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Abstract. The structural and functional description of protein-protein complexes and
their comprehension is a key concept, not only to increase the scientific knowledge in
basic terms but also for the application to the biomedical and pharmaceutical industry.
The binding association between proteins is nowadays attribute to a few key residues
at the interface – the hot-spots. The complex between the RNase inhibitor (RI) and
RNaseA protein provides an excellent system to study the role of the functional epi-
tope as it is essential in various molecular recognition processes and constitute one of
the tightest complexes known. An energetic pattern of the interface is accomplished
by computational alanine scanning mutagenesis and a dynamical characterization is
accomplished by a detailed study of the molecular dynamical simulations. A spe-
cial emphasis is given to the role of solvation across the interface and the shielding of
warm- and hot-spots from water.

AMS subject classifications: 92C05

Key words: Structural determinant, protein-protein association, molecular dynamic simulation,
mutagenesis protocol.

1 Introduction

The challenging process of drug development is time-consuming, labor intensive, and
expensive, but has as a final goal finding, developing and marketing new useful chem-
ical entities. These new drugs can be used against currently untreatable diseases, or as
replacements to available but less effective compounds. In the last few years, we ob-
served a change in the tendency for drug design, which not only focus on the binding of
a small molecule to a biomolecular target but also to a crucial and popular target class:
protein-protein interactions (PPIs). Its exploitation is still taking the first steps due to the
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exceptional complexity of these systems that makes them resistant as pharmaceutical tar-
gets. Therefore, it is essential to explore PPIs at an atomic level in order to understand the
forces that drive their interaction. Since its initial application to human growth hormone
and the growth hormone binding protein, alanine scanning mutagenesis continues to be
a valuable procedure for both hot-spot detection and analysis of a wide range of protein-
protein interfaces [1]. Although slow and labour-intensive, alanine-scanning mutagene-
sis is the most trendy method for mapping functional epitopes, as alanine substitutions
remove side-chain atoms past the β-carbon without introducing additional conforma-
tional freedom [2]. Thus, the role of side-chain functional groups at specific positions and
the energetic contributions of individual side-chains to protein binding can be inferred
from alanine mutations. Clarkson and Wells demonstrate, via alanine scanning mutage-
nesis on the human growth hormone, that there is a highly uneven distribution of ener-
getic contributions of individual residues across each protein [3]. Only a few key residues
do contribute significantly to the binding free energy of protein-protein complexes: the
hot-spots. Hot-spots have been defined as those sites where alanine mutation cause a
significant increase in the binding free energy of at least 4.0 kcal/mol [3, 4]. Warm-spots
were defined as residues that upon alanine mutation generate a binding free energy dif-
ference between 2.0 and 4.0 kcal/mol and null-spots lower than 2.0 kcal/mol [5]. Other
values can be used for statistical purposes. This way, it is possible to differentiate the
structural epitope, the amino-acids that interact at the tridimensional proteic complexes,
and the functional epitope composed of the amino-acid important for protein-protein as-
sociation [5]. The structural epitopes are normally large and composed of 10-40 residues
from multiple discontinuous segments on each protein. In contrast, the functional epi-
topes are assigned by mutagenesis studies and composed by only a small number of
residues, typically two to five on each protein. As said, detailed knowledge of the hot-
and warm-spots on an interface and their importance and function has important impli-
cations for the design of small molecules that disrupt protein-protein interactions or to
substitute one of the protein components. The complex between the RNase inhibitor (RI)
and RNase A provides an excellent system to study the role of the functional epitope.

The RNase inhibitor (RI) is a leucine-rich repeat (LRR) protein that binds diverse pro-
teins in the pancreatic RNase superfamily [6, 7]. The LRR motif is essential in various
molecular recognition processes such as signal transduction, cell adhesion, cell devel-
opment, DNA repair and RNA processing [8]. LRRs are present in over 2000 proteins
and have been identified in viruses, bacteria, archaea and eukaryotes [9]. RNase A com-
plexes comprises important and intriguing systems to study protein-protein association
process [10]. RI complexes are some of the tightest complexes known with dissociation
constants between 10−13 to 10−15 M [10]. RI adopts a “horseshoe” fold, formed by sym-
metrical arrangement of the 15 homologous tandem LRR units (alternately 28 and 29
residues long, that comprise nearly the entire molecule [6, 10]. LLRs are β−α hairpin
units in which the -strand and the -helix are approximately parallel in individual β−α

units and the units are all aligned roughly parallel to a common axis [8]. Only one of the
proteic members of this complex was studied by experimental alanine scanning muta-
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genesis. Three warm- and one hot-spot were detected at this interface: Trp384, Asp556,
Tyr558 and Tyr555. A curious and important aspect can also be studied at this interface,
the effect of alanine-shaving. Alanine shaving is the concerted mutation of two or more
residues at a time to evaluate their cooperative effect at the protein-protein interface [7].
By calculating the ∆∆∆G values described by Eq. (1.1) it is possible to compare the effect
of replacing two or more residues both separately and together.

