{

ψ′
n+1(x)=−xψn+1(x)+

√

2(n+1)ψn(x), n≥0,

ψ′
0(x)=−xψ0(x),

(A.7)

and














ψ′′
n+1(x)=(x2−1)ψn+1(x)−2

√

2(n+1)xψn(x)+2
√

n(n+1)ψn−1(x), n≥1,

ψ′′
0 (x)=(x2−1)ψ0(x),

ψ′′
1 (x)=(x2−1)ψ1(x)−2

√
2xψ0(x).

(A.8)

The optimal pseudo-spectral points are the roots of the N+1-th Hermite function HN+1,
which are also the eigenvalues of the following symmetric tridiagonal matrix:

AN+1=





























0
√

1
2

√

1
2 0

√

2
2

√

2
2 0

√

3
2

. . .
. . .

. . .
√

N−1
2 0

√

N
2

√

N
2 0





























. (A.9)
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The grid spacing varies slightly, but is almost uniform over the interval. Moreover,

max
j

|xj|∼
√

2N, min
j
|xj−xj−1|∼N−1/2. (A.10)

The first and second-order Hermite differentiation matrices D(1), D(2) can be calculated
through polynomial interpolation, as in [35]. Although they do have very nice properties,
for instance their spectral radii are respectively ρ(D(1)) =O(

√
N) and ρ(D(2)) =O(N),

their numerical computation seems to be by no means trivial. Indeed, the codes associ-
ated to [35] seems not to work with more than 246+1 grid points. On the other hand, we
have been able to obtain correct Hermite differentiation matrices for as many as 764+1
grid points using a different approach: Given N+1 points x0,··· ,xN , find the only matri-
ces D(1) and D(2) that satisfy:







ψ′
0(x0) ··· ψ′

N(x0)
...

. . .
...

ψ′
0(xN) ··· ψ′

N(xN)






=D(1) ·







ψ0(x0) ··· ψN(x0)
...

. . .
...

ψ0(xN) ··· ψN(xN)






, (A.11a)







ψ′′
0 (x0) ··· ψ′′

N(x0)
...

. . .
...

ψ′′
0 (xN) ··· ψ′′

N(xN)






=D(2) ·







ψ0(x0) ··· ψN(x0)
...

. . .
...

ψ0(xN) ··· ψN(xN)






, (A.11b)

respectively, i.e., those matrices that differentiate correctly all the Hermite functions ψk(x)
at the grid points, ∀k ≤ N. Of course, if we scale x to Lx, then the matrices are scaled
accordingly to D(1)/L and D(2)/L2. Finally, let us mention that larger differentiation
matrices could be obtained without problems by using a multiple-precision library like
MPFR [12].

A.2 Sinc functions

A function f (x), analytic ∀|x|<∞ and decaying exponentially along the real axis as |x|→
∞, can be conveniently approximated as sums of the Whittaker cardinal function, better
known as the sinc function [4, 30, 31]:

f (x)≈
N/2

∑
j=−N/2

f (xj)Cj(x), (A.12)

where

Cj(x;h)≡sinc

(

x− jh

h

)

, sinc(x)≡ sin(πx)

πx
. (A.13)

As in all the pseudo-spectral methods over unbounded domains, there are two param-
eters; in this case, the number of grid points N, and the grid spacing h, which is the
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equivalent to the scaling L appearing in the Hermite and rational Chebyshev polynomi-
als. It can be shown [5, p. 344] that, for most situations, best results are obtained by
choosing h proportional to

√
N.

The sinc expansion is the easiest pseudo-spectral method to program and understand,
and has an enormous range of applications. Its corresponding differential matrices have a
Toeplitz structure and, unlike their Hermite equivalents, can be constructed numerically
with no issues ∀N>0. In our numerical experiments, we have taken the implementation
from [35].

A.3 Rational Chebyshev polynomials

By using a transformation that maps an infinite interval into a finite domain, it is possible
to generate a great variety of new basis sets for the infinite interval that are the images
under the change-of-coordinate of Chebyshev polynomials or Fourier series [5, p. 355].
Although an infinite variety of maps is possible, we will concentrate on an extremely
important one, the so call algebraic map (see for instance [4, 16]):

x=
Lp

√

1−p2
⇐⇒ p=

x√
L+x2

, (A.14)

which maps p ∈ [−1,1] into the whole real line x ∈R; in what follows, we will assume
L=1. Moreover, given the Chebyshev polynomials

Tk(p)=cos(narccos(p)), (A.15)

it allows to define the so-called rational Chebyshev Polynomials

TBk(x)=Tk

(

x√
1+x2

)

, x∈R, (A.16)

which form an orthogonal basis in R:

∫ +∞

−∞

TBm(x)TBn(x)

1+x2
dx=











π/2, m=n>0,

π, m=n=0,

0, m 6=n.

