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Abstract. In this paper, a gas kinetic scheme for the compressible multicomponent
flows is presented by making use of two-species BGK model in [A. D. Kotelnikov and
D. C. Montgomery, A Kinetic Method for Computing Inhomogeneous Fluid Behavior,
J. Comput. Phys. 134 (1997) 364-388]. Different from the conventional BGK model,
the collisions between different species are taken into consideration. Based on the
Chapman-Enskog expansion, the corresponding macroscopic equations are derived
from this two-species model. Because of the relaxation terms in the governing equa-
tions, the method of operator splitting is applied. In the hyperbolic part, the integral
solutions of the BGK equations are used to construct the numerical fluxes at the cell
interface in the framework of finite volume method. Numerical tests are presented
in this paper to validate the current approach for the compressible multicomponent
flows. The theoretical analysis on the spurious oscillations at the interface is also pre-
sented.
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1 Introduction

The numerical methods for the compressible multicomponent flows have become im-
portant topics in the research of computational fluid dynamics. Over the past decades,
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significant progresses have been made to handle the multicomponent flows which are
associated with discontinuities and shock waves. One of the popular approaches is to
solve an extended system in which additional conservation equations are introduced
to the original Euler equations. The additional equations describe the conservation of
parameters, such as level set functions, mass fraction and ratio of specific heats in the
mixture [1, 6, 13, 16, 21]. In order to eliminate the spurious oscillations and other com-
putational inaccuracies in the conservative methods [1, 2, 11], some non-conservative
approaches which capture the contact discontinuous by making use of additional non-
conservative governing equations were proposed [1, 2, 11, 18–20, 22]. Another approach
introduced by Karni [12] was to solve the Euler equations separately on each side of the
interface by a method designed for a single-component flow, while the interface was dealt
with in a different manner using a pressure evolution equation derived from the energy
equation. Despite the fact that the method is not exactly conservative at the interface,
reasonable results can be also obtained.

In recent years, the gas kinetic scheme based on the BGK model [3–5] for the com-
pressible fluids proposed in [24,25] has attracted much attention. Based on the Chapman-
Enskog expansion, the Euler as well as Navier-Stokes equations can be derived from the
gas kinetic BGK model. In the framework of finite volume method, the BGK scheme
makes use of the local integral solution of BGK model to compute a time-dependent gas
distribution function at a cell interface. The numerical fluxes are obtained by taking mo-
ments of the distribution function in the gas evolution stage. As the BGK model is a
statistical model, the particle transports and collisions are coupled in the whole gas evo-
lution process, and the particle collision time controls the physical dissipative coefficients
in the macroscopic equations. Since the gas evolution is associated with a relaxation pro-
cess, i.e. from a non-equilibrium state to an equilibrium one, the entropy condition is
satisfied automatically. Once the physical structure can be well resolved by the numeri-
cal cell size, in smooth regions, the scheme automatically gives an accurate compressible
Navier-Stokes solution. Meanwhile, in the discontinuous regions, because of the delicate
dissipative mechanism, the BGK scheme generates a stable and crisp shock transition.
The BGK scheme has been extended to magnetohydrodynamics [23, 28], hyperbolic con-
servation laws with source terms [24] and shallow water flow [30]. The high order BGK
scheme has also been developed [14,27]. Recently, a unified gas kinetic scheme [29] is de-
veloped for all Knudsen number flows, which is an extension of the gas-kinetic scheme
from the continuum flow to the rarefied regime with discretization of velocity space.

The BGK-Based numerical methods for the multicomponent flow have also been pro-
posed in recent years. A gas kinetic scheme for multicomponent flow was presented
in [15, 26]. The basic idea of this method is that the evolution of each component is
governed by a BGK model with its own equilibrium state, and the equilibrium states of
both components are coupled in space and time due to the course of particle collisions,
and the common variables in the equilibrium states are the macroscopic velocities and
temperatures. By incorporating a conservative γ-model proposed in [1] into the BGK
scheme, a gas kinetic γ-model BGK scheme for the compressible multicomponent flow
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was proposed in [8,9]. In the view of recovering the original equations by using the local
equilibrium states, the γ-model equation in the conservation form can be easily incorpo-
rated into the BGK scheme. In this method, the interface of two materials with different
ratios of specific heat is considered to be a contact discontinuity. Since only one BGK-
model needs to be solved, the γ-model BGK scheme is computationally efficient than the
scheme presented in [15, 26].

The two-species BGK model was taken into consideration in [10]. In this model, the
collisions between different species were taken into account. Similar with the methods
proposed in [15, 26], in this model, each species is treated separately. Since the colli-
sions between different species are considered, more physical information could be ob-
tained from this model. With the Chapman-Enskog expansion, the macroscopic govern-
ing equations can be derived. Compared with the conventional Euler and Navier-Stokes
equations, the relaxation terms appear in the governing equations, which are derived
from integral over the additional collision terms. A gas kinetic scheme for the multicom-
ponent flow was presented based on this model. Because of the relaxation terms, the
method of operator splitting is used so as to avoid the difficulty to deal with relaxation
terms. Making use of a switch function which connects both continuous region and dis-
continuous region, the distribution functions were constructed at the cell interface, and
numerical fluxes can be obtained by taking moments of the distribution functions.

In this paper, a gas kinetic scheme for the compressible multicomponent flows will be
presented based on the two-species BGK model. With the Chapman-Enskog expansion,
the governing equations derived in [10] will be presented. Similar with the Boltzmann
equation and the conventional BGK model, the entropy condition of this two-species
BGK model will be proved. Because both species are treated separately in the two-species
BGK model, it is possible for us to obtain more information of each species. Because of
the appearance of relaxation term, the method of operator splitting is also used. In the hy-
perbolic part, based on the integral solution of the two-species BGK model, we construct
the distribution functions by solving the BGK equations. The numerical fluxes across
the cell interface are obtained by taking moments of the distribution functions. In the
relaxation part, the second order Runge-Kutta method is used to deal with the relaxation
terms. The numerical experiments will be presented to validate the scheme in one and
two dimensional cases. In the numerical results, the spurious oscillations are observed
at the interface in the contour of velocity and pressure. Based on the initial conditions
with a density discontinuity evolving with uniform pressure and velocity [1], we analyze
the reason of spurious oscillations and obtain so-called moment conditions that should
be satisfied at the interface. These conditions are criterions to construct kinetic-based
scheme for the multicomponent flow.