∆∆∆G=∆∆Gmultiple mutations−∑∆∆∆Gsingle mutation . (1.1)

If ∆∆∆G=0 suggests that the amino-acid residues are functionally independent; if ∆∆∆G>

0 it is verified a superadditivity effect; if ∆∆∆G< 0 there is a subadditivity effect. Both
these effects can be caused by changes in local or global protein conformation, solvent
structure, electrostatic fields or dielectric constants, and protein dynamic properties [7].
Subadditivity reflects the fragility of the specific intermolecular interactions (i.e., how
easily the loss of one interaction can impact on others), and superadditivity reflects the
plasticity and adaptability of the interface (i.e., how readily the interactions lost can be
compensated for) [7]. The structural comprehension of PPIs can benefit a lot of the use of
capable computational tools that will generate fundamental knowledge based, not on a
static structure, but on an ensemble generated by Molecular Dynamic (MD) simulations.
We performed an exhaustive study of the RNaseA:RI interface in order to increase our
knowledge about the structural basis of RI action. These results can help the design of
RI derivatives or mimics that do not suffer some of the most common limitations of this
kind of system, particularly its broad specificity and large size.

2 Methodology

2.1 System setup

The tridimensional structure from the complex between the ribonuclease inhibitor and
ribonuclease A was taken from the Protein Data Bank with the PDB ID: 1DFJ [8]. The
protonation state of the different residues were determined using the PDB2PQR server at
http://kryptonite.nbcr.net/pdb2pqr/ [11].

2.2 Molecular dynamic simulations

The MD simulations were performed using the AMBER10 package [12] with the Cornell
force field [13]. Two different simulations were made, one in an implicit solvent using the
Generalized Born (GB) solvent [14], and other using TIP3P explicit water molecules. The
system subjected to the GB simulation was constituted by 581 residues that correspond to
8738 atoms. In the explicit solvent simulation, besides the 581 amino acid residues, there
were also 15 sodium ions and 18904 water molecules to a total of 65455 atoms. The GB
simulation (GBOBC) [15] was used in the alanine scanning mutagenesis protocol because
it was shown before to reproduce more accurately the experimental binding free energy
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values [16, 17]. We used the GBOBC modified model with α, β and γ values of 1.0, 0.8,
and 4.85 as GB authors have shown that it allows a better agreement with the Poisson-
Boltzmann treatment in calculating the electrostatic part of the solvation free energy [15].
The explicit simulation was used to study the role of water molecules in the function of
warm- and hot-spot residues. The complex was solvated by explicit waters that extended
10 Å from any edge of the box to the protein atoms. Counter ions were added to the box
to neutralize the system. In the GB simulation the ionic strength was set to 0. In each
of the simulations, the system was initially minimized to remove bad contacts by steep-
est descent followed by conjugated gradient. The systems were then subjected to 2 ns
of heating procedure in which the temperature was gradually raised to 300 k followed
by 6 ns runs. The Langevin [18, 19] thermostat was used and the electrostatics interac-
tions were calculated by using the particle mesh Ewald (PME) method [20]. Both lengths
involving hydrogens were constrained using the SHAKE algorithm [21]. The equations
of motion were integrated with a 2 fs time-step and the non-bonded interactions were
truncated with a 16 Å and a 10 Å cutoff, in the GB and in explicit solvent simulation
respectively.

2.3 Mutagenesis protocol

The MM-PBSA (Molecular Mechanics Poisson Boltzmann Surface Area) script [22] in-
tegrated into the AMBER10 package [12] was used to calculate the binding free energy
difference (∆∆G) upon alanine mutation. It combines a continuum approach to model
solvent interactions with a MM-based approach to atomistically model protein-protein
interactions. This provides speed and accuracy and has been quite used in the last
years [16, 17, 22–31]. The MM-PBSA approach first developed by Massova et al [22]. was
improved by Moreira et al. [17] and can now be applied with an accuracy of 1 kcal/mol.
The mutant complexes are generated by a single truncation of the mutated side chain,
replacing Cγ with a hydrogen atom and setting the Cβ-H direction to that of the former
Cβ-Cγ. For the binding energy calculations, a total of 26 snapshots of the complexes
were extracted in the last 1 ns of the run. The ∆∆G is defined as the difference between
the mutant and wild type complexes defined as:

∆∆G=∆GRI:RNaseA-mutant−∆GRI:RNaseA-wild type. (2.1)

Typical contributions to the free energy include the internal energy (bond, dihedral, and
angle), the electrostatic and the van der Waals interactions, the free energy of polar sol-
vation, the free energy of non-polar solvation, and the entropic contribution:

Gmolecule =Einternal+Eelectrostatic+EvdW+Gpolar solvation+Gnon-polar solvation−TS. (2.2)

For the calculations of relative free energies between closely related complexes it is as-
sumed that the entropic contribution is negligible as it essentially cancel each other on
Eq. (2.1) [30]. The first three terms of Eq. (2.2) were calculated with no cutoff. The
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Gpolar solvation was calculated by solving the Poisson-Boltzmann equation with the soft-
ware DELPHI [32, 33]. In this continuum method, the protein is modeled as a dielectric
continuum of low polarizability embedded in a dielectric medium of high polarizability.
We use a set of values for the DELPHI parameters that proven in a previous study to
constitute a good compromise between accuracy and computing speed [34]. So, we used
a value of 2.5 grids/Å for scale (the reciprocal of the grid spacing); a value of 0.001 kT/c
for the convergence criterion; a 90% for the fill of the grid box; and the coulombic method
to set the potentials at the boundaries of the finite-difference grid. The dielectric bound-
ary was taken as the molecular surface defined by a 1.4 Å probe sphere and by spheres
centered on each atom with radii taken from the Parse [35] vdW radii parameter set. The
key aspect of the new improved approach is the use of a three dielectric constant set of
values (2 for non-polar residues, 3 for polar residues and 4 for charged residues plus his-
tidine) to mimic the expected rearrangement upon alanine mutation. It is important to
highlight that we used only one trajectory for the computational energy analysis as it has
proven to give the best results [17]. Side-chain reorientation was implicitly included in
the formalism by raising the internal dielectric constant. The non-polar contribution to
the solvation free energy due to van der Waals interactions between the solute and the
solvent was modeled as a term dependent of the solvent accessible surface area (SASA)
of the molecule. It was estimated by 0.00542×SASA+0.92 using the molsurf program
developed by Mike Connolly [36].