(A.17)

However, the easiest way to program them is to use a trigonometric representation, i.e.,
through the change of variable

p=cos(s) ⇐⇒ x=cot(s), s∈ [0,π]. (A.18)

Then, it is not difficult to check that

ux =(1−p2)3/2up, uxx=−3p(1−p2)2up+(1−p2)3upp, (A.19a)

ux =−sin2(s)us, uxx=2sin3(s)cos(s)us+sin4(s)uss. (A.19b)
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The first formula allows us to obtain the differentiation matrices associated to the rational
Chebyshev polynomials. Indeed, if D

(1)
Cheb and D

(2)
Cheb denote respectively the first and

second-order Chebyshev differentiation matrices, their rational Chebyshev counterparts
D(1) and D(2) are given by

D(1)=diag((1−p2)3/2)·D(1)
Cheb , (A.20a)

D(2)=−3diag(p(1−p2)2)·D(1)
Cheb+diag((1−p2)3)·D(2)

Cheb , (A.20b)

where, for example, diag((1−p2)3/2) is the diagonal matrix whose diagonal elements are
(1−p2

j )
3/2, being pj ∈ [−1,1] the collocation points, etc.

However, unlike with Hermite polynomials and sinc functions, it is much compact
and elegant to consider rational Chebyshev differentiation matrices on the Fourier space,
instead of the real space. To obtain them, we consider a function expressed as a linear
combination of rational Chebyshev polynomials,

u(x)=
N

∑
k=0

akTBk(x)=
N

∑
k=0

ak cos(ks), (A.21)

and, using (A.19b), express the coefficients bk of the development of uxx(x) as a linear
transform of the coefficients ak of u(x):

uxx =2sin3(s)cos(s)us+sin4(s)uss

=−
N

∑
k=0

ak

[

k2sin4(s)cos(ks)+2ksin3(s)cos(s)sin(ks)
]

. (A.22)

Bearing in mind the identities

sin4(s)cos(ks)≡ 1

16
cos((k−4)s)− 1

4
cos((k−2)s)+

3

8
cos(ks)

− 1

4
cos((k+2)s)+

1

16
cos((k+4)s),

sin3(s)cos(s)sin(ks)≡− 1

16
cos((k−4)s)+

1

8
cos((k−2)s)

− 1

8
cos((k+2)s)+

1

16
cos((k+4)s),

we finally get

uxx =
N

∑
k=0

ak

[−k2+2k

16
cos((k−4)s)+

k2−k

4
cos((k−2)s)− 3k2

8
cos(ks)

+
k2+k

4
cos((k+2)s)− k2+2k

16
cos((k+4)s)

]

=
N+4

∑
k=0

bk cos(ks)=
N+4

∑
k=0

bkTBk(x), (A.23)



F. de la Hoz and F. Vadillo / Commun. Comput. Phys., 14 (2013), pp. 1001-1026 1023

where, obviously, cos(−2s)=cos(2s) and cos(−4s)=cos(4s). Observe that b0=0 always,
and that uxx requires four more Chebyshev rational polynomials to be exactly expressed,
namely TBN+1(x), TBN+2(x), TBN+3(x) and TBN+4(x). Since they are orthogonal to
TBk(x), 0 ≤ k ≤ N, an easy (and numerically safe) way is just to ignore them, setting
bN+1 = bN+2 = N+3= N+4= 0. Thus, we obtain a sparse (N+1)×(N+1)-matrix D(2)

that maps {a0,··· ,aN} into {b0,··· ,bN}; furthermore, doing an even-odd uncoupling, D(2)

can be decomposed into two pentadiagonal matrices. On the other hand, the collocation
differential matrix (A.20b) is full and with no structure. Finally, for both types of matrices,
if we scale x to Lx, they are scaled accordingly to D(1)/L and D(2)/L2.

Given a function u(x), to obtain their rational Chebyshev coefficients ak, 0≤ k ≤ N,

as in (A.21), we need to evaluate it on xj = cot(sj), where sj =
π

2(N+1)+
jπ

N+1 , for 0≤ j≤N;

observe that the smallest distance between two adjacent xj is O(1/N). It is straightfor-
ward to transform {u(xj)} into {ak} and vice-versa by means of a shifted discrete cosine
transform.