This paper is organized as follows. In section 2, we will introduce the two-species
BGK model, prove the entropy condition of this model, and derive the macroscopic gov-
erning equations with the Chapman-Enskog expansion. In section 3, the outline of the
numerical scheme will be presented. In section 4, some one and two dimensional numeri-
cal examples are presented to validate the scheme. In section 5, the reason of the spurious



1350 L. Pan et al. / Commun. Comput. Phys., 14 (2013), pp. 1347-1371

oscillations in the contour of velocity and pressure at the interface will be analyzed. The
last section is the conclusion.

2 Two-species BGK model

2.1 BGK equations

In this paper, we consider two types of molecules, identified by 1 and 2, respectively,
whose distribution functions f1 and f2 are functions of spatial coordinate x, velocity-
space coordinate v and time t. The kinetic equations for each species are expressed as

∂ f1

∂t
+v·

∂ f1

∂x
=St( f1), (2.1)

∂ f2

∂t
+v·

∂ f2

∂x
=St( f2), (2.2)

where the collision terms St( f1) and St( f2) represent the time rate of change of f1 and f2

due to the collisions. If the collisions both between same species and different species are
considered, the following collision terms are used

St( f1)=−
f1−g1

τ11
−

f1−g12

τ12
, (2.3)

St( f2)=−
f2−g2

τ22
−

f2−g21

τ21
. (2.4)

In the collision terms above, there are four collision times τij,i, j=1,2 to be specified. The
four equilibrium states above are all local Maxwellian state

g1(x,v,t)=ρ1(
λ1

π
)

N1+3
2 e−λ1((v−u1)

2+ξ2
1),

g12(x,v,t)=ρ1(
λ̃1

π
)

N1+3
2 e−λ̃1((v−u2)

2+ξ2
1),

g2(x,v,t)=ρ2(
λ2

π
)

N2+3
2 e−λ2((v−u2)

2+ξ2
2),

g21(x,v,t)=ρ2(
λ̃2

π
)

N2+3
2 e−λ̃2((v−u1)

2+ξ2
2),

where ρi is density, pi is pressure and λi is function of density and pressure, with the

relation λi=
ρi

2pi
. ξi=(ξ1

i ,ξ2
i ,··· ,ξNi

i ) is the internal variables in Ni dimensions, and (ξi)
2=

(ξ1
i )

2+···+(ξNi
i )2. The ratio of specific heats for each species commonly denoted by γi

which equals to Ni+5
Ni+3 . ui=(Ui,Vi,Wi) is the corresponding macroscopic flow velocity with

three components in the x,y and z directions. λ̃i is an auxiliary macroscopic variable and
should be chosen to make the conservation laws satisfied for the two-species system.
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Similar with the conventional BGK model, the collision terms satisfy the compatibility
conditions ∫

(gi− fi)ψ
i
αdvdξi =0, (2.5)

where ψi
α=

(
1, v, 1

2 (v
2+ξ2

i )
)
, α=1,2,3, dvdξi =dudvdwdξ1

i ···dξNi
i , i=1,2.

Based on the gas kinetic theory, we have the following relation between the conser-
vative variables (ρi,ρiui,ρiEi) and the distribution function fi for each species

ρi =ρi(x,t)=
∫

fidvdξi ,

ρiui=ρiui(x,t)=
∫

v fidvdξi ,

ρiEi=ρiEi(x,t)=
∫

1

2
(v2+ξ2

i ) fidvdξi ,

where ρiEi is the total energy. The pressure tensor and heat flow vector are defined as

Πi=
∫
(v−ui)(v−ui) fidvdξi ,

qi=
1

2

∫
(v−ui)((v−ui)

2+ξ2
i ) fidvdξi .

In this model, there are λ̃i and τij which need to be specified. In this paper, they are
defined as follows

λ̃1= λ̃2= λ̃=
(N1+3)+(N2+3)

N1+3

λ1
+

N2+3

λ2

, (2.6)

ρ1

τ12
=

ρ2

τ21
. (2.7)

In the conventional BGK model, the gas evolution is associated with a relaxation pro-
cess i.e. from a non-equilibrium state f to an equilibrium state g. However, in this model,
the collision terms describe the distribution function fi evolves not only to the equilib-
rium state gi, but also to an equilibrium state gij. Because of this relaxation process, the
entropy condition is satisfied for the two-species BGK model. In the following subsec-
tions, the conservation laws and the entropy condition of the two-species BGK model
will be proved.

2.2 Entropy condition

It is well-known that the Boltzmann equation and the conventional BGK model satisfy
the entropy condition, i.e. H theorem [5, 24].

In this subsection, we will prove that, according to the conservative conditions Eqs. (2.6)
and (2.7), the two-species BGK model Eqs. (2.1) and (2.2) also satisfy the entropy condi-
tion for the system.
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First of all, let’s define

Hi=
∫

fi ln f dvdξi ,

F(Hi)=
∫

v fi ln f dvdξi ,

as the entropy density and entropy flux. In order to prove the entropy condition, let’s
multiply (1+ln fi) on both sides of the two-species BGK model Eqs. (2.1), (2.2), and take
integration with respect to dvdξi

∫ (∂ fi

∂t
+v

∂ fi

∂x

)
(1+ln fi)dvdξi =

∫ ( gi− fi

τii
+

gij− fi

τij

)
(1+ln fi)dvdξi , (2.8)

which gives

∂Hi

∂t
+∇·F(Hi)=

∫ ( gi− fi

τii
+

gij− fi

τij

)
(1+ln fi)dvdξi .

