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Abstract. In this paper, we highlight the benefits resulting from imposing energy-
conserving equilibria in entropic lattice Boltzmann models for isothermal flows. The
advantages are documented through a series of numerical simulations, such as Taylor-
Green vortices, cavity flow and flow past a sphere.
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1 Introduction

In the last decade, mesoscale algorithms such as lattice Boltzmann models (LBM), Dis-
sipative Particle Dynamics (DPD) and multi-particle collision dynamics, have attracted
increasing interest in the framework of computational fluid dynamics (see, e.g., [1–15]).
This success story is remarkable from the theoretical point of view too, as continued ef-
fort in this field has succeeded in establishing the existence of a self-consistent underlying
micro-dynamics behind the mesoscopic formulation.
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For example, in the case of LBM, the importance of formulating discrete kinetic mod-
els in compliance with the H-theorem, is by now fully appreciated [3, 16–21]. In fact, an
exact lattice analog of the continuous Maxwell-Boltzmann distribution was derived from
a discrete version of the entropy maximization principle [19,20,22]. The link between dis-
crete thermodynamics and numerical stability and efficiency of the corresponding com-
putational model, is also well appreciated and possible generalizations towards more
microscopic formulations have been explored in recent works [11, 19, 23–27].

Despite the aforementioned success of these approaches, much still needs to be under-
stood, both from theoretical and numerical standpoint, such as efficient implementation
of curved boundaries, numerical stability at very low viscosity and others.

In the present manuscript, we show that releasing a specific thermodynamic defi-
ciency of the method, leads to a significant improvement in the quality of the simulation.
More precisely, in its present popular isothermal setting, sound propagation in lattice
Boltzmann [28], takes place at constant temperature, thus following Newton’s definition
of sound speed,
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where v0 is the reference thermal speed.
However, via Laplace theory, it is known that, in actual reality, sound propagation

occurs via an adiabatic process, which can only be described by an energy conserving
(EC) model. This automatically gives,
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where γ is the adiabatic exponent. Traditionally, this discrepancy was largely neglected
in isothermal LBM simulations, with an argument that the relevant observable is the
velocity field, the sound speed being just an immaterial constant. However, as we shall
show in the following, this thermodynamic aspect plays a major role in determining the
quality of simulation results even for isothermal flows in fully resolved domains. In other
words, reproducing the correct sound speed gives rise to a much more robust numerical
scheme.

The work is organized as follows. In Section 2, lattice Boltzmann model (both energy
conserving and isothermal) is briefly reviewed. In Section 3, via an example we show
that energy conserving model indeed manages to reproduce adiabatic sound propagation
correctly. In Section 4, we compare the energy conserving model with isothermal model
for the set up of Taylor-Green vortex, cavity flow and flow past a sphere. Finally, we
summarize results of the study in Section 5.

2 Lattice Boltzmann method

We briefly remind the reader that, in typical LBM formulations, one works with a set
of discrete populations f = { fi}, corresponding to predefined discrete velocities ci (i =
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1,··· ,N). The hydrodynamic variables, such as the mass density, ρ and the momentum
density, ρuα and temperature T, are defined to be the lowest order moments of the distri-
bution function, namely:

ρ=
N

∑
i=1
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N
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ficiα, P≡ 1

2
ρu2+

D
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2
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For this set of discrete populations, the evolution equation is often written in the
single-time relaxation BGK-form [29], as

d f

dt
=

1

τ
[ f eq(MSlow( f ))− f ], (2.2)

where slow moments are typically taken as MSlow = (ρ, u) and τ is the smallest time
scale of relaxation (related with viscosity), d/dt represents derivative along the discrete
characteristics and f eq is a discrete equivalent of the Maxwell-Boltzmann equilibrium, a
local functional of the slow moments. The explicit form of this discrete equilibrium is
known [19,20]. In this entropic formulation of the LB method [19,20], in its most general
setting one works with discrete thermodynamic potential
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where wi are the weights associated with the quadrature, α, βζ and γ are the Lagrange
multipliers associated with the conservation laws; in this setting, f

eq
i provides the min-

imum to the H-function (2.3). The formal expression for the equilibrium distribution
reads as follows (This expression is applicable only in 2D and 3D.)

f
eq
i =wi exp

(

α+βζ ciζ+γc2
i

)

. (2.4)

In the special case of isothermal hydrodynamics, energy conservation is ignored and
thus one sets γ=0. An explicit expression of the equilibrium for D1Q3, D2Q9 and D3Q27
model, reads as follows [19],
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where lattice unit c=
√