2.4 Analysis

VMD [37] and PTRAJ module from AMBER10 package [12] were used in the different
analysis carried on the two MD simulations. RMSDs (root mean square deviation) were
calculated for each simulation to assure their equilibration. For the GBOBC simulation
we reached a plateau of 3 Å and for the explicit simulation a plateau of 1.8 Å. All the
chemical and physical characteristics described next were evaluated at the production
phase. Different solvent accessible surface area (SASA) calculations were made to eval-
uate the importance of water molecules in the warm- and hot-spots microenvironment.
The SASA values were calculated with a probe sphere of radius 1.4 Å following Lee and
Richards algorithm. The SASA of each interfacial residue within the complex (SASAcpx)
and within the monomers (SASAmon) was calculated at the production phase of the ex-
plicit MD simulation. ∆SASA and relSASA defined by Eqs. (2.3) and (2.4), respectively,
were also calculated. relSASA allows the differentiation of residues with equal ∆SASA
but different solvent exposure such as, i.e, a residue with a 50 Å2 solvent accessibility in
the monomer and 0 Å2 in the complex from a residue that has a value of 150 Å2 solvent
accessibility in the monomer and 100 Å2 in the complex. In both cases ∆SASA is 50 Å2

but solvent accessibility importance is strikingly different between the two. relSASA was
already shown to be important in previous work [38].

∆SASA=SASAcpx−SASAmon, (2.3)
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relSASA=
SASAcpx−SASAmon

SASAmon
=

∆SASA

SASAmon
. (2.4)

The singular SASA behavior of the different amino-acid residues was also taken into ac-
count by considering their average SASA(<SASAres >). <SASAres > of all the various
amino-acid residues types are (in Å2): Gly= 85, Ala= 113, Cys= 140, Asp= 151, Glu=
183, Phe= 218, His= 194, Ile= 182, Lys= 211, Leu= 180, Met= 204, Asn= 158, Pro= 143,
Gln=189, Arg=241, Ser=122, Thr=146, Val=160, Trp=259, Tyr=229. These values were
taken out form the relationship found out by Miller and colleagues [39, 40] that protein
SASA values are approximately given by A= 6.3M0.73

i , where Mi is the residue molecu-
lar weight. Therefore, we calculated SASAcpx/res, ∆SASAres and relSASAres defined by
Eqs. (2.5), (2.6) and (2.7) respectively.

SASAcpx/res =
SASAcpx

<SASAres>
, (2.5)

∆SASAres=
∆SASA

<SASAres>
, (2.6)

relSASAres=
relSASA

<SASAres>
×1000. (2.7)

These three equations allow the normalization of the three SASA descriptors listed be-
fore: SASAcpx, ∆SASA and relSASA. We have also analyzed the radial distribution func-
tion, g(r) and the average number of waters within a given distance, of all interfacial
residues. G(r) gives the probability of finding an atom a distance r from another atom,
in relation to the probability expect for a bulk solvent distribution at the same density.
It was calculated by compiling a histogram with a spacing of 0.02 and a range of 8 Å.
Residence water times in the first coordination shell were calculated by in house scripts.
In house scripts were also used to evaluate the microenvironment surrounding each in-
terfacial amino-acid residue. The distances between the interacting heavy atoms of each
pair of residues were calculated using the VMD package using a threshold of 3.5 Å. Hy-
drogen bonds between proteic residues, hydrogen bonds between protein and solvent
and salt-bridges were analyzed.

3 Results

The correct detection of the residues that are energetically essential in protein-protein in-
terfaces is a key issue with huge practical application such as rational drug design and
protein engineering. Alanine scanning mutagenesis (ASM) has been applied successfully
to the characterization of these interfaces. However, experimental ASM is a costly and
time consuming task, which urged the need for fast and accurate theoretical methods.
A huge amount of algorithms of increasing complexity have been employed to address
the binding energy between biological molecules. These can be divided essentially in
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three types: empirical functions or simple physical methods that use knowledge-based
simplified models to evaluate complex association; fully atomistic methods that estimate
the binding free energy as a result of mutating the residues of the interacting molecules;
or, more recently, feature-based approaches. The feature-based approaches tend to be
more qualitative than quantitative [38, 41–47]. Although, no without of merit, an atom-
istic and accurate quantitative ASM method is crucial to detect warm- and hot-spots as
it adds also an energetic characterization of the terms responsible for it warm- or hot-
spots character. Only a few amino-acid residues of the RNaseA:RI interface possess an
experimental ∆∆Gbinding value. This way it was important to apply our ASM compu-
tational methodological approach and get a broad picture of all interface. Our method
opened the possibility of decomposing the binding free energy (∆∆Gbinding) into the var-
ious energetic factors, such as the electrostatic energy, ∆∆Eelectrostatic; the van der Waals
energy, ∆∆EvdW; the free energy of polar solvation, ∆∆Gpolar solvation; and the free energy
of non-polar solvation, ∆∆Gnon-polar solvation. The results are listed in Table 1.

