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Abstract. A novel method for boundary constrained tetrahedral mesh generation is
proposed based on Advancing Front Technique (AFT) and conforming Delaunay tri-
angulation. Given a triangulated surface mesh, AFT is firstly applied to mesh several
layers of elements adjacent to the boundary. The rest of the domain is then meshed
by the conforming Delaunay triangulation. The non-conformal interface between two
parts of meshes are adjusted. Mesh refinement and mesh optimization are then pre-
formed to obtain a more reasonable-sized mesh with better quality. Robustness and
quality of the proposed method is shown. Convergence proof of each stage as well as
the whole algorithm is provided. Various numerical examples are included as well as
the quality of the meshes.
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1 Introduction

Automatic tetrahedral mesh generation is always an important yet challenging part in
many scientific and engineering computation problems. As the preprocessor of compu-
tation or analysis, it plays a significant role in discretizing the domain of interest. Ex-
tensive research has been conducted in tetrahedral meshing field and tremendous ad-
vances have been made on both theoretical analysis and robust implementation. Most
existing tetrahedral meshing techniques can be categorized into three groups: 1. Spatial
decomposition methods, i.e octree-based methods [1]; 2. Advancing front triangulation
methods [2, 3]; 3. Delaunay triangulation based methods [4–8].

The input for most mesh generators is a surface triangulation, which bounds the do-
main of interest. The desirable generated mesh shall conform with the input triangulation
in such a way that the geometric constraints in the triangulation, i.e. edges and faces, are
preserved in the generated volumetric mesh. Usually there are two manners to preserve
the constraints. The first one is boundary conforming way, in which the constraints can be
kept as the concatenation of edges/faces. This manner could possibly introduce extra
points on the constraints. The second manner is boundary constrained way, in which no ex-
tra point on the constraints is allowed in the result mesh. It is required that all constraints
are preserved in their original and integral forms. Though both manners are acceptable
in most computational fields, a mesh constrained to boundary is often preferred due to
two reasons. (a) Boundary constrained way respects the input sizing specification and
no extra point on constraints modifies the sizing function; (b) it offers more robustness
than the conforming way when meshes from two connected regions are merged together.
A efficiency and robust boundary constrained mesh generator is also our goal. Next we
simply describe how three groups of methods obtain a boundary constrained mesh as
well as their advantages and disadvantages.

1. In spatial decomposition methods, a series of recursively variable sized cubes de-
scribed by an octree is used to approximate the domain of interest. The input for
most octree methods is the geometric representation without boundary constraints.
The boundary triangulation is generated by intersecting the leaf cubes of octree
with the geometric boundary. It is difficult for octree methods to generate bound-
ary constrained meshes.

2. In advancing front methods, mesh is generated element by element along the bound-
ary of existing mesh, i.e. front. The triangle on the front is taken as base and an apex
is selected or created to construct a tetrahedron, the rule of which includes that the
new tetrahedron shall not destroy the existing mesh. This construction rule natu-
rally guarantees that the input surface triangulation would not be destroyed. The
generated mesh will be constrained to boundary inherently. Besides, advancing
front provides good qualities for the elements near the boundary, which are fa-
vored by many applications, such as computational fluids. However, the efficiency
and the robustness of advancing front is always questionable in the community. It
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is time-consuming, and the heuristics more or less required sometimes cause failure
especially at the end of the algorithm.

3. Delaunay triangulation has been proved an efficient and robust mesh generator.
However, Delaunay-based methods usually provides an initial triangulation of the
convex hull of all input data points, which often does not conform the input sur-
face triangulation. The geometric constraints need to be recovered from the initial
convex hull. Constrained boundary recovery is referred to this procedure. Many
constrained boundary recovery methods have been proposed. Some lack theoretic
guarantee [9, 10]. While some [11] do not pay enough attention to the qualities of
elements near the boundary, which are one important concern of the community.

The need of an efficient and robust boundary constrained mesh generator with good
qualities of elements near the boundary, motivates this study. In this article, a new
method is proposed to generate boundary constrained tetrahedral mesh. Advancing
front technique and Delaunay triangulation are applied sequentially in different mesh-
ing stages. In the proposed method, the problem of boundary constrained issue is cir-
cumvented by the advancing front and translated to the conforming boundary recovery
which can be well solved by the Delaunay-based methods. Theoretical proofs are also
included.