Based on the compatibility conditions Eq. (2.5), for the first collision terms, we have
∫
(gi− fi)(1+ln fi)dvdξi =

∫
(gi− fi)(ln fi−lngi)dvdξi ≤0.

Meanwhile, according to the definition of gij and fi, we have

∫
(gij− fi)dvdξi =0.

Consequently, the additional collision terms could be written as follows

2

∑
i=1

∫ ( gij− fi

τij

)
(1+ln fi)dvdξi

=
2

∑
i=1

(∫ ( gij− fi

τij

)
(ln fi−lngij)dvdξi+

∫ ( gij− fi

τij

)
lngijdvdξi

)
.

The first term on the right side of the equation satisfy the following inequality

2

∑
i=1

∫ ( gij− fi

τij

)
(ln fi−lngij)dvdξi ≤0.

According to the definition of the four equilibrium states, the relationship between the
macroscopic variables and the distribution functions, and the conservative conditions
Eqs. (2.6) and (2.7), the second term on the right side satisfies

2

∑
i=1

∫ ( gij− fi

τij

)
lngijdvdξi =−λ̃

ρ1

τ12
(u1−u2)

2≤0.
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Thus, the two-species BGK model satisfies the following inequality

2

∑
i=1

∂Hi

∂t
+∇·F(Hi)≤0. (2.9)

Therefore, the two-species BGK model satisfy the entropy condition. The two-species
system will evolve to equilibrium states due to particle collisions and the entropy condi-
tion guarantees the dissipative property in the two-species BGK system.

2.3 Chapmann-Enskog expansion

Derivations of the Euler and Navier-Stokes equations from the Boltzmann equation can
be found in [5]. And they can be also derived from BGK equation [4, 24]. In this section,
we will present the corresponding “pseudo-Euler” equations and Navier-Stokes equa-
tions derived from the two-species BGK model in [10].

Multiplying Eqs. (2.1) and (2.2) by ψi
α =(1, v, 1

2(v
2+ξ2

i )), integrating and making use
of the conservative conditions Eqs. (2.7) and (2.6), we obtain the following differential
statement of the conservation laws for the whole two-species system

∂ρi

∂t
+

∂

∂x
·ρiui=0, (2.10a)

∂∑i ρiui

∂t
+

∂

∂x
·∑

i

(
ρiuiui+Πi

)
=0, (2.10b)

∂

∂t
·∑

i

1

2
ρi

(
u

2
i +

Ni+3

2λi

)
+

∂

∂x
·∑

i

(
1

2
ρi

(
u

2
i +

Ni+5

2λi

)
ui+ui ·Πi+qi

)
=0. (2.10c)

These equations describe the conservation laws of the whole system.
By making using of the Chapman-Enskog expansion, the macroscopic equations for

each species can be derived. For simplicity, in this subsection, we only present the corre-
sponding equations for the zeroth and first order of the Chapman-Enskog expansion.

For the zeroth order Chapman-Enskog expansion, we have the following equations

∂ρi

∂t
+

∂

∂x
·ρiui=0, (2.11a)

∂ρiui

∂t
+

∂

∂x
·ρi

(
uiui+

1

2λi

)
=

ρi

τij

(
uj−ui

)
, (2.11b)

∂

∂t

(
1

2
ρi

(
u

2
i +

Ni+3

2λi

))
+

∂

∂x
·
1

2
ρi

(
u

2
i +

Ni+5

2λi

)
ui

=
ρi

τij

(
Ni+3

2

( 1

2λ̃
−

1

2λi

)
+

u
2
j −u

2
i

2

)
. (2.11c)

These equations are so-called “pseudo-Euler” equations. Without the right-side relax-
ation terms, they are Euler equations for each species. The cross-species terms conserve
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the total momentum and energy and will drive the velocities and temperatures of two
species approach to the equilibration.

For the first order Chapman-Enskog expansion, we can get the corresponding Navier-
Stokes equations

∂ρi

∂t
+

∂

∂x
·ρiui =0, (2.12a)

∂ρiui

∂t
+

∂

∂x
·ρi

(
uiui+

1

2λi

)
=

ρi

τij

(
uj−ui

)
−

∂

∂x
·∆Πi, (2.12b)

∂

∂t
·
1

2
ρi

(
u

2
i +

Ni+3

2λi

)
+

∂

∂x
·
1

2
ρi

(
u

2
i +

Ni+5

2λi

)
ui

=
ρi

τij

(
Ni+3

2

( 1

2λ̃
−

1

2λi

)
+

u
2
j −u

2
i

2

)
−

∂

∂x
·∆qi. (2.12c)

The pressure tensor ∆Πi and the heat flux vector ∆qi in Eq. (2.12) are defined as follows

∆Πi =−2µi

(
Λi−

1

Ni+3
1

∂

∂x
·ui

)
+∆Πcross

i ,

∆qi=−κi
∂Θi

∂x
+∆qcross

i ,

where the viscosity is µi = τii
ρi

2λi
, the thermal conductivity is κi =

Ni+5
2 τii

ρi

2λi
and Θi =

mi
2λi

where mi is molecule mass. 1 is the unit symmetric tensor. Λi are the rate of strain tensor
defined as follows

Λi=
1

2

(∂ui

∂x
+

∂̃ui

∂x

)
,

where the tilde is the transpose of the dyadic under it. The cross-species contributions to
pressure tensor and heat flux are defined as

∆Πcross
i =

τii

τij

{
(ui−uj)(ui−uj)−

1

Ni+3
1(ui−uj)

2
}

,

∆qcross
i =

τii

τij
ρi

{Ni+5

2

( 1

2λ̃
−

1

2λi

)
(ui−uj)−

1

2
(ui−uj)(ui−uj)

2
}

.

The above systems are closed with the equation of state (EOS) for each species. In
order to avoid difficulties with thermodynamic modeling, in this paper, the ideal gas
EOS is used

ei =
pi

ρi(γi−1)
, (2.13)

where γi are the ratio of the specific heats, i=1,2.
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3 Numerical scheme

In the section above, we have proposed the two-species BGK model and discussed the
relationship between the two-species model and macroscopic equations. In this section,
we will present a gas kinetic scheme based on this model. First of all, the outline of the
numerical methods will be given before we construct numerical scheme.

