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Abstract. A general analysis of the hydrodynamic limit of multi-relaxation time lattice
Boltzmann models is presented. We examine multi-relaxation time BGK collision op-
erators that are constructed similarly to those for the MRT case, however, without ex-
plicitly moving into a moment space representation. The corresponding ’moments’ are
derived as left eigenvectors of said collision operator in velocity space. Consequently
we can, in a representation independent of the chosen base velocity set, generate the
conservation equations. We find a significant degree of freedom in the choice of the
collision matrix and the associated basis which leaves the collision operator invariant.
We explain why MRT implementations in the literature reproduce identical hydrody-
namics despite being based on different orthogonalization relations. More importantly,
however, we outline a minimal set of requirements on the moment base necessary to
maintain the validity of the hydrodynamic equations. This is particularly useful in the
context of position and time-dependent moments such as those used in the context
of peculiar velocities and some implementations of fluctuations in a lattice-Boltzmann
simulation.
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1 Introduction

The lattice Boltzmann (LB) method is continuing to increase in popularity as a simula-
tion method for fluid mechanics for a wide range of applications from turbulence [1] to
complex fluids [2]. A key of its success is the simplicity of the algorithm. Instead of
discretizing the hydrodynamic equations directly the method is based on an underlying
microscopic model. Historically the method developed from lattice gases [3] where par-
ticles move on a lattice and collide on lattice points. Because such a lattice gas model
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locally conserves mass and momentum the macroscopic behavior of the system has to be
described by the continuity and Navier-Stokes equations [4]. The connections between
the microscopic streaming and collision rules and the macroscopic differential equations
is established by taking the hydrodynamic limit which requires averaging the locally
conserved quantities. This reproduces the Boltzmann equation [5]. Performing a Taylor
expansion on the discrete Boltzmann equation then leads to a PDE representation of the
discrete evolution equation [6].

At this point there are several routes to proceed. Grad [7] suggests taking moments
of the full Boltzmann equation which is a route that has been taken by other groups [8].
Alternatively one can formally expand the distribution function before taking the mo-
ments, which is known as the Chapman-Enskog expansion [9]. The maximum entropy
method is another viable alternative [10]. In the case of convective scaling either ap-
proach will lead to identical results to second order: the continuity and Navier-Stokes
equations as well as the heat equation for thermal systems. The higher order equations
are, however, quite different. Here neither approach has been particularly successful
as the Navier-Stokes level equations appear to be appropriate to length-scales close to
molecular scale [11]. There are few attempts to derive higher order hydrodynamic equa-
tions in the LB context. One recent publication succeeded in deriving third order hy-
drodynamics with an off-lattice approach [12]. Another exception are multi-phase fluids
where higher order spatial derivatives giving rise to surface tension have to be taken into
account [13].

The development of the method took a major leap when it was discovered that it
is feasible to use a Boltzmann-level microscopic model [14, 15], which removes micro-
scopic noise. This approach is referred to as the lattice Boltzmann method. Higuera and
Jiminez already introduced the predecessor of what would become the multi-relaxation
time (MRT) technique. Qian et al. [16] found that the approach is simplified considerably
when the collision operator is written as a single-time BGK expression which relaxes lo-
cal particle distributions towards the equilibrium distribution. To this date this represents
the most popular flavor of lattice Boltzmann algorithms employed.

Shortly after the introduction of the single-time relaxation collision operator
d’Humieres reemphasized that one can extend the BGK collision with a multi-relaxation
time (MRT) approach [17]. In the MRT description the collision is described with a matrix,
which allows for a decoupled relaxation of the different stress terms. It thus decouples
the different transport coefficients and they no longer need to take their ideal gas values
as in the single time BGK case.