The algorithm presented mainly consists of three stages. In the first stage, the ad-
vancing front technique is applied to the input surface triangulation S . This stage is
terminated after several layers of elements are generated and S is not visible to the inte-
rior any longer. Through this stage of operations, a new front (surface triangulation) S1

is obtained as well as several layers of tetrahedral mesh T1. The operation of advancing
front naturally guarantees that S is preserved constrainedly in T1. In the second stage,
the Delaunay-based method in [12] is applied on S1. A modified Delaunay refinement
(edge/face splits) are used to recover the missing constraints. This stage provides T2,
the mesh of the domain bounded by S1, and S1 is recovered in a conforming way. In the
third stage, three tasks are to be accomplished, namely coupling meshes from two subdo-
mains, mesh refinement and optimization. Due to the possible edge/face splits operation
in the second stage, T1∪T2 is not always conformal. Coupling operation aims to turn the
existing mesh to a conformal one and is proven not to destroy the constraints on S . Mesh
refinement and optimization utilizes some well developed method to obtain a mesh with
(a) a mesh size specified by the initial surface triangulation S , (b) a good mesh quality.

The proposed method combines the advantages of both advancing front method and
Delaunay based method while compensates the disadvantages of both. Efficiency: since
advancing front only meshes a few elements near the boundary, the whole method’s
efficiency is dominated by the Delaunay kernel, which is proved the fastest among three;
Robustness: the robustness of AFT has been always questioned by the community, which
is not case for our method. The constructive proof for the convergence of the AFT stage is
given in this study. Combining with the theoretic conclusion from [11], the completeness
and convergence of the whole algorithm is guaranteed as well; Quality: the interior mesh
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is generated via Delaunay triangulation, which is the optimal triangulation under the
nearest neighborhood criterion. This implies the good quality. Besides, advancing front
tends to generate elements near the boundary with good qualities. As a matter of fact,
the quality can be determined by the criteria of choosing the candidate apex.

Furthermore, those near-the-boundary elements, which are of more importance, some-
times are need to be high-aspect ratio, i.e. anisotropic. This demand becomes more and
more commonplace in the computational field. By investigating the measures of two
main approaches, i.e. AFT and Delaunay-based methods, taking on the anisotropic issue,
we found that less modification is required in AFT method. Control matrix representing
different directions as well as the normalized edge lengths recalculation is indispensable
in both approaches, while Delaunay-based methods require Delaunay insertion kernel
modification. What is more tedious, the reevaluated Cavity is not always star-shaped in
three dimensions, which means verification and subsequent correction is necessary. On
the contrary, except the calculation of normalized edge lengths, the other steps in AFT
methods are identical to those in isotropic applications.

The remaining part of the paper is organized as follows. Section 2 gives an overview
of our method, three stages of which are presented in Sections 3, 4, and 5. Section 3
gives a brief review of the advancing front technique. Section 4 gives a brief review
of the Delaunay triangulation with conforming boundary recovery. Section 5 presents
the coupling, mesh refinement and optimization procedures. Section 6 includes some
numerical examples and Section 7 concludes the article.

2 An overview of the method

In this section, we briefly describe every stage in the proposed method. Generally speak-
ing, a three dimensional tetrahedral mesh Th consists of N tetrahedra {Ki}N

i=1, the inter-
section of any two of which is either empty set or a lower dimensional face, i.e. triangle,
edge and vertex. By referring to mesh or triangulation, we are mentioning the same thing
in this article [9]. A surface triangulation or a triangular mesh Sh is defined as a complex
consisting of triangles, the intersection of any two of which is either empty set or a lower
dimensional face, i.e. edge and vertex. A surface triangulation itself should be a surface,
i.e. 2-manifold. We restrict this study to watertight surfaces, i.e. 2-manifolds without
boundaries.

Let S be the input surface triangulation bounding the domain Ω. To illustrate all
stages in two dimensions, a figure of Lake Superior as well as the PSLG (Planar Straight
Line Graph) is shown in Fig. 1(a) and (b). The goal of the algorithm is to obtain a tetra-
hedral triangulation T of Ω with constrained boundary recovery, i.e. each element of S
exists in T . The algorithm mainly includes three stages as follows.

1. Advancing front method

The advancing front technique is first applied. Mesh elements are progressively constructed along
the current front. One single layer of elements as well as the new front is shown in Fig. 2(a) and
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(a) Satellite view (b) PSLG of the boundary

Figure 1: Lake Superior as a two dimensional example.