Alanines, glycines or prolines could not be tested by computational ASM. For exam-
ple, glycines could not be tested as the ASM method only works when an amino-acid
is mutated by a smaller one, in this case alanine. As proline mutations are disruptive
and are associated with conformational changes, they could not be considered in our
study. To ensure that our predictions are valid it is first necessarily to evaluate the com-
putational ASM behavior and accuracy. Previous studies demonstrated that the method
possess an overall success rate (theoretical result within 1.0 kcal/mol of the experimental
result) higher than 80% with an unsigned error of 0.80 kcal/mol [17]. Fig. 1 demonstrates
that the correlation between the ∆∆Gexperimental and the ∆∆Gtheoretical for this particular
system is of 89% with an average error of 0.65 kcal/mol, and therefore we have the nec-
essary confidence to retrieve important structural and energetic information from our
results.

Figure 1: ∆∆Gexperimental versus ∆∆Gtheoretical.
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Table 1: Results of the Computational Alanine Scanning Mutagenesis Method. All values are in kcal/mol.
Highlighted in light shading are the hot- and warm-spots detected at this interface. Each monomer results were
sorted by ∆∆Gbinding for an easier understanding.

Protein # AA ∆∆Eelectrostatic ∆∆EvdW ∆∆Gnon-polar
solvation

∆∆G polar
solvation

∆∆Gbinding Score ∆∆Gexp Ref

RNaseA 43 VAL 8.33 1.21 0.03 -0.74 8.84 Hot
41 LYS 100.34 2.16 0.16 -94.19 8.47 Hot
98 LYS 69.22 0.07 0.00 -66.06 3.23 Warm
119 HIS 1.41 2.02 0.26 -2.49 1.20 Null
89 SER 3.57 -1.07 0.02 -1.84 0.68 Null
120 PHE 0.21 0.06 -0.02 0.41 0.67 Null
90 SER 0.02 0.12 0 0.12 0.25 Null
7 LYS 0.80 0.10 0.03 -0.68 0.24 Null

11 GLN -1.24 0.26 0.05 1.16 0.22 Null
87 THR 0.18 0.1 -0.02 -0.36 -0.09 Null
8 PHE -0.13 0.05 -0.03 -0.39 -0.50 Null

12 HIS 0.82 0.20 0.00 -1.74 -0.71 Null
118 VAL -0.68 0.46 0.03 -0.56 -0.75 Null
35 LEU -0.19 0.64 0.02 -1.27 -0.81 Null
38 ASP -78.01 2.34 0.07 72.17 -3.44 Null
86 GLU -70.81 0.67 0.2 66.32 -3.62 Null

RI 555 TYR 2.39 10.58 0.44 -6.64 6.77 Hot 5.9 [10]
556 ASP 37.56 1.4 0.11 -35.06 4.01 Hot 3.6 [10]
558 TYR 0.78 4.88 0.5 -2.76 3.41 Warm 2.6 [10]
384 TRP -0.95 7.73 0.29 -4.05 3.02 Warm 2.2 [6]
351 GLU 20.45 -0.06 -0.01 -18.38 1.99 Null
353 ASP 27.4 -0.58 -0.03 -24.98 1.81 Null
439 TRP 0.55 3.53 0.27 -2.61 1.73 Null 1 [6]
524 ASP 18.85 0.51 0.02 -17.78 1.6 Null
385 GLU 19.52 0.55 0.16 -18.76 1.47 Null
522 GLU 24.92 -1.05 0.02 -22.46 1.43 Null 1.3 [6]
408 GLU 15.53 0.09 0 -14.3 1.32 Null 1.3 [6]
553 VAL 1.08 1.7 -0.04 -1.55 1.19 Null
441 LYS -2.85 2.11 0.46 1.43 1.15 Null 1.3 [6]
465 GLU 14.96 0.06 0 -14.07 0.95 Null 1.6 [6]
327 GLU 20.37 0.41 0.02 -19.88 0.92 Null 1 [6]
551 GLN 0.25 1.57 0.01 -1.04 0.79 Null
494 VAL 0.81 0.19 0.02 -0.34 0.67 Null
499 ASP 11.47 0.26 -0.01 -11.36 0.36 Null
470 SER -0.3 0.09 -0.01 0.38 0.15 Null
356 SER -0.37 0.13 0 0.38 0.14 Null
442 SER -0.17 0.12 0 0.17 0.12 Null
526 SER 0.47 0.32 0 -0.75 0.03 Null
554 LEU 0.10 0.08 0.00 -0.20 -0.03 Null
382 TRP 2.62 3.89 0.21 -6.9 -0.18 Null 1.3 [6]
467 GLN -0.86 0.65 0.01 -0.03 -0.23 Null
527 ASN 0.08 0 0 -0.33 -0.24 Null
578 ARG -11.96 1.47 0.16 10.05 -0.28 Null 0.8 [6]
410 SER -0.77 0.25 -0.02 0.16 -0.38 Null 0.8 [6]
325 ARG -19.96 0.64 0.01 18.36 -0.95 Null

It is important to highlight that one of the major reasons behind the success of the
method is the use of three different internal dielectric constants that mimic the rear-
rangement expected upon alanine mutation. Conformational sampling, the relaxation
and reorganization due to the mutation for an alanine, and maybe even specific water
binding as well as the electronic polarization that affects the charge-charge are not ex-
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Figure 2: Warm- and hot-spots clusters at the RNaseA:RI interface. Hot-, warm, and null-spots are in red,
orange and yellow color respectively.