Deriving hydrodynamic equations for multi-relaxation time lattice Boltzmann meth-
ods is usually achieved by Chapman-Enskog like expansions. These expansions often
depend on the specific model [9]. A good review on lattice Boltzmann was published
recently by Dünweg and Ladd [18]. Similar in spirit to the work presented here they at-
tempt to derive the isothermal Navier-Stokes equations in a model independent fashion.
In particular they list a set of general conditions that are required to retain hydrodynam-
ics [Eqs. (80–84) in [18]]. However, they state that the details of the implementation of
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the hydrodynamic stress cannot be done in a model independent manner. In this context
we should also mention a very comprehensive approach presented by Junk et al. [19] de-
tailing a very general Chapman-Enskog method for the case of diffusive scaling. In this
paper we show that general requirement on the collision matrix is that it must have left
eigenvectors for shear and bulk stress degrees of freedom. Furthermore we find that we
are free to add any conserved quantity eigenvectors to any of the non conserved modes.
Therefore we have a complete and model independent set of requirements that guar-
antees the validity of second order hydrodynamics. Levermore’s [10] maximum entropy
approach proposed a general multi-relaxation time like closure hierarchy for kinetic theo-
ries in 1996. Levermore’s derivation and its application to lattice Boltzmann by Ansumali
et al. [20] differ from the work presented here in that they do not limit themselves to the
isothermal ideal gas and consequently the bulk viscosity is not a free parameter.

The relevance of this general approach stems from our interest in LB methods with
locally varying collision matrices. Such an approach is necessary to address Galilean
invariance in fluctuating lattice Boltzmann [21].

2 Lattice Boltzmann

The lattice Boltzmann equation (LBE) is a representation of the Boltzmann transport
equation [5] with three levels discretization taken into account: time t, position x and ve-
locity v. First LB-methods utilized a two body collision operator derived from lattice gas
methods (Higuera et al. [22]). Later Qian and D’Humieres realized that the collision op-
erator could be significantly simplified using a BGK approach [23] as Ωi =(1/τ)( f 0

i − fi)
where f 0

i is the local equilibrium distribution [16, 17]. In the BGK approximation [23]
the collision integral is replaced by a relaxation term that moves the current distribution
f (x,v,t) function towards the equilibrium distribution f 0(x,v,t) For a general collision
operator Ωi the basic LBE can then be written as

fi(x+vi,t+1)− fi(x,t)=Ωi( f1,··· , fN), (2.1)

where the fi are the density functions associated with a discrete set of N base velocity
vectors vi, x is the lattice position and t is the discrete time with interval ∆t = 1. The
velocities are chosen such that the vi are lattice vectors. Since collisions conserve certain
quantities such as mass and momentum we require

∑
i

ψa,c
i Ωi=0, (2.2)

where the ψa,c
i are the vectors describing the velocity moments of the conserved quanti-

ties. The index c only emphasizes that these vectors are associated with conserved quan-
tities. We will encounter non-conserved vectors ψa later in this paper. The first quantity
that has to be conserved in the collision is the local density which has a corresponding
vector of ψ0,c

i = 1i where 1i is simply 1 for every i. Momentum must also be conserved
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in each spatial direction. In three dimensions the corresponding ψ vectors are ψ1,c
i = vi,x,

ψ2,c
i = vi,y, and ψ3,c

i = vi,z. We denote the locally conserved quantities as density ρ and
momentum j. They are defined through the vectors ψa,c as

∑
i

ψ0,c
i fi =ρ, ∑

i

ψα,c
i fi = jα. (2.3)

Throughout this paper Greek indices α,β,γ will generally denote the range of spatial di-
mensions {x,y,z} and be treated under the Einstein summation convention. Latin indices
i, j,k are used in the context of vector components of the lattice Boltzmann base velocity
set and are summed over explicitly.

Most LB models are used to simulate isothermal hydrodynamics and these models
are the focus of this paper. Thermal models require the conservation of the additional
moment v2

i , which we do not treat here. In principle, however, it should be easy to ex-
tend the presented approach to thermal systems and generate the corresponding heat
equation.

To recover the continuity and Navier-Stokes equations this local equilibrium dis-
tribution needs to match the first four velocity moments of the continuum Maxwell-
Boltzmann distribution. This distribution is

f 0(v)=
ρ

(2πθ)3/2
exp

(

(v−u)2

2θ

)

, (2.4)

where local velocity is defined as u= j/ρ and θ is the temperature. For thermal models
we would need to match velocity moments. The first four moments sufficient to derive
isothermal hydrodynamics are

∑
i

f 0
i =ρ, (2.5)

∑
i

viα f 0
i =ρuα= jα, (2.6)

∑
i

viαviβ f 0
i =ρθ+ρuαuβ, (2.7)

∑
i

viαviβviγ f 0
i =ρθ

(

uαδβγ+uβδγα+uγδαβ

)

+ρuαuβuγ+Qαβγ. (2.8)

The tensor quantity Qαβγ is an arbitrary correction term and vanishes in the continuum
case. However, the typical choice is Qαβγ =−ρuαuβuγ which allows us to use a much
smaller velocity set. The trade off are small Galilean invariance problems [24]. Note that
the conserved moments of the local equilibrium distribution f 0

i and the distribution fi

are identical because the collision does not change them, i.e. ∑i ψ
a,c
i f 0

i =∑i ψ
a,c
i fi.