3kBT0/m which assumes that the dimensionless temperature de-
fined in the lattice units is θ0 = kBT0/(mc2) and the exponent ciα/c takes the value ±1
and 0 only (i refers to discrete velocity and α refers to direction). However, in practice, a
polynomial approximation to the exact equilibria, is often used,
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with weights in D dimensions as

wi=(1−θ0)
D

(

θ0

2(1−θ0)

)(ci/c)2

. (2.7)

In the case of energy conserving hydrodynamics, the explicit form of the resulting
equilibrium distribution can be found, for u = 0, as a function of reduced temperature
θ= kBT/(mc2) measured in lattice unit and is given as

f
eq
i ≡ρWi(θ)=ρ(1−θ)D

(

θ

2(1−θ)

)(ci/c)2

. (2.8)

For non-zero velocity case, perturbative equilibria is found to take the following form
[20],
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where θ is the dimensionless temperature and the isothermal equilibrium is recovered
in the limit θ → 1/3. The expression given above is applicable only for 2D and 3D, as
for D1Q3 model it is not possible to impose energy conservation. The lattice Boltzmann
models with multiple relaxation time (not in the scope of present study) have different
stability behavior in comparison to single relaxation time model [30].

In Lattice Boltzmann equation, the trapezoidal discretization of the underlying PDE
is used, to obtain,

f (x+c∆t,t+∆t)= f (x,t)+2β
[

f eq(MSlow(x,t))− f (x,t)
]

. (2.10)

In the above equation, the discrete dimensionless relaxation parameter, β=∆t/(2τ+∆t),
dictates the stability domain of the method.

3 Sound propagation in energy conserving model

The first implication of using the energy conserving model is that the sound speed takes
on its correct, isentropic, value. In order to show that this is indeed the case, we per-
formed a simulation using the D2Q9 model with the following initial conditions:

ρ(x,y,t=0)=1+ǫcos(kx), θ(x,y,t=0)=
ρ

3
, ux =uy=0.0. (3.1)

Here, ǫ is a small amplitude of a periodic density perturbation which allows us to observe
the acoustic mode [31]. As the ratio of specific heat capacity γ = (D+2)/2 = 2 in the
two-dimensional case, we expect the ratio of the sound speed measured from energy
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Figure 1: Variation of density with time in LB simulation at the center of domain for Re= 50, Ma= 0.1 and
grid-size =700×700.

conserving and isothermal lattice Boltzmann to be
√

2. As shown in the Fig. 1, the ratio
between the speed of sound for energy conserving with that of isothermal is indeed ≈
1.414. As can be seen from the figure, energy conserving model has 11 crests and 12
troughs, so the value is in between 11 and 12 (≈ 11.25), while isothermal model has 8
crests and 8 troughs. So the ratio is 11.25/8≈1.406

4 Results

4.1 Taylor-Green vortex and convergence of lattice Boltzmann

In order to illustrate the benefits of energy conserving model over isothermal model, as
the next example, we consider the Taylor-Green vortex, for which an analytical solution
for 2-D incompressible Navier-Stokes equation is available. The initial condition is,

ux (x,y,t=0)=U0sin

(

2π

L
kx x

)

cos

(

2π

L
ky y

)

, (4.1a)
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(
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)
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2π

L
ky y

)

. (4.1b)

The initial condition on density and temperature θ is

ρ(x,y,t=0)=1, θ(x,y,t=0)=1/3. (4.2)

The advantage of this set-up is that the error analysis directly reveals the different ac-
curacy of the isothermal and energy conserving methods, in the absence of boundary
effects. We performed a grid resolution study using the L1 and L2 error norms (calcu-
lated with respect to analytical solution) of the velocity in x direction for a given Mach
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Figure 2: L1 and L2 norm for velocity in x direction at Re= 250 and Ma= 0.05 for Taylor-Green vortex with
different grid size.

Figure 3: L1 and L2 norm for velocity in x direction at Re= 4000 and Ma= 0.05 for Taylor-Green vortex with
different grid size.

(Ma) and Reynolds numbers (Re). Here, Re is based on the characteristic length of the
flow-field, taken as 2π in a periodic-box of length 2π, thus =U02π/ν. Results are demon-
strated in Figs. 2 and 3. We have defined the computational Mach number as Ma=U0/v0.
Notice that for the energy conserving model, the effective Mach number is lower by a
factor of

√
γ. We have chosen this definition for comparing two methods, as this compu-

tational Mach number is the one which gives the idea about computational cost. In other
words, for same computational cost, the effective Mach number is lower than in energy
conserving model.