plicitly included in the formalism. Therefore, the scaling of the macroscopic parameter
(internal dielectric constant) to larger values when larger re-organizations are expected
mimics these effects. By using only a three-internal dielectric constant set exclusively
characteristic of the mutated amino acid (2 for the non-polar amino acids, 3 for the po-
lar residues, and 4 for the charged amino acids), it was possible to obtain an excellent
agreement with the experimental results for the ∆∆Gbinding values. Charged residues
were one of the major problems of the fully atomistic ASM approaches [22]. The use
of a set of 3 internal dielectric constants is essential for the calculation of the electro-
static components as ∆∆Gpolar solvation obtained using the DELPHI software, which is big-
ger for charged residues [33]. This fact explains our high success rate concerning this
kind of residues. Besides the correct detection of residues Tyr555, Asp556, Tyr558 and
Trp384 as energetically key residues at the RNaseA:RIinterface, new residues were also
detected such as Lys41, Val 43 and Lys98. The first two have a ∆∆Gbinding higher than
4.0 kcal/mol and therefore are hot-spots and the last one has a warm-spot character.
This way, the RNaseA:RIinterface presents two different clusters of warm- and hot-spots
residues: cluster one is formed by RNaseA Lys98 and RI Trp384, cluster two is formed by
RI Tyr555, Asp556 and Tyr558 and RNaseA Lys41 and Val43. Their spatial distribution
can be seen in Fig. 2.

From experiments some key questions were posed. What is the relative importance of
H-bonds versus van der Waals contacts and the hydrophobic effect in the interactions of
the various hot- and warm-spots at the RNaseA:RI interface? Do these residues form con-
tacts with either protein that are not apparent from the crystal structures [7]? At the time,
the authors performed mutations for other residues besides alanine trying to achieve the
answers to some of these questions. For example, the role of Tyr555 was analyzed not
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Table 2: Interactions at the RNaseA:RI interface. The values presented are the average and the standard
deviation error for the distances between the heavy atoms of each pair of residues.

Type of interaction Residue pair Distance [Å]
Salt-bridge Asp556-Lys 41 2.82±0.12

Hydrogen bond Asp556-Lys 41 3.84±0.17
Hydrogen bond Lys41-Water 4.99±0.35
Hydrogen bond Val43-Water 2.91±0.13
Hydrogen bond Val43-Water 4.16±0.36
Hydrogen bond Tyr555-Water 2.75±0.06
Hydrogen bond Tyr558-Water 4.69±0.85

only by alanine mutation but also upon phenylalanine mutation. The authors conclude
that the attenuated affinity of Tyr434Ala was due only to the loss of the phenyl group.
In contrast, replacement of Tyr558 by Phe weakened the RI:RNase A interaction almost
to the same extent as substitution with Ala, and therefore the OH group rather than the
phenyl ring of this Tyr appears to provide the energetically important interactions [7].
By inspection of Table 1 it is easily perceived that for Tyr555Ala, ∆∆EvdW has a value of
10.58 kcal/mol being the major energetic component, which contrasts with the value of
4.88 kcal/mol for Tyr558Ala. These facts gave us, once more, confidence in our results.
For the new detected warm- and hot-spots at the RI protein, the major energetic com-
ponent seems to be the electrostatic contribution (∆∆Eelectrostatics+∆∆Gpolar solvation) that
ranges from 3.16 to 7.59 kcal/mol. Electrostatics is one of the most noteworthy interac-
tions at a protein-protein interface, and it seems to play a major role at the RNaseA:RI
complex. The analyses of the PPIs requires dynamical information as the data extracted
only from crystal structures is limited to that particular, and most likely, not representa-
tive conformation. Proteins in solution are mobile molecules that do not exist in a single
conformation, but instead in a set of different conformational states. MD simulations are
undoubtedly the cornerstone when it comes to the study of the dynamics of a system
and have proved to be a reliable tool. By applying an explicit MD approach it was pos-
sible to generate an ensemble of complex conformations, in which different physical and
chemical characteristics could be studied. From the MD simulation it was possible to
retrieve the average distances of the most stable hydrogen bonds and salt-bridges across
the warm- and hot-spots at the RNaseA:RI interface, which are listed in Table 2.

The correlation coefficients are 0.06, 0.58, 0.21, 0.06, 0.63, 0.10 for SASAcpx, ∆SASA,
relSASA, SASAcpx/res, ∆SASAres, and relSASAres, respectively. SASA descriptors are
some of the most commonly used features at the machine learning algorithms developed
recently. [38, 41–47] At this interface ∆SASA and ∆SASAres descriptors already show a
significant correlation with ∆∆Gbinding. However, it seems that the best SASA descriptor
that shows a higher correlation is ∆SASAres. The main explanation can be the fact that
∆SASAres includes the importance of SASA upon complex formation as well as the nor-
malization by the different types of amino-acid residues. If we only considered the four
warm- and hot-spots the correlation for the six SASA descriptors increase. Although we
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Table 3: Values for the six SASA descriptors (SASAcpx, ∆SASA, relSASA, SASAcpx/res, ∆SASAres and

relSASAres) for all interfacial residues. The units are Å2 and the average and standard deviation error for
each SASA descriptor is presented.