3.1 Outline of the numerical method

In this paper, we only consider the one dimensional case. Particularly, the directional
splitting method is used in the two dimensional case. In this case, the two-species BGK
model may be simplified as

∂ f1

∂t
+u

∂ f1

∂x
=St( f1), (3.1)

∂ f2

∂t
+u

∂ f2

∂x
=St( f2), (3.2)

where the collision terms St( f1) and St( f2) are defined in Eqs. (2.3) and (2.4) and the four
equilibrium states are simplified as follows

g1(x,u,t)=ρ1(
λ1

π
)

K1+1
2 e−λ1(u−U1)

2+ξ̃2
1),

g12(x,u,t)=ρ1(
λ̃1

π
)

K1+1
2 e−λ̃1(u−U2)

2+ξ̃2
1),

g2(x,u,t)=ρ2(
λ2

π
)

K2+1
2 e−λ2((u−U2)

2+ξ̃2
2),

g21(x,u,t)=ρ2(
λ̃2

π
)

K2+1
2 e−λ̃2(u−U1)

2+ξ̃2
2),

where in one dimensional case, Ki = Ni+2, (ξ̃i)
2 =(ξ1

i )
2+···+(ξNi

i )2+v2+w2. Ui is the
corresponding macroscopic flow velocity in the x direction. In the following section, for

simplicity, denote ξi, ξ̃i, i=1,2.

The corresponding macroscopic governing equations derived from the two-species
BGK model in one dimensional case can be put into the following form

∂ρi

∂t
+

∂

∂x
·FM

i =0, (3.3)

∂ρiUi

∂t
+

∂

∂x
·FP

i =
ρi

τij

(
Uj−Ui

)
, (3.4)

∂ρiEi

∂t
+

∂

∂x
·FE

i =
ρi

τij

(
Ki+1

2

( 1

2λ̃
−

1

2λi

)
+

U2
j −U2

i

2

)
, (3.5)
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where the fluxes FM
i , FP

i and FE
i can be defined as follows




FM
i

FP
i

FE
i


=

∫
u




1
u

1

2
(u2+ξ2

i )


 fidudξi,

where fi is the distribution functions for each species, and dudξi =dudξ1
i ···dξKi

i .
Because of the relaxation terms in the equations above, the method of operator split-

ting has to be used, i.e. hyperbolic operator and relaxation operator.
A uniform mesh with xk=kh,(k=0,1,2,···) is considered, h is the mesh size and xk+1/2

is the cell interface. The cell averaged mass, momentum, energy densities in the k-th cell

in the n-th level each species are denoted by Wn,i
k . The solution is obtained by a succession

of operators. For the second order scheme, we have:

Wn+1,i
k = L∆t/2

s L∆t
h L∆t/2

s Wn,i
k , (3.6)

where L∆t
h is the hyperbolic operator and L∆t/2

s is the relaxation operator.

3.2 Hyperbolic part

The hyperbolic part of Eqs. (3.3)-(3.5) could be written as

∂ρi

∂t
+

∂

∂x
·FM

i =0, (3.7a)

∂ρiUi

∂t
+

∂

∂x
·FP

i =0, (3.7b)

∂ρiEi

∂t
+

∂

∂x
·FE

i =0. (3.7c)

In order to develop a conservative operator L∆t
h , we integrate with respect dxdt in Ω=

[xk−1/2,xk+1/2]×[tn ,tn+1]. Consequently, we have the following equation

Wn+1,i
k =Wn,i

k +
1

∆x

∫ tn+1

tn
(Fi

k−1/2(t)−Fi
k+1/2(t))dt, (3.8)

where Fi
k+1/2(t) is numerical flux of each phase at the cell interface and needs to be con-

structed for each species. By solving the two-species BGK equations, the distribution
functions can be obtained at the cell interface. With the relationship between distribu-
tion functions and macroscopic variables, the numerical fluxes at the cell interfaces can
be obtained by taking moments of the time-dependent gas distribution functions of each
species.

For the BGK method, the reconstruction techniques are applied to the conservative
variables directly. The cell averaged conservative variables in the k-th cell for each species
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are denoted by W i
k. The interpolated value in the k-th cell, is denoted by W

i
k(x). To second

order accuracy, the interpolated value are written as

W
i
k(x)=W i

k+L(sk+,sk−)(x−xk),

where xk−1/2<x<xk+1/2. The nonlinear limiters are used in the construction of L(sk+,sk−),
where sk+ = (W i

k+1−W i
k)/h and sk− = (W i

k−W i
k−1)/h. In this paper, Van Leer limiter is

used.

If τij is local constant, denote

τ∗
i =

τiiτij

τii+τij
, x′= xk+1/2−u(t−t′),

the integral solutions of Eqs. (3.1) and (3.2) at the cell interface x= xk+1/2 may be written
in the following form

fi(xk+1/2,t,u,ξi)=
∫ t

0

( gi

τii
+

gij

τij

)
(x′,t′,u,ξi)e

−(t−t′)/τ∗
i dt′+e−t/τ∗

i f 0
i (xk+1/2−ut), (3.9)

where f 0
i is the real gas distribution functions of fi at the beginning of each time step

t = 0, and gi and gij are the corresponding equilibrium states. In order to obtain fi, all
these functions need be specified in the gas evolution stage.