(a) Elements generated (b) Front after advancing

Figure 2: Illustration of the first advancing front step.

(a) Constrained Delaunay triangulation of the
advanced front

(b) Combination of CDT and AFT elements

Figure 3: Illustration of constrained Delaunay triangulation afterwards.

(b). This stage terminates when several layers of elements T1 are generated and S is not visible
to the interior bounded by the new front, S1.

2. Conforming Delaunay triangulation

A modified Delaunay refinement method in [12] is used to mesh the domain bounded by S1 and
recover the constraints on S1 in a conforming way. Steiner points are inserted on the constraints
to split edges and faces. In this stage, T2 is obtained, whose boundary is S2 conforming S1.
This stage is shown in Fig. 3(a).

3. Coupling, mesh refinement and optimization

This stage contains three phases. The first is coupling. T1∪T2 is not always conformal due to
the split operation in stage 2. Coupling operation transforms the whole mesh to a conformal one
by split the elements in T1 correspondingly. The coupling procedure is shown in Fig. 3(b). The
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Figure 4: Final mesh after remeshing and optimization.

second is mesh refinement, which generates interior field points according to the sizing function.
The third is applying mature mesh optimization technique such as Centroid Voronoi Tessellation
to improve the mesh quality further. The final result is shown in Fig. 4.

3 Advancing front triangulation

This section briefly describes the first stage of the proposed method: mesh the region
near the input boundary S and propagate S to a new surface triangulation S1 by the
advancing front technique. The advancing front triangulation (AFT) have been studied
for almost forty years among the mesh community. Since it was first presented in [13],
this technique has been improved by many researchers [14–19]. Mature and powerful,
this method is widely applied in mesh generating field.

Most advancing front triangulation algorithms can be described as repeatedly per-
forming three steps until certain condition is satisfied: (a) select a triangle from the cur-
rent front as the base of the tetrahedron to be created; (b) build a point candidate list for
the potential apex of the tetrahedron; (c) select the best choice from the candidate list to
create the tetrahedron and update the front.

The manner of building the candidate list and the order to process the triangles on
the front vary from one implementation to another, while the condition to terminate the
algorithm is same, i.e. the front is empty or the domain of interest is completely meshed.
However, in our method, AFT is required to mesh only a small portion of domain, i.e.
the region near the boundary. Imperially two or three layers of elements are enough.
Theoretically this stage’s aim is to generate a new surface triangulation S1 such that the
initial S is not visible to the domain bounded by S1.

To generate such a S1 could be achieved via two steps. The first step generates a new
front Sa such that the faces on S are not visible to the domain Ωa bounded by Sa. The
second step generates a new front Sb such that the edges on S are not visible to the domain
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Ωb bounded by Sb. Next we show the existence of Sa and Sb as well as the feasibility to
find them. First we discuss Sa.

Lemma 3.1. For the triangle face △AiBiCi ⊂ front as well as its centroid Mi and unit normal−→
Ni and another triangle △j ⊂ front, there exists an ǫj such that the tetrahedron Pj AiBiCi, where

Pj=Mi+ǫj
−→
Ni , does not intersect △j.

Proof. Given an arbitrary ǫ and corresponding Pi, suppose R is one vertex of △j.

• If
−→
RM·−→Ni ≤0, it is trivial R /∈Pi AiBiCi;

• If
−→
RM·−→Ni >0,

– either R /∈Pi AiBiCi,

– or R∈ PiAiBiCi, then find ∂RAiBiCi∩MiPi = P
′
i = Mi+ǫ

′
, choose ǫ

′′
= 1

2 ǫ
′

and

P
′′
i =Mi+ǫ

′′
, it could be shown that R /∈P

′′
i AiBiCi.

The above discussion shows that for an vertex R in △j, it is either R /∈PiAiBiCi or we

could update Pi to another P
′′
i such that R /∈ P

′′
i AiBiCi. Similar discussions apply to the

other two vertices, which we call S,T. It is also noticed that since P
′′
i AiBiCi⊂PiAiBiCi, the

re-selection of the apex would not re-include the other vertices of △j.
Since we could find a Pj such that Pj AiBiCi∩R,S,T=∅. Due to the fact △j is a convex

set, we have conclusion that Pj AiBiCi∩△j =∅, namely no intersection.