Protein # AA SASAcpx ∆SASA relSASA SASAcpx/res ∆SASAres relSASAres ∆∆Gexp

RNaseA 7 LYS 23.74 ± 10.43 -73.74 ± 12.83 -0.76 ± 0.1 0.11 ± 0.05 -0.35 ± 0.06 -3.58 ± 0.49
8 PHE 2.80 ± 1.47 -2.02 ± 1.22 -0.42 ± 0.21 0.01 ± 0.01 -0.01 ± 0.01 -1.94 ± 0.97

11 GLN 5.20 ± 2.94 -14.41 ± 5.17 -0.73 ± 0.14 0.03 ± 0.02 -0.08 ± 0.03 -3.85 ± 0.74
12 HIS 1.37 ± 0.99 -12.98 ± 2.11 -0.91 ± 0.05 0.01 ± 0.01 -0.07 ± 0.01 -4.67 ± 0.26
35 LEU 8.08 ± 7.61 -7.56 ± 4.86 -0.54 ± 0.35 0.04 ± 0.04 -0.04 ± 0.03 -2.98 ± 1.94
38 ASP 84.01 ± 16.62 -30.02 ± 19.72 -0.26 ± 0.16 0.56 ± 0.11 -0.2 ± 0.13 -1.7 ± 1.04
41 LYS 2.00 ± 2.71 -56.03 ± 4.31 -0.97 ± 0.04 0.01 ± 0.01 -0.27 ± 0.02 -4.58 ± 0.21
43 VAL 18.11 ± 6.00 -45.83 ± 5.69 -0.72 ± 0.08 0.11 ± 0.04 -0.29 ± 0.03 -4.49 ± 0.48
86 GLU 30.65 ± 5.59 -15.42 ± 4.62 -0.34 ± 0.1 0.17 ± 0.03 -0.08 ± 0.02 -1.84 ± 0.56
87 THR 16.19 ± 3.19 -34.85 ± 5.88 -0.68 ± 0.06 0.11 ± 0.02 -0.24 ± 0.04 -4.66 ± 0.42
89 SER 22.35 ± 4.95 -80.84 ± 5.07 -0.78 ± 0.04 0.18 ± 0.04 -0.66 ± 0.04 -6.43 ± 0.33
90 SER 5.89 ± 1.82 -14.10 ± 1.71 -0.71±0.08 0.05 ± 0.01 -0.12±0.01 -5.80±0.62
98 LYS 100.08 ± 12.92 -46.11 ± 15.96 -0.31±0.1 0.47 ± 0.06 -0.22±0.07 -1.48±0.47
118 VAL 16.00 ± 5.11 -12.08 ± 6.05 -0.42 ± 0.15 0.10 ± 0.03 -0.08 ± 0.04 -2.63 ± 0.96
119 HIS 16.86 ± 7.34 -89.78 ± 7.65 -0.84 ± 0.07 0.09 ± 0.04 -0.46 ± 0.04 -4.32 ± 0.34
120 PHE 15.91 ± 4.24 -10.84 ± 3.70 -0.41 ± 0.12 0.07 ± 0.02 -0.05 ± 0.02 -1.87 ± 0.56