It is evident from the figures that, at Re=250, the error in the energy-conserving case
is an order of magnitude smaller than in the isothermal case. Even more importantly,
the error does not show any sign of decay beyond N ∼200. The case Re=4000 conveys
essentially the same message, although it is to be noted that at low resolution, the isother-
mal model may even lead to a smaller error than the energy-conserving one. However,
as resolution is increased, the error saturates, while the energy-conserving models show
a progressive, if only slow, decay. It can be seen from Figs. 2 and 3, that isothermal
model shows oscillatory convergence while energy conserving model shows uniform
convergence. It can also be inferred from the figures that incidentally at low resolution
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(N∼200), isothermal model gives smaller error than energy conserving model. However,
as resolution is increased, energy conserving model becomes slightly more accurate.

In Table 1, error vs wavenumber for Taylor-Green flow simulation at Ma= 0.05 and
Re=250 is presented.

Table 1: Error as a function of wavenumber.

Grid ∆x ∆t
τ ∆kcsτ L1(iso)/L1(EC)

250 0.025120 11.54730 0.049998 2.49655108559788898662
450 0.0139556 6.415188 0.089997 5.94319296790443147449
600 0.01048 4.8175 0.11984 7.51231356662535934226
1000 0.0062857 2.889445 0.1998135 9.11464142525547885328
1200 0.005238 2.407833 0.2397800 9.39975804200142693178
2000 0.003142 1.44433 0.3997351 9.80366544915056078308
3000 0.0020933 0.9617607 0.60000955 9.92481386947622503649

4.2 Cavity flow

In actual practice, many fluid dynamic simulations take place in wall-bounded do-
mains. Therefore, in our next example, we consider 2D lid driven cavity, for which
the polynomial-based isothermal LBM is known to produce unstable solutions at low
grid resolution. The parameters used in simulation are Re=5000, Ma=0.1732 and both
isothermal (polynomial based) as well as energy-conserving simulations were performed
with different grid sizes, with diffusive wall boundary conditions. From Figs. 4-6, it can
be seen that the energy-conserving setup converges towards a steady state value at a
lower grid size than the isothermal.

In this setup, which is a prototype for bounded flows, we observed that the differ-
ences between the two models were more pronounced. In order to show this effect, in
Tables 2 and 3 the percentage error in stream function value at center vortex for Re=5000
and Ma(= 0.05 and 0.087) with different grid size is shown. The converged value for
comparison is taken from [32].

Table 2: Percentage error in stream function value at center vortex at Ma=0.05 and Re=5000.

Grid Points 200 256 312 375 450
Isothermal 17.92 6.067 3.616 2.328 2.148
EC 7.36 4.977 3.64 2.73 2.29

Table 3: Percentage error in stream function value at center vortex at Ma=0.087 and Re=5000.

Grid Points 200 256 312 375 450 512
Isothermal 30.88 5.067 3.1484 2.312 1.908 1.721
EC 5.223 3.903 2.837 2.017 1.509 1.369
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(a) Isothermal Model (b) Energy Conserving Model

Figure 4: Streamline plot of cavity flow for grid-size=200×200. The isothermal model (left) is patently unstable,
while the energy-conserving one (right) shows no sign of instability.

(a) Isothermal Model (b) Energy Conserving Model

Figure 5: Streamline plot of cavity flow for grid-size=256×256. The isothermal model is still unstable, although
to a less extent than for the case 200×200. The energy-conserving one shows also a small improvement over
the 200×200, especially around the top-left corner.

(a) Isothermal Model (b) Energy Conserving Model

Figure 6: Streamline plot of cavity flow for grid-size=312×312.

We can see that the energy conserving model is more effective in suppressing acoustic
disturbances arising near boundaries. In order to verify that indeed this is the case, in
next section flow past a sphere is reported.
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4.3 Flow past a sphere

As our final example, we consider the LB application in complex geometry, and notably
a 3D simulation of flow around the sphere, with Re= 118, Ma= 0.104, the radius of the
sphere being 10 lattice units.

The initial density and the temperature are chosen as ρ=1.0 and θ=1/3 respectively.
A Grad type boundary condition [33] is used for the inlet and outlet. Free-slip boundary
condition is used for top and bottom boundaries and periodic boundary condition is used
for the other direction.

From Fig. 7, it is clearly visible that the isothermal LB fails to capture the pressure
profile, especially at inlet and outlet regions, while the energy-conserving one does not
show any problem. On the other hand, both methods succeed in capturing the velocity
profile to a satisfactory degree of accuracy.

(a) Isothermal Model

(b) Energy Conserving Model

Figure 7: Pressure contour plot of flow around sphere for grid-size=960×180×180.
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5 Outlook

Summarizing, we have shown that the accuracy and robustness of the isothermal LB
method show significant improvement upon incorporating the energy-conservation con-
straint, securing the correct sound speed.
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