B Solving a three-dimensional Sylvester equation

We may think of different approaches to solve the three-dimensional Sylvester equation

A1✷1X+A2✷2X+A3✷3X=B, (B.1)

where Aα ∈MNα×Nα
(C), α= 1,2,3, are squared matrices, and B,X∈MN1×N2×N3

(C) are
multi-dimensional arrays. On the one hand, the simplest (but completely unfeasible)
approach is to apply Kronecker tensor sums, together with the vec operator, to (B.1),
getting a huge linear system (A1

⊕

A2
⊕

A3)·vec(X) = vec(B), where (A1
⊕

A2
⊕

A3) is
a matrix with O(N2

1 N2
2 N2

3 ) elements! On the other hand, we may generalize Krylov-
subspace methods in two dimensions [21], to obtain iterative methods that would be
computationally extremely expensive in three dimensions. Therefore, the best option
seems to use some sort of decomposition for Aα. If, for instance, Aα = Pα ·Dα ·P−1

α are
diagonalizable matrices, with Pα well conditioned, then (B.1) is reduced to solving an
equation of the type

D1✷1Y+D2✷2Y+D3✷3Y=C, (B.2)

whose solution can be computed trivially. Since all the matrices Aα that appear in the nu-
merical experiments in this paper are diagonalizable with well-conditioned eigenvalue
matrices, we have been able to implement safely this idea, to build extremely efficient
schemes like (4.8). On the other hand, in [10], we have applied a related idea for imple-
menting an efficient scheme for the N-dimensional sine-Gordon equation.

Another approach is to obtain the Schur decompositions of Aα=Uα ·Tα ·U∗
α, where Tα

are upper triangular, and U∗
α ·Uα= I are unitary matrices i.e., their inverse coincides with

their conjugate transpose. Although this is computationally more expensive, it is also
much more robust, because we can consider also non-diagonalizable matrices Aα; and
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Uα are well conditioned by construction. Indeed, all the two-dimensional algorithms are
based on the Bartels-Steward algorithm [2], which also employs Schur decompositions.
Hence, unless extra information on Aα is provided, this approach can be labelled as stan-
dard.

In what follows, we use complex Schur decompositions, which can be applied both
to real and complex matrices Aα. Introducing the Schur decompositions of Aα into (B.1),
our problem is reduced to solving an equation of the form

T1✷1Y+T2✷2Y+T3✷3Y=C. (B.3)

If we expand (B.3), bearing in mind that Tα are upper triangular, we get

Ci1i2i3 =
N1

∑
k1=1

T1,i1k1
Yk1i2i3+

N2

∑
k2=1

T2,i2k2
Yi1k2 i3+

N3

∑
k3=1

T3,i3k3
Yi1i2k3

=
N1

∑
k1=i1

T1,i1k1
Yk1i2i3+

N2

∑
k2=i2

T2,i2k2
Yi1k2 i3+

N3

∑
k3=i3

T3,i3k3
Yi1i2k3

.

The central idea when solving (B.3) is to write separately Yi1i2i3 :

Ci1i2i3 =(T1,i1i1+T2,i2i2+T3,i3i3)Yi1i2i3+
N1

∑
k1=i1+1

T1,i1k1
Yk1i2i3

+
N2

∑
k2=i2+1

T2,i2k2
Yi1k2i3+

N3

∑
k3=i3+1

T3,i3k3
Yi1i2k3

. (B.4)

Observe that Tα,iαiα
are precisely the eigenvalues of Aα, so that the last formula proves

that (B.1) has a solution if and only the sum of any eigenvalue of A1 plus any eigenvalue
of A2 plus any eigenvalue of A3 is always non-zero. From the last formula, it is also
straightforward to compute YN1N2N3

:

YN1N2N3
=

Ci1i2i3

T1,i1i1+T2,i2i2+T3,i3i3

. (B.5)

Bearing in mind that to obtain one Yi1i2i3 , only the elements Yi1+1:N1,i2i3 , Yi1,i2+1:N2,i3 and
Yi1i2,i3+1:N3

are needed, we can compute all the Yi1i2i3 recursively:

Yi1i2i3 =
1

T1,i1i1+T2,i2i2+T3,i3i3

[

Ci1i2i3−
N1

∑
k1=i1+1

T1,i1k1
Yk1i2i3

−
N2

∑
k2=i2+1

T2,i2k2
Yi1k2i3−

N3

∑
k3=i3+1

T3,i3k3
Yi1i2k3

]

. (B.6)

Of course, a convenient ordering of the indices, as well as vectorizing the code as much as
possible, is vital when implementing (B.6) on a computer in an efficient way. Moreover,
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if we are not interested in C, it can be progressively overridden with the values of the
solution Y, so no additional storage is required. We refer the reader to [8] for all the
details.

It is not difficult to check that (B.6) requires N1N2N3(N1+N2+N3−3)/2 multiplica-
tions and N1N2N3 divisions, compared with no multiplications and just N1N2N3 divi-
sions required to solve (B.2), which, additionally, can be done in parallel, further increas-
ing the speed. Besides, N1N2N3(N1+N2+N3) multiplications are required to transform
(B.1) into (B.3), and another N1N2N3(N1+N2+N3) multiplications are required to recover
the solution X from Y. Altogether, the algorithm needs N1N2N3(5N1+5N2+5N3−3)/2
multiplications and N1N2N3 divisions, compared with the 2N1N2N3(N1+N2+N3) oper-
ations and N1N2N3 divisions required when working with (B.2). Obviously, if Aα are
time-independent, their Schur decomposition needs to be done just once.
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