RI 325 ARG 53.25 ± 5.21 -0.02 ± 0.12 0 ± 0 0.22 ± 0.02 -9.43E-005 ± 0 0 ± 0.01
327 GLU 20.37 ± 4.99 -19.41 ± 2.91 -0.49 ± 0.08 0.11 ± 0.03 -0.11 ± 0.02 -2.69 ± 0.44 1.00
351 GLU 37.94 ± 7.84 -0.23 ± 0.75 -0.01 ± 0.02 0.21 ± 0.04 0 ± 0 -0.04 ± 0.13
353 ASP 13.61 ± 2.78 -6.38 ± 1.76 -0.32 ± 0.07 0.09 ± 0.02 -0.04 ± 0.01 -2.12 ± 0.44
356 SER 32.93 ± 7.21 -2.27 ± 3.37 -0.07 ± 0.09 0.27 ± 0.06 -0.02 ± 0.03 -0.56 ± 0.78
382 TRP 29.97 ± 9.24 -40.00 ± 12.09 -0.57 ± 0.15 0.12 ± 0.04 -0.15 ± 0.05 -2.18 ± 0.57 1.30
384 TRP 15.70 ± 4.14 -72.55 ± 4.27 -0.82 ± 0.04 0.06 ± 0.02 -0.28 ± 0.02 -3.18 ± 0.15 2.20
385 GLU 70.66 ± 11.43 -22.27 ± 7.81 -0.24 ± 0.08 0.39 ± 0.06 -0.12 ± 0.04 -1.32 ± 0.46
408 GLU 55.70 ± 10.71 -9.62 ± 6.89 -0.15 ± 0.1 0.30 ± 0.06 -0.05 ± 0.04 -0.8 ± 0.55 1.30
410 SER 1.40 ± 1.23 -4.31 ± 0.86 -0.78 ± 0.16 0.01 ± 0.01 -0.04 ± 0.01 -6.39 ± 1.28 0.80
439 TRP 15.66 ± 5.86 -64.94 ± 6.38 -0.81 ± 0.07 0.06 ± 0.02 -0.25 ± 0.02 -3.11 ± 0.27 1.00
441 LYS 36.09 ± 6.43 -47.98 ± 19.97 -0.55 ± 0.13 0.17 ± 0.03 -0.23 ± 0.09 -2.6 ± 0.63 1.30
442 SER 57.54 ± 8.55 -2.15 ± 4.42 -0.04 ± 0.08 0.47 ± 0.07 -0.02 ± 0.04 -0.32 ± 0.68
465 GLU 31.80 ± 6.32 -6.45 ± 7.08 -0.16 ± 0.17 0.17 ± 0.03 -0.04 ± 0.04 -0.88 ± 0.9 1.60
467 GLN 24.14 ± 6.57 -2.05 ± 2.76 -0.08 ± 0.1 0.13 ± 0.03 -0.01 ± 0.01 -0.44 ± 0.54
470 SER 37.44 ± 6.66 -17.15 ± 3.28 -0.32 ± 0.06 0.31 ± 0.05 -0.14 ± 0.03 -2.6 ± 0.53
494 VAL 27.72 ± 7.81 -0.01 ± 0.04 0 ± 0 0.17 ± 0.05 -5.08E-005 ± 0 0 ± 0.01
499 ASP 31.71 ± 8.47 -32.14 ± 6.93 -0.51 ± 0.11 0.21 ± 0.06 -0.21 ± 0.04 -3.35 ± 0.73
522 GLU 36.19 ± 6.04 -20.52 ± 3.76 -0.36 ± 0.04 0.20 ± 0.03 -0.11 ± 0.02 -1.98 ± 0.19 1.30
524 ASP 11.01 ± 3.66 -16.21 ± 4.34 -0.59 ± 0.12 0.07 ± 0.02 -0.11 ± 0.03 -3.93 ± 0.81
526 SER 2.54 ± 1.89 -18.25 ± 2.85 -0.88 ± 0.09 0.02 ± 0.02 -0.15 ± 0.02 -7.19 ± 0.78
527 ASN 21.39 ± 7.10 -52.78 ± 7.97 -0.71 ± 0.09 0.14 ± 0.04 -0.33 ± 0.05 -4.5 ± 0.6
551 GLN 35.74 ± 12.12 -14.77 ± 3.46 -0.31 ± 0.12 0.19 ± 0.06 -0.08 ± 0.02 -1.66 ± 0.66
553 VAL 0.87 ± 0.97 -21.60 ± 5.95 -0.96 ± 0.04 0.01 ± 0.01 -0.13 ± 0.04 -6.01 ± 0.25
554 LEU 8.35 ± 3.09 0.00 ± 0.00 0 ± 0 0.05 ± 0.02 0 ± 0 0 ± 0
555 TYR 25.09 ± 8.63 -111.62 ± 7.61 -0.82 ± 0.06 0.11 ± 0.04 -0.49 ± 0.03 -3.57 ± 0.26 5.90
556 ASP 13.31 ± 3.98 -79.65 ± 7.46 -0.86 ± 0.04 0.09 ± 0.03 -0.53 ± 0.05 -5.67 ± 0.28 3.60
558 TYR 44.55 ± 12.96 -78.14 ± 34.07 -0.61 ± 0.15 0.19 ± 0.06 -0.34 ± 0.15 -2.68 ± 0.65 2.60
578 ARG 130.78 ± 20.43 -18.31 ± 14.97 -0.12 ± 0.1 0.54 ± 0.08 -0.08 ± 0.06 -0.51 ± 0.41 0.80

only have 4 residues at this condition, which is not enough for a statistical analysis, it
seems that the warm- and hot-spot character is highly associated with the solvent acces-
sibility of the interfacial residues. Due to the uncertainty (average error of 0.65 kcal/mol)
of the computational ASM, these correlations are a bit worse when we considered all
amino-acids tested. However, it is clear from Table 3 that solvent accessibility is ex-
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Figure 3: Plots of the six SASA descriptors versus ∆∆Gexperimental. a) SASAcpx, b) ∆SASA, c) relSASA, d)
SASAcpx/res, e) ∆SASAres, and f) relSASAres.

tremely correlated with the warm- and hot-spot character of key residues at the PPI. So,
it is important to further investigate the fine details of hydration. To that purpose we cal-
culated the radial distribution functions of the interfacial residues in the MD simulation
as well as the average number of waters inside a given radius. Table 4 shows the average
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Table 4: Average number of waters at a certain radius of the hot-, warm- and null-spots.

r [Å] Hot-Spots Warm-Spots Null-Spots
0 0 0 0
1 0 0 0
2 0 0 0
3 0 0.68 1.49
4 0.13 1.83 3.36
5 0.97 4.28 6.86
6 4.84 9.48 11.70

number of waters at a given distance from the null-, the warm- and the hot-spots. It is
clearly shown that warm- and hot-spots tend to be protected from solvent presenting a
much lower average number of waters around them. For example, at a maximum of 5
Å, after which pair interactions becomes less meaningful, the hot-spots have on average
one water molecule; the warm-spots have four; and the null-spots around seven. Once
more, it is stressed that the energetically important residues are shielded from water and
that trapped water molecules have crucial roles by establishing important interactions
between the warm- and hot-spots.

The overall picture of the RNaseA:RI interface can be seen in Fig. 4. This figure shows
the most stable interactions that involve the warm- and hot-spots detected computation-
ally. Panel a) shows the interaction that have a minimum residence time of 80% and panel
b) of 90%. This figure allows visualization of the dynamical behavior of the RNaseA:RI
interface. It is easily perceived that the two clusters of warm- and hot-spots are very sta-
ble as their interactions are not lost even at a 90% threshold. It is also indisputable that
although the energetically important residues tend to be occluded from solvent, water
still has a major function as a bridge between the amino-acid residues at the cluster 2 of
warm- and hot-spots. This fact was not seen in the crystallographic structures, and there-
fore previous work done on this system was not able to explain how Tyr555 and Tyr558,
although at 13 Å apart, could still be energetically coupled. From inspection of Fig. 4
and, for a more detailed comprehension, Fig. 5, it is possible to observe the importance of
water connection to the coupling of these two residues. The water molecules present at
this network vary in their residence time. The two closest ones to Tyr555 are constant at a
residence time of 80% (as seen in Fig. 4) and the others have a more dynamical character.