Lemma 3.2. For a triangle face △AiBiCi⊂ front as well as its centroid Mi and unit normal
−→
Ni ,

there exists an ǫ such that the tetrahedron AiBiCiPi, where Pi=Mi+ǫ
−→
Ni , does not intersect with

any other elements in the front.

Proof. For each △j ⊂ front other than △AiBiCi, we have shown in Lemma 3.1 that ∃Pj =

Mi+ǫj ·
−→
Ni such that Pj AiBiCi∩△j =∅.

Choose ǫ=minall△ j
{ǫj} and Pi=Mi+ǫ·−→Ni . Since Pi AiBiCi⊂Pj AiBiCi, Pi AiBiCi∩△j=∅.

Then ∪{△j}∩Pi AiBiCi=∅.
Hence there exists an Pi such that Pi AiBiCi does not intersect with any other elements

in the front.

Iteratively, we build such a tetrahedron for each triangle in S and update the front.
The initial triangle △AiBiCi in S is updated to △AiBiPi, △AiPiCi, and △PiBiCi in Sa.
Obviously, the initial triangle △AiBiCi in S is not visible to the domain Ωa. The number
of triangle faces contained in S is limited. Hence after limited steps of algorithm, all
triangle faces in S is not visible to Ωa. One single step of this construction is illustrated
in Fig. 5.

Above shows the existence of Sa as well as the construction way. The existence of Sb

could be shown similarly. Assume the edge AB in S is of interest. In the Sa, AB is shared
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(a) (b) (c)

Figure 5: Illustration of the first part of construction.

(a) (b) (c)

Figure 6: Illustration of the second part of construction.

by triangles △ABPi and △ABPj with unit normal
−→
Ni and

−→
Nj . Obviously, Pi and Pj are not

in S . The unit normal of AB is defined as the average of
−→
Ni and

−→
Nj :

−→
N =

−→
Ni+

−→
Nj

|−→Ni+
−→
Nj|

. There

exists an ǫ such that △A′B′Pi and △A′B′Pj do not intersect any element on the front,

where A′= A+ǫ
−→
N and B′= B+ǫ

−→
N . The triangles △ABPi and △ABPj are substituted

by △A′B′Pi and △A′B′Pj in Sb. No edge from S is visible to Ωb. This construction is
illustrated in Fig. 6.

Through these two kinds of construction, the original △AiBiCi in S is substituted
by △A

′
iB

′
iPi, △A

′
iPiC

′
i, and △PiB

′
iC

′
i in Sb. The new surface triangulation Sb consists of

{A
′
i,B

′
i,C

′
i,··· ,Pi}. The vertices {A

′
i,B

′
i,C

′
i,···} on S do not exist in Sb. S is not visible to

Ωb. In sum, we can draw the following conclusion.

Theorem 3.1. Given a watertight surface triangulation S , there exists a new triangulation S1

such that S is not visible to the domain bounded by S1.

4 Conforming Delaunay triangulation with boundary recovery

In this section, we describe the operation in the second stage of the algorithm: Delaunay-
based triangulation on S1 with conforming boundary recovery. The goal of this stage is
to generate T2 such that each element of S1 either exists in T2 or is the union of a set of
edges/faces of T2, and the geometry of the boundary of T2 conforms with that of S1.

As mentioned in Section 2, there are several typical methods for conforming bound-
ary recovery, one example of which is the Delaunay refinement method in [7] which is
popular in the community. Instead we choose the method in [12] due to its modification
on the Delaunay kernel. Such modification eliminates the possible infinite Steiner points
insertion in [7]. This method is briefly presented as follows.
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Let P be the vertices on S1. Denote the Delaunay triangulation of P by Td.

1. First, information from S1 is collected. All existing constraints in Td are marked Recovered and
all missing ones are markedUnrecovered. All Recovered constraints are automatically marked
Protected.

2. Secondly, the Delaunay refinement method that consists of the edges/faces splittings is used.
For a missing constraint, the intersection points with Td are listed. Intersection points are to be
inserted sequentially into Td in a modified Delaunay way until this constrain is recovered as a
concatenation of several edges/faces, all of which are marked Protected.

3. Finally, the elements lying outside the domain are deleted from Td and a conforming triangu-
lation Td of S is obtained, i.e. the boundary recovery process is completed. For distinguishing
convenience, we rename the obtained volumetric mesh Td by T2 and the recovered boundary S2.