For the second order accuracy, f 0
i , gi and gij around the interface xk+1/2 can be con-

structed as

f 0
i = gl

i(1−H(x−xk+1/2))(1+ai
l(x−xk+1/2))+gr

i H(x−xk+1/2)(1+ai
l(x−xk+1/2)),

gi = g0
i (1+(1−H(x−xk+1/2))(a

i
r(x−xk+1/2))+H(x−xk+1/2)(a

i
l(x−xk+1/2)),

gij = g0
ij(1+(1−H(x−xk+1/2))(b

i
r(x−xk+1/2))+H(x−xk+1/2)(b

i
l(x−xk+1/2)),

where gl
i , gr

i and g0
i , g0

ij are corresponding local Maxwellian distribution functions located

to the left, to the right and in the middle of a cell interface

gl
i =ρi

l

(λl
i

π

) Ki+1
2

e−λl
i((u−U i

l)
2+ξ2

i ),

gr
i =ρi

r

(λr
i

π

) Ki+1
2

e−λr
i ((u−U i

r)
2+ξ2

i ),

g0
i =ρi

0

(λ0
i

π

) Ki+1
2

e−λ0
i ((u−U i

0)
2+ξ2

i ),

g0
ij =ρi

0

( λ̃0
i

π

) Ki+1
2

e−λ̃0
i (u−U

j
0)

2+ξ2
i ),
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ai
r, ai

l , ai
r, ai

l and b
i
r, b

i
l are the corresponding slopes and H(x) is the Heaviside function.

The dependence of those slopes on the particle velocities is obtained from the Taylor
expansion of a Maxwellian and can be written into the following form

ai
l = ai

1l+ai
2lu+ai

3l

1

2
(u2+ξ2

i ), ai
r = ai

1r+ai
2ru+ai

3r

1

2
(u2+ξ2

i ),

ai
l = ai

1l+ai
2lu+ai

3l

1

2
(u2+ξ2

i ), ai
r = ai

1r+ai
2ru+ai

3r

1

2
(u2+ξ2

i ),

b
i
l =b

i
1l+b

i
2lu+b

i
3l

1

2
(u2+ξ2

i ), b
i
r =b

i
1r+b

i
2ru+b

i
3r

1

2
(u2+ξ2

i ),

where all the above coefficients in those slopes are local constants.

By using the relation between the slopes of macroscopic variables and distribution
functions of each species on the left and right hand sides separately, we have

∫
ψi

αgl
idudξi =W

i
k(xk+1/2),

∫
ψi

αgr
i dudξi =W

i
k+1(xk+1/2).

The slopes ai
l and ai

r can be computed from

∫
ψi

αai
l g

l
idudξi =

2(W
i
k(xk+1/2)−W i

k)

h
,

∫
ψi

αai
rgr

i dudξi =
2(W i

k+1−W
i
k+1(xk+1/2))

h
,

where the similar solution of ai
l and ai

r can be found in [24, 25].

After the initial state f i
0 is constructed, the equilibrium state gi

0 located at interface can
be determined through the compatibility condition (2.5)

∫ ∫ +∞

−∞
ψi

αg0
i dudξi =

∫ ∫
ψi

α f 0
i (−ut)dudξi

=
∫ ∫

u>0
ψi

αgl
idudξi+

∫ ∫

u<0
ψi

αgr
i dudξi.

According to the definition of g0
i , the conservative variables at the interface, which is

denoted as W i
0, could be constructed.

Similarly, the slopes ai
l and ai

r in gi could also be obtained from the relationship be-
tween distribution function and macroscopic variables

∫
ψi

αai
lg

0
i dudξi =

2(W i
0−W i

k)

h
,

∫
ψi

αai
rg0

i dudξi =
2(W i

k+1−W i
0)

h
.

Based on the definitions of four equilibrium states and W i
0 constructed above, we

can construct the conservative variables corresponding to g0
ij at the cell interface can be

constructed, denoted by W̃ i
0, and the variable at the jth node corresponding to gij, which
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is denoted by W̃ i
j . By making use of the relationship between distribution function and

macroscopic variables, we have

∫
ψi

αb
i
lg

0
ijdudξi =

2(W̃ i
0−W̃ i

k)

h
,

∫
ψi

αb
i
rg0

ijdudξi =
2(W̃ i

k+1−W̃ i
0))

h
.

The slope b
i
l and b

i
l can be computed by the same method introduced in [24, 25].

Substituting f 0
i , gi and gij into Eq. (3.9), the final gas distribution function at the cell

interface can be expressed as

fi =(1−e−t/τ∗
i )τ∗

i

( g0
i

τii
+

g0
ij

τij

)

+
(
−τ∗

i +τ∗
i e−t/τ∗

i +te−t/τ∗
i

) τ∗
i

τii

(
ai

l H(u)+ai
r(1−H(u))

)
ug0

i

+
(
−τ∗

i +τ∗
i e−t/τ∗

i +te−t/τ∗
i

) τ∗
i

τij

(
b

i
l H(u)+b

i
r(1−H(u))

)
ug0

ij

+e−t/τ∗
i

(
(1−utai

l)H(u)gl
i+(1−utai

r)(1−H(u))gr
i

)
. (3.10)

Finally, the numerical fluxes across the cell interface can be computed by taking moments
of the distribution functions fi for each species

Fi
k+1/2(t)=

∫
u




1
u

1

2
(u2+ξ2

i )


 fidudξi, (3.11)

with the numerical fluxes across the interface, Eq. (3.8) for each species can be updated
inside each cell.

3.3 Relaxation part

In the previous subsections, the relaxation terms are not considered. In this subsection,
we will deal with the relaxation part which describes the equilibration between each
species

d

dt
ρiUi=

ρi

τij

(
Uj−Ui

)
, (3.12)

d

dt
ρiEi =

ρi

τij

(
Ni+3

2

( 1

2λ̃
−

1

2λi

)
+

U2
j −U2

i

2

)
. (3.13)

As discussed in [10], the ordinary differential equations are analytically soluble in the
time. But for simplicity, we make use of the second order Runge-Kutta method to deal
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with the ordinary differential equations Eqs. (3.12) and (3.13). The time step is ∆t, at t=tn.

From the conservative variables, ρn
i , Un

i , λn
i , i=1,2 and λ̃n can be constructed. In the k-th

cell, denote

θi
1,k(ρi,Ui,Uj)=

( ρi

τij

(
Uj−Ui

))
k
,

θi
2,k(ρi,Ui,Uj,λi,λ̃)=

(
ρi

τij

(Ni+3

2

( 1

2λ̃
−

1

2λi

)
+

U2
j −U2

i

2

))

k

.