The flexibility of the residues at the protein surface together with the participation
of water molecules help to define the shape and physicochemical complementarities of
the binding partners, which determines the specificity and stability of the association.
In this interface, as noted for others PPIs [5, 48], the hot-spots are not homogeneously
distributed across the interface: rather they are distributed in clusters in which water
molecules plays a major role. To have a complete knowledge of this interface we per-
formed alanine shaving in order to access the cooperatively within the most impor-
tant cluster of warm- and hot-spots. For the simultaneous mutation of the energet-
ically interacting important residues of both interfaces (Lys41/His119/Tyr555/Tyr558;
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Figure 4: Map of the key interactions between the hot- and warm-spot cluster 1 (Lys98 and Trp384) and
cluster 2 (Tyr555, Asp556, Tyr558, Lys41, Val43). RNase A and RI residues are in a rectangle and diamond
representations, respectively. Hot-, warm, and null-spots are in red, orange and yellow color respectively. Protein-
protein interactions are in black and water interactions in blue. Green dots indicate that a salt-bridge and a
hydrogen bond are made simultaneously between the pair of residues. a) Interactions with a residence time of
80%, b) Interactions with a residence time of 90%. Figure produced by an in-house script which takes advantage
of a python library designed to build graphs, python-graph (http://code.google.com/p/python-graph/). It
allows the 2D understanding of the micro-environment surrounding each interfacial residue.

Figure 5: Water network between the two energetically important residues Tyr555 and Tyr558 with a hot and
warm-spot character, respectively.

Val43/His119/Tyr555/Tyr558; Lys41/Val43/His119/Tyr555/Tyr558) we verified a sub-
additivity in which the simulations mutation of the amino-acid residues generate a
∆∆Gbinding lower than the sum of their single contributions. The losses in binding en-
ergy for these multiple mutations are strongly subadditivity implying that the residues
are functionally coupled. The simultaneous replacement of multiple residues can weaken
multiple interactions and have especially negative effects on solvent structure. Therefore,
the three multiple mutations subadditivity effect can be explained by the major role water
plays bridging the two binding partners.
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Table 5: Results of the Computational Alanine Shaving Mutagenesis Method. All values are in kcal/mol.

# AA ∆∆Eelectrostatic ∆∆EVDW ∆∆Gnon-polar
solvation

∆∆G polar
solvation

41/119/555/558 LYS/HIS/TYR/TYR 139.69 18.33 1.38 -140.65
43/119/555/558 VAL/HIS/TYR/TYR 10.58 18.27 1.22 -12.66

41/43/119/555/558 LYS/VAL/HIS/TYR/TYR 139.69 18.33 1.38 -140.65

# AA ∆∆Gbinding ∑∆∆G ∆∆∆Gexp

41/119/555/558 LYS/HIS/TYR/TYR 17.74 19.85 <0
43/119/555/558 VAL/HIS/TYR/TYR 17.43 20.22 <0

41/43/119/555/558 LYS/VAL/HIS/TYR/TYR 17.74 28.6 9 <0

4 Conclusion

The understanding of protein-protein associations is a useful link between structure and
function of biomolecular systems, and allows the characterization of the energetics of
molecular complexes. The RNase inhibitor is a LRR protein that binds diverse proteins
in the pancreatic RNase superfamily and is essential in various molecular recognition
processes forming some of the tightest complexes known with dissociation constants be-
tween 10−13 to 10−15 M. These characteristics make RNaseA:RI interface an imperative
subject in the field of protein-protein interactions. In this work we have applied a compu-
tational alanine scanning mutagenesis protocol that presents a high accuracy (correlation
between ∆∆Gtheoretical and ∆∆Gexperimental of 89% and an average error of 0.65 kcal/mol)
to this particular system. This protocol distinguish itself from others by the use of a
set of three internal dielectric constants (2 for non-polar residues, 3 to polar and 4 for
charged ones) in order to mimic the expected rearrangement upon alanine mutation that
is not explicitly included in the formalism. Besides correctly detecting the warm- and
hot-spots in the RI protein, we have also detected 3 more crucial residues for binding
(Lys41, Val43, Lys98). The first two have a hot-spot character and the third a warm-spot
character. These three residues seem to play a key role in protein-protein binding. We
have also analyzed the role of solvation across the interface. Water plays a major role
at every biological process and can make important interactions at an interface. A few
years ago an O-ring theory was proposed. It stated that warm- and hot-spots should be
occluded from water in order to allow an efficient coupling between proteins. We saw by
a careful analyze of the radial distribution functions of all interfacial residues, as well as
the water micro-environment around each interfacial residue, that warm- and hot-spots
seem, indeed, to be shielded from water. Nevertheless, some water molecules can still
be trapped at the interface producing crucial interactions. This feature was particularly
important to explain the cooperativity between Tyr555 and Tyr558, two energetically im-
portant residues that are 13 Å apart. These two residues possess a water network that
allows their interaction. We have also calculated six different SASA descriptors to ac-
cess the importance of the loss of solvent accessibility upon complex formation. Three
SASA descriptors ∆SASA, ∆SASAres and relSASA appear to present a significant correla-
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tion with ∆∆Gbinding and can be used in future ASM features-based work. These deeper
knowledge about the RNaseA:RI interface can potentially be used to design better and
more specific inhibitors.
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