As is known, the classical Delaunay incremental point insertion algorithm is mainly
three steps: determine the Base, search the Cavity and connect the Ball. The modified
Delaunay insertion way, i.e. the modified Delaunay kernel, has changed the manner of
searching the Cavity. The searching Cavity procedure would be blocked by the possible
Protected constraints, not only dominated by the empty sphere criteria. This modification
could prevent the insertion from destroying the already recovered constraints and elimi-
nate infinite points insertions. Also this modified Delaunay kernel leads the proof of the
convergence of this method. Interested readers please see the details and proof in [12].
We only list the conclusion as follows.

Lemma 4.1. The boundary recovery algorithm presented in Section 4 for recovering the missing
edges/faces of S1 is convergent, i.e. the missing constraints can be recovered as a concatenation of
edges/faces of T2 through a finite number of intersection points insertion in the modified Delaunay
insertion procedure [12].

5 Coupling, mesh refinement and optimization

In this section, all three phases involved in the last stage are presented sequentially: cou-
pling operation, mesh refinement and optimization.

5.1 Coupling

Obviously, the mere union of results from the first and second stages, T1∪T2, may be non-
conformal, which is not favorable in most applications. The coupling operation aims to
turn T1∪T2 into a conformal mesh without destroying the integrity of S .

The main idea is to split the elements corresponding to the disagreement between
S1 and S2. If one constraint X in S1 is detected to be recovered as union of several
edges/faces in S2, the element adjacent to X in T1 is split correspondingly. After all such
possible split operations, T1 is turned to T ′

1 . T ′
1 ∪T2 is conformal and constrained to S .

The algorithm and proof of convergence is provided below. In the following statement,
we denote a tetrahedron with base F and apex v by vF.
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There are two operations in the coupling algorithm: detection and split. Detecting
operation is performed on triangle faces. For a face F in S1, if it does not exist in S2,
we can detect the faces {Fi}M

i=1 in S2, concatenation of which is F. Once such mapping
is established, the inverse map from S2 to S1 can be determined as well. From the split
operation in Section 4, we can have the following claim.

Claim 5.1. For a triangle face F2 in S2, there is one and only one face F1 in S1 such that
F2⊂F1.

If a triangle face F on S1 is missing in S2 and is detected that F =
⋃M

i=1 Fi, Fi ∈ S2,
i = 1,··· ,M, the tetrahedron vF in T1 is split to {vFi}M

i=1. As for the tetrahedron vF, we
have the following claim.

Claim 5.2. let F be one triangle face on S1, there is one and only one tetrahedron vF in
T1.

This claim can be verified by exploiting the fact that S1 is the boundary of T1.
The whole algorithm is in Table 1, which applies to both edge/face splitting. An

example of face splitting is shown in Fig. 7.

Table 1: The coupling algorithm.

Inputs

1. The surface S1 and its faces {F1i}M
i=1

2. The recovered surface S2 and its faces {F2i}M
i=1

3. T1 from stage 1

4. T2 from stage 2

Algorithm

1 Initialize f lag[M] to 0

2 For i=1 : N

3 find F1j such that F2i⊂F1j (see Claim 5.1)

4 find vj such that vjF1j ∈T1 (see Claim 5.2)

5 IF vjF2i∈T1

6 f lag[j]=1

7 continue

8 END IF

9 Add vjF2i to T1

10 END For

11 For j=1 : M

12 IF f lag[j]==0

13 Remove vjF1j from T1

14 END For

Outputs

1. A new mesh T ′
1
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(a) F1 in S1 (left) is detected to be recovered as {F2i}3
i=1 in S2 (right)

(b) Correspondingly vF1 in T1 (left) is split to {vF2i}3
i=1 in T ′

1 (right)

Figure 7: Procedure of coupling meshes.

From above description, it is easy to find that one single split operation only destroys
the triangle face F on S2. Combined with the fact that S2 is not visible to S , namely
S2∩S=∅, it implies that every split operation would not destroy S . Hence we can draw
the conclusion as follows.

Lemma 5.1. After the coupling operation described in this subsection, the obtained mesh is still
constrained to S .

5.2 Mesh refinement

Though being a conformal and valid mesh after the coupling operation, the mesh T ′
1 ∪T2

often does not meet the mesh size requirement given or imposed by the initial surface
triangulation S . To obtain an appropriate mesh, mesh refinement is then performed. By
saying refinement, we refer to both mesh refinement and coarsening.