The intermediate conservative variables at are updated,

(ρiUi)
∗
k =(ρiUi)

n
k +∆tθi

1,k(ρ
n
i ,Un

i ,Un
j ),

(ρiEi)
∗
k =(ρiEi)

n
k +∆tθi

2,k(ρ
n
i ,Un

i ,Un
j ,λn

i ,λ̃n).

Then we can get (ρ∗i )k, (U∗
i )k, (λ∗

i )k, i= 1,2 and (λ̃∗)k. Finally, we could obtain the con-
servative variables at tn+1= tn+∆t

(ρiUi)
n+1
k =(ρiUi)

n
k +

∆t

2

(
θi

1,k(ρ
n
i ,Un

i ,Un
j )+θi

1,k(ρ
∗
i ,U∗

i ,U∗
j )
)

,

(ρiEi)
n+1
k =(ρiEi)

n
k +

∆t

2

(
θi

2,k(ρ
n
i ,Un

i ,Un
j ,λn

i ,λ̃n)+θi
2,k(ρ

∗
i ,U∗

i ,U∗
j ,λ∗

i ,λ̃∗)
)

.

During the equilibration process, we could observe that the total momentum and en-
ergy are conserved. However, in the region where τij∼τji, the temperatures and velocities
should be equilibrated instantly. Then the equilibration procedure may be simplified by
calculating the velocity and temperature from the conservation requirements

ρ1U1+ρ2U2=(ρ1+ρ2)U,

1

2
ρ1

(
U2

1+
3

2λ1

)
+

1

2
ρ2

(
U2

2+
3

2λ2

)
=

1

2
(ρ1+ρ2)

(
U2+

3

2λ

)
.

Then (ρiUi)
n+1
k and (ρiEi)

n+1
k could be updated by the above conservation requirements.

Thus we have constructed the relaxation operator L∆t/2
s for Eqs. (3.12) and (3.13).

4 Numerical experiments

In this section, we will test the proposed gas-kinetic numerical scheme on some well-
known multicomponent flow applications such as the one-dimensional shock tube prob-
lem, the two-dimensional cylindrical shock wave implosion and the shock bubble inter-
action. These numerical examples, which have been tested in many papers, validate our
algorithm for the numerical simulations of multicomponent flow. In the two-dimension
case, the directional splitting method is used, and the method of solving the slope, which
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could be found in [24]. The collision times are different in the hyperbolic and relaxation
part.

In the hyperbolic part, the collision time τ is defined as

τ=C1∆t+C2

∣∣∣ pl−pr

pl+pr

∣∣∣∆t, (4.1)

where the ∆t is the time step, pl and pr are the corresponding total pressures of both
species of the states gi

l and gi
r in the initial gas distribution function f i

0. The first term on
the right hand side gives a limiting threshold for the collision time to avoid the blowing
up the program, it also provides a background dissipation for the numerical fluid. In the
hyperbolic part, the jumps should be taken into account, so the second term in Eq. (4.1)
is related to the pressure jump in the reconstructed initial data, which guarantees the real
gas distribution function will stay on non-Maxwellian state in the non-equilibrium flow
region.

In the relaxation part, for simplicity, the collision time could be defined as

τ=ǫ∆t. (4.2)

The collision time between the same species τii, i=1,2 are defined as

τii =τ. (4.3)

In order to satisfy the conservative condition Eqs. (2.6) and (2.7), the collision time be-
tween different species τij, i, j=1,2 are defined as:

τij =
ρi+ρj

ρj
τ, (4.4)

In following test cases, C1 = 0.01, C2 = 5, in one dimensional cases ǫ= 15 and in two
dimensional cases ǫ=30 are used.

The two-fluid dynamics which we have derived reduces to the dynamics of a single-
species fluid (say, species i) when the density of the other species (say, ρj) becomes very
small in a region, relative to ρi. In this case, problems arise in calculating, for example, τij

and λj. To avoid the problem, in the calculation, we may set ρj =10−4∼10−3 and λj=10.
In the following numerical tests, the ideal gas EOS (2.13) is used in this paper.

4.1 Shock tube problems

The shock tube problems are presented to validate the current approach for multicompo-
nent flow calculations.

(1). The first case is Sod problem [11, 13, 24] and the initial condition is

(ρ,u,p,γ)l =(1,0,1,5/3),

(ρ,u,p,γ)r =(0.125,0,0.1,1.4).
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Figure 1: the numerical results of the first case of the shock tube problem.

(2). The second case is two rarefaction wave problem and initial condition is

(ρ,u,p,γ)l =(1,−1,1,5/3),

(ρ,u,p,γ)r =(1,1,1,1.4).

In the calculations, the length of the numerical domain is equal to 400 and each cell size is
∆x=1. The van Leer’s limiter is used in the scheme for the reconstruction of conservative
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Figure 2: the numerical results of the second case of the shock tube problem.

variables for each component directly without imposing any specific numerical require-
ment for a smooth interface transition. The time step is determined by the common CFL
condition where the CFL number is equal to 0.15. In the calculations, the initial disconti-
nuities are located at x=200. The numerical solutions and exact solutions of the two tests
are presented in Figs. 1 and 2 for the total density ρ1+ρ2, average velocity U= ρ1U1+ρ2U2

ρ1+ρ2
,

total pressure p= p1+p2, average ratio of specific heat γ= ρ1γ1+ρ2γ2

ρ1+ρ2
in each cell at t=60.

Moreover, the numerical results of individual mass densities ρ1, ρ2 for each component
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in each cell at t = 60 are also presented. Here we could observe that the total density,
velocity, pressure and average ratio of specific heat are generally in good agreement with
the exact solution.

4.2 The shock bubble interaction

We consider the interaction of a Mach 1.22 shock wave with a helium cylindrical bubble
[17]. Some theoretical analysis was presented in [31]. The problem was tested in the
following two kinds of initial conditions:

(1). The first kind of initial condition is

(ρ,u,v,p,γ)=(1,0,0,1,1.4) Pre-shock,

(ρ,u,v,p,γ)=(1.3764,0.394,0,1.5698,1.4) Post-shock,

(ρ,u,v,p,γ)=(3.1358,0,0,1,1.285) Bubble.

(2). The second kind of initial condition is

(ρ,u,v,p,γ)=(1,0,0,1,1.4) Pre-shock,

(ρ,u,v,p,γ)=(1.3764,0.394,0,1.5698,1.4) Post-shock,

(ρ,u,v,p,γ)=(0.1358,0,0,1,1.67) Bubble.

In this test, on the up and lower boundary, the reflection boundary conditions are used
in the two tests. In the calculations, 200×100 grids are used and each cell size is ∆x= 1
and ∆y=1. The bubble is assumed in both thermal and mechanical equilibrium with the
surrounding air. The diameter of the bubble is 19 cells. Initially, the shock is located at
x = 40 and the center of bubble is at (x,y) = (61,50). CFL number equals to 0.15. The
results are shown in Figs. 3 and 4 where contours of density are given at three different
times. We could observe that the numerical results reproduce the large-scale structure of
the corresponding numerical result in [6, 8] and of the experiments described in [7].

4.3 Cylindrical implosion

In this case, we consider the cylindrical implosion problem. A similar case was tested
in [10] and some theoretical analysis was also presented in [31]. Initially, a cylindrical
inner region with a lower density and lower pressure, the fluid is surrounded by the
outer region with higher density and higher pressure fluid. The state evolves into an
imploding shock inside the inner fluid and a rarefaction wave in the outer one. This test
was performed on the two-dimensional domain of 200×200 cells of the size ∆x=∆y=1.
The diameter of the inner zone is 40 cells. Outflow boundary conditions are imposed.
The initial condition is:

(ρ,u,v,p,γ)=(1,0,0,1,1.67) inner,

(ρ,u,v,p,γ)=(3,0,0,3,1.4) outer.
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Figure 3: The first case of shock bubble interaction, the contour of density distribution is presented at time
t=50 and t=100.
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Figure 4: The second case of shock bubble interaction, the contour of density distribution is presented at time
t=100 and t=200.

CFL number equals to 0.2. The numerical results of the individual densities ρ1 and ρ2 for
each component are given at t=15 and t=25 at the fixed value y=100 in Fig. 5. And the
total pressure profile of both species are presented at t=10, t=15, t=20, t=23 and t=25
in Fig. 6.



1366 L. Pan et al. / Commun. Comput. Phys., 14 (2013), pp. 1347-1371

x

de
n1

,d
en

2

50 100 150 200
0

0.5

1

1.5

2

2.5

3

x

de
n1

,d
en

2

50 100 150 200
0

1

2

3

4

5

Figure 5: the density of individual mass densities ρ1 (green), ρ2 (blue) for each component are given at t=15
and t=25 at the fixed value y=100.
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Figure 6: The contours of pressure at t=10, t=15, t=20, t=23 and t=25 at the fixed value y=100.

5 Numerical analysis

In the section above, the spurious oscillations of velocity and pressure were observed
at the interface of two species. In this section, we analyze the reason of the spurious
oscillation in the scheme proposed in the paper.

The following initial conditions with a density discontinuity evolving in uniform
pressure and velocity [1] is taken into account:

W(x,0)=

{
(ρL,ρLUL,ρLEL), x<0,

(ρR,ρRUR,ρRER), x>0,

where ρL 6= ρR,γL 6= γR,UL =UR = const,pL = pR = const. The exact solution of pressure
and velocity is constant. x= xk+1/2 is set as the interface of the two species. This initial
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condition can be converted into the following form:

Un
1,j=

{
(ρn

1,j,U0,P0), j≤ k,

(ρn
1,j,U0,0), j> k,

Un
2,j=

{
(ρn

2,j,U0,0), j≤ k,

(ρn
2,j,U0,P0), j> k.

The initial condition of velocity and pressure can be written as:

Un
i,k−1=Un

i,k=Un
i,k+1=U0>0, i=1,2

and

pn
1,k−1= pn

1,k = pn
2,k+1=P0,

pn
2,k−1= pn

2,k = pn
1,k+1=0.

In the presented scheme, the method of operator splitting is used. It is observed
that the ordinary equation part does not exert influence on the distribution of average
velocity and total pressure in the next step. In consequence, we only need to focus on the
hyperbolic part, i.e.

Wn+1
i,k =Wn

i,k−σ(Fn
i,k+1/2−Fn

i,k−1/2), (5.1)

where σ= ∆t
∆x .

However, the gas distribution function fi is very complex and it is difficult to analyze
the reason of spurious oscillations based on BGK scheme. So, for the sake of simplicity,
the gas distribution functions could be simplified into the following KFVS form:

fi,k+1/2= gn
i,kH(u)+gn

i,k+1(1−H(u)). (5.2)

The moments of u in the half space are denoted as:

ρn
i,k < ···>i

k,+=
∫

u>0

∫
(···)gn

i,kdudξi,

ρn
i,k < ···>i

k,−=
∫

u<0

∫
(···)gn

i,kdudξi.

Substituting (5.2) into the density equation of (5.1), and making use of the moment rela-
tion, we can obtain the density equation:

ρn+1
i,k =ρn

i,k−σ(Fn,M
i,k+1/2−Fn,M

i,k−1/2)

=ρn
i,k−σ

(
ρn

i,k <u1
>

i
k,++ρn

i,k+1<u1
>

i
k+1,−−ρn

i,k−1<u1
>

i
k−1,+−ρn

i,k <u1
>

i
k,−

)
. (5.3)

In order to obtain an exact solution of this problem, the value of ρn+1
i,k is assumed to be

exact in the following discussion.