In mesh generation field, a sizing function is usually used to describe the intended
mesh density. Sometimes it is equivalent to the control space. This could be given as
input or interpolated by mesh generator itself, which is the case of our study. The al-
ready obtained T ′

1 ∪T2 serves as the background mesh, in which the sizing function is
interpolated.

Various methods could be applied to the following refinement procedure. One ex-
ample is Ruppert’s inserting circumcenters into bad elements [20]. In our method, the
normalized edge lengths are calculated [21] and is used as a criterion for the refinement
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or coarsening of the given edge. Usually, the value Cs =
√

2 is assigned to the splitting
parameter, and the value Cc=1/

√
2 the coarsening parameter. If the edge length is larger

than Cs then a splitting operation is performed, while contraction is applied if the edge
length is less than Cc. This approach has been used in the surface remeshing topic [22],
which also inspires this use in volumetric mesh refinement. The splitting and contracting
operations are briefly described as follows.

Splitting: If the edge length is larger than Cs, the midpoint of the edge length is in-
serted in a modified Delaunay way in Section 4.

Contracting: If the edge length is less than Cc and neither of the edge ends is on the
constraints, both of the edge ends are removed and the midpoint is inserted in a modified
Delaunay way. If the edge length is less than Cc and one of the edge ends is on the
constraints, only the other edge end is removed. This would guarantee the constraints
are not destroyed.

5.3 Mesh optimization

To obtain a mesh with better quality, Centroid Voronoi tessellation (CVT) is this optimiza-
tion phase. Been studied for the last decade, CVT has been proven useful in diverse ap-
plications, one important of which is mesh optimization. The Lloyd’s method described
in [23] is used in our study only with some modifications and some extra measures.

The iterations between constructing Voronoi diagrams and calculating centroids are
performed only on those vertices inside the domain Ω bounded by S2. The centroids,
i.e. Voronoi generators in the next iteration, are checked whether bounded by S2 and
inserted in the modified Delaunay way of Section 4. This would guarantee the new mesh
of Ω is still constrained by S2.

The density function ρ(x) used in CVT optimization is suggested as in [23]:

ρ(x)=C/h(x)5 , (5.1)

where h(x) is the sizing function, C is a constant usually set to 1. The sizing function is
computed on a regular or adaptive grid. The voxels intersecting with the input surface
mesh is determined by the intersected triangle size, e.g. shortest edge length. The sizing
function for all other non-intersecting voxels is interpolated. This interpolation scheme
contains two steps, with the sizing function of all non-intersecting voxels initialized to
the average of the whole domain. The first step is smoothing on all voxels via any classic
approach, e.g. Gaussian filter or Laplacian smoothing. The second step is to recover the
sizing function of voxels intersecting the surface to their values before smoothing. These
two steps are performed iteratively until some criteria are satisfied such as the difference
of sizing function is smaller than a certain tolerance.

Another alternative optimization way is to construct standard Delaunay triangula-
tion in each iteration, which may destroy the integrity of S2. Hence further conforming
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boundary recovery on S2 and coupling operation is required. In experiment, we found
that this alternative could effectively reduce the number of bad tetrahedra near the S2,
only requiring extra boundary recovery and coupling operation.

Combining the Lemmas 3.1, 4.1 and 5.1, we can draw the conclusion as follows:

Theorem 5.3. Let S be an arbitrary surface triangulation, the algorithm we described in Section
3, 4, and 5 could effectively generate tetrahedral volumetric mesh constrained to S

6 Numerical examples

In this section, various examples are presented to illustrate the effectiveness, efficiency
and robustness of the proposed method. In our experiment, we choose one or two lay-
ers of T1, since Delaunay triangulation meshing is more efficient than AFT meshing. we
prefer efficiency to quality in this study. All experiments were conducted on a PC with
Intel Pentium 4 CPU of 3.2GHz and 4GB memory. Four examples are presented. The four
geometric models are: a fan disk, an airplane, a femur and a sculpture named “bimba”.
The examples include pictures of surface triangulations, cutting views of volumetric tri-
angulations. They are presented in Figs. 8 to 13. Also, three tables are given to present
the mesh data and statistics on the element quality.