1368 L. Pan et al. / Commun. Comput. Phys., 14 (2013), pp. 1347-1371

For the momentum equation, we also make use of the moment relationship [24] and
the initial conditions, the momentum equation can be written as:

ρn+1
i,k Un+1

i,k =ρn
i,kUn

i,k−σ(Fn,P
i,k+1/2−Fn,P

i,k−1/2)

=ρn
i,kUn

i,k−σ
(

ρn
i,k <u2

>
i
k,++ρn

i,k+1<u2
>

i
k+1,−−ρn

i,k−1<u2
>

i
k−1,+−ρn

i,k <u2
>

i
k,−

)

=U0

(
ρn

i,k−σ(ρn
i,k <u1

>
i
k,++ρn

i,k+1<u1
>

i
k+1,−−ρn

i,k−1<u1
>

i
k−1,+−ρn

i,k <u1
>

i
k,−)

)

+σ
(

pn
i,k <u0

>
i
k,++pn

i,k+1<u0
>

i
k+1,−−pn

i,k−1<u0
>

i
k−1,+−pn

i,k <u0
>

i
k,−

)
.

Substituting ρn+1
i,k Un+1

i,k into the definition of average velocity, and making use of the initial

condition, the average velocity Un+1
k can be simplified as:

Un+1
k =

ρn+1
1,k Un+1

1,k +ρn+1
2,k Un+1

2,k

ρn+1
1,k +ρn+1

2,k

=U0+σ
P0

ρn+1
1,k +ρn+1

2,k

(<u0
>

i
k,++<u0

>
i
k+1,−−<u0

>
i
k−1,+−<u0

>
i
k,−).

In order to satisfy the exact solution Un+1
k =U0, we must have the following condition

satisfied:

ǫ0=<u0
>

1
k,++<u0

>
2
k+1,−−<u0

>
1
k−1,+−<u0

>
1
k,−=0. (5.4)

If the exact solution of average velocity is satisfied, we take the energy equation into
account. Similarly, according to the moment relationship, and for simplicity, denote Γi =

1
γi−1+

1
2 , the energy equation can be written into the following form:

ρn+1
i,k En+1

i,k =
1

2
ρn

i,kU2
0+

pn
i,k

γi−1

−
1

2
σU2

0

(
ρn

i,k <u0
>

i
k,++ρn

i,k+1<u0
>

i
k+1,−−ρn

i,k−1<u0
>

i
k−1,+−ρn

i,k <u0
>

i
k,−

)

−σΓi

(
pn

i,k <u1
>

i
k,++pn

i,k+1<u1
>

i
k+1,−−pn

i,k−1<u1
>

i
k−1,+−pn

i,k <u1
>

i
k,−

)

+
1

2
σU0

(
pn

i,k <u0
>

i
k,++pn

i,k+1<u0
>

i
k+1,−−pn

i,k−1<u0
>

i
k−1,+−pn

i,k <u0
>

i
k,−

)
.

By making use of the initial condition, ∑
2
i=1ρn+1

i,k En+1
i,k can be simplified as:

2

∑
i=1

ρn+1
i,k En+1

i,k =
2

∑
i=1

(1

2
U2

0ρn+1
i,k +

pn
i,k

γi−1

)

+
1

2
σU0P0

(
<u0

>
1
k,++<u0

>
2
k+1,−−<u0

>
1
k−1,+−<u0

>
1
k,−

)

−σP0

(
Γ1<u1

>
1
k,++Γ2<u1

>
2
k+1,−−Γ1<u1

>
1
k−1,+−Γ1<u1

>
1
k,−

)
.
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Because Un
k =U0>0, the exact solution in the k-th cell must satisfy pn+1

1,k =P0 and pn+1
2,k =0.

In order to guarantee the exact solution in the n+1-th level and the energy conservation
for the whole system, the following condition should also be satisfied:

ǫ1=Γ1<u1
>

1
k,++Γ2<u1

>
2
k+1,−−Γ1<u1

>
1
k−1,+−Γ1<u1

>
1
k,−=0. (5.5)

Thus, from the discussion above, in order to satisfy the exact solution of the initial
condition, the following so-called moment conditions should be guaranteed:

ǫ0=<u0
>

1
k,++<u0

>
2
k+1,−−<u0

>
1
k−1,+−<u0

>
1
k,−=0,

ǫ1=Γ1<u1
>

1
k,++Γ2<u1

>
2
k+1,−−Γ1<u1

>
1
k−1,+−Γ1<u1

>
1
k,−=0.

However, in most cases, it is difficult to satisfy the two conditions. Once one of these
two conditions are violated, the spurious oscillation of velocity and pressure could be
observed. It is the reason that generates the spurious oscillations at the interface.

Although the moment conditions are only based on the simplified form of our scheme,
they will still become important criterions to construct gas kinetic schemes for the multi-
component flow in the future.

6 Conclusion

In this paper, a new gas-kinetic scheme based on the two-species BGK model for the com-
pressible multicomponent flows is presented. In two-species BGK model, both species
are treated separately. In consequence, compared with other methods [8, 19, 26] for the
compressible multicomponent flows, it is possible for us to obtain the information of each
species. Different from the previous BGK schemes for the multicomponent flow, the colli-
sions both between the same species and different species were taken into account. Based
on the Chapman-Enskog expansion, the macroscopic governing equations correspond-
ing to this model were derived. It is proved that the two-species BGK model satisfies the
entropy condition. Based on this model, we constructed the numerical scheme. Because
of the presence of the relaxation terms, the method of operator splitting is used. In the
hyperbolic part, the numerical flux is obtained by taking moments of the gas distribu-
tion functions at the interface, which is obtained from the integral solution of the BGK
equation. Numerical experiments are presented in this paper to validate the current ap-
proach in one and two dimensional cases. The numerical results are in good agreement
with other numerical schemes [8, 9, 15, 26] and the experiments [17]. However, in the nu-
merical test, the spurious oscillations were observed at the interface of the two species in
the contour of velocity and pressure. We analyze the reason of the spurious oscillations
and obtain the so-called moment conditions. Once these two conditions are violated, the
oscillations will appear at the interface.
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