In Table 2, the geometric data for each example are provided which include the to-
tal number of vertices in the triangulation, the vertices of the surface triangulation (i.e.
boundary vertices), total number of tetrahedra and the triangles of the surface triangu-
lation. In Table 3, some statistics of elements quality (after optimization through the
construction of CVT) are provided. They include the average quality, minimum qual-
ity, ratio of good elements, ratio of bad elements. Here, the quality of each element [20]
ranges from 0 to 1.0, with 1.0 being optimal. And we say a tetrahedron is a good element
if its quality is above 0.4, and a bad element if less than 0.1.

At last, mesh quality histograms are drawn in Fig. 14. As is shown, the average of

(a) Surface mesh (b) Interior volumetric mesh

Figure 8: Example I: Fandisk.
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(a) Surface mesh (b) Zoomed view

Figure 9: Example II: Airplane.

(a) Interior volumetric mesh (b) Zoomed view

Figure 10: Example II: Airplane.

(a) Surface mesh (b) Interior volumetric mesh (c) Zoomed view

Figure 11: Example III: Femur.
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(a) Surface mesh (b) Surface mesh

Figure 12: Example IV: Bimba.

(a) Interior volumetric mesh (b) Zoomed view

Figure 13: Example IV: Bimba.
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(a) Fan disk
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(b) Air plane
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(c) Femur

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

element quality

fr
eq

ue
nc

y

 

 

all elements
boundary elements

(d) Bimba

Figure 14: Statistics on the element quality: all elements and boundary elements.
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Table 2: Mesh statistics of the examples.

Examples fandisk airplane femur bimba

Boundary vertices 16853 71477 28213 74764

Boundary triangles 33702 142958 56422 149524

Total vertices 91614 209700 148197 497273

Total tetrahedra 476463 974270 780343 2680102

Table 3: Elements quality statistics of the examples.

Examples fandisk airplane femur bimba

Average quality 0.72 0.71 0.73 0.75

Minimal quality 0.23 0.12 0.43 0.04

Percentage of good elements 0.99 0.99 0.99 0.99

Percentage of bad elements 0 0 0 7.46×10−7

Table 4: Near-the-boundary elements quality statistics of the examples.

Examples fandisk airplane femur bimba

Element number 110805 427979 167728 423940

Average quality 0.71 0.72 0.74 0.76

Minimal quality 0.23 0.12 0.43 0.04

Percentage of good elements 0.99 0.99 0.99 0.99

Percentage of bad elements 0 0 0 4.72×10−6

all mesh elements’ quality is more than 0.7, which is also indicated by Tables 3 and 4.
It is also observed from this series of histograms that the boundary elements contain
more regular tetrahedra as the mesh size increases. This is due to the advancing front
method’s manner, i.e. trying to construct as regular elements as possible. On the con-
trary, the boundary elements could not be well optimized by CVT iteration due to the
constraints of the boundary. The red bars also indicate a relatively small portion of el-
ements whose qualities are around 0.8. Combining the merits from AFT and limitation
from CVT, the boundary elements’ qualities are a little higher than the whole mesh qual-
ity. This phenomena is due to the mesh optimization method, which only applies to the
inner elements. A more complete mesh optimization method is assumed to be improve
the results and will be our future study.

7 Conclusion

In this article, a novel method for automatic tetrahedral mesh generation is proposed
based on advancing front technique and conforming Delaunay triangulation with bound-
ary recovery. The aim is to generate a boundary constrained tetrahedral mesh. The mer-
its of both kinds of approaches are exploited. The advancing front method generates the
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first several layers of elements adjacent to the input triangulation, which guarantees the
boundary conforming as well as the good element quality. The conforming Delaunay tri-
angulation meshes the remaining region of interest, which eliminates the heuristics and
instability in the advancing front. Steiner points are generated according to the sizing
function and inserted. Two mature and effective optimization methods are applied to
improve the mesh quality. The validity and the convergence of the method is proved and
various numerical examples proves the effectiveness, robustness, and the efficiency.
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[15] Löhner R. Three-dimensional grid generation by the advancing-front method. Numerical

Methods in Laminar and Turbulent Flow, 1987.
[16] Mavriplis D. An advancing front Delaunay triangulation algorithm designed for robustness.

Journal of Computational Physics, 1995; 117(1):90–101.
[17] Peraire J, Vahdati M, Morgan K, Zienkiewicz O. Adaptive remeshing for compressible flow

computations. Journal of Computational Physics, 1987; 72(2):449–466.
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