Depending on the base velocity set the conditions Eqs. (2.5)-(2.8) may not uniquely
define the equilibrium distribution. For practical implementations of the method we
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then require a consistent choice of the f 0
i . From several different general arguments it is

usually found that the explicit form

f 0
i (ρ,u)=ρwi

[

(1+
1

θ
u.vi+

1

2θ2
(u.vi)

2−
1

2θ
u.u

]

(2.9)

is a good choice for the isothermal equilibrium distribution for an appropriate choice of
the wi weight constants [25] although other forms have been used [26]. Note that we
require only Eqs. (2.5)-(2.8) in the following analysis.

When deriving the hydrodynamic equations from the continuous Boltzmann equa-
tion using the single-relaxation time approximation leads to a fixed ratio of the transport
coefficients such as shear viscosity, bulk viscosity, and thermal conductivity [5]. In the
discrete case of lattice Boltzmann the same hydrodynamic equations can be derived with
transport coefficients containing a re-normalized relaxation time ω=(τ−1/2). For ideal
gases the predicted ratios agree quite well with the experimentally measured values [5].
The form of the hydrodynamic equations apply not only to ideal but also non-ideal gases
and even fluids. Lattice Boltzmann applications usually consider examples from this
more general class of systems. In these more general cases, however, the ratios of trans-
port coefficient are no longer fixed, and it would be advantageous to write a more flexible
collision term that allows for independently variable transport coefficients. This was ac-
complished by D’Humieres [17] by considering a multi-relaxation time BGK collision
operator of the form

Ωi( f1,··· , fN)=∑
j

Λij[ f
0
j (ρ,u,θ)− f j(x,t)], (2.10)

where Λ is a collision matrix. If we choose Λij = δij/τ we recover the single-relaxation
time collision operator. Another numerical rationale for implementing multi-relaxation
time Lattice Boltzmann methods is the improvement in stability, particularly for high
Reynolds numbers [27]. There are some requirements on the collision matrix to en-
sure mass and momentum conservation in the collision. In the single-relaxation time
approach the conservation laws were respected because the conserved moments of the
local distribution fi and the local equilibrium distribution f 0

i are identical. For the multi-
relaxation time collision term Eq. (2.2) requires

∑
i

ψa,c
i ∑

j

Λij

(

f 0
j − f j

)

=0. (2.11)

These equations will be satisfied if we demand that the scalar product of a conserved
quantity vector with the collision matrix is a linear combination of conserved quantity
vectors, i.e. ∑i ψ

a,c
i Λij = caψa,c

j for an arbitrary ca. Note here that the only physically rel-

evant quantity is the collision operator Ω, not the collision matrix Λ. While different
choices for ca will lead to different collision matrices, they will not change the collision
operator Ω. Thus Eq. (2.10) is not bijective. A convenient choice that coincides with the
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single-relaxation time case sets the conserved moments 1i and viα to the left-eigenvectors
of our collision matrix with some eigenvalue:

∑
i

1iΛik =
1

τρ
1k, (2.12)

∑
j

vjαΛji =
1

τjα

viα, (2.13)

where we used the relaxation times τ to denote the inverse eigenvalues of the collision
matrix. This choice also allows us to ensure that Λ is invertible which, while not strictly
necessary, simplifies the formalism. Clearly, the values of 1/τρ and 1/τjα are entirely
arbitrary, meaning that τρ and τjα may not appear in the hydrodynamic equations.

3 Hydrodynamic limit by the moment method

In this section we present a new approach to obtain the hydrodynamic equations for the
multi-relaxation time lattice BGK equation. We generalize the moment approach familiar
from single-relaxation time methods [24] to the more general MRT formalism. For the
multi-relaxation time collision operator we expand the left hand side of Eq. (2.1) to second
order:

(∂t+viα∂α) fi+
1

2
(∂t+viα∂α)

(

∂t+viβ∂β

)

fi+O(∂3)=∑
j

Λij

(

f 0
j − f j

)

. (3.1)

This allows us to write the fi in terms of the f 0
i and higher order derivatives as long as

Λ−1 exists:
f j = f 0

j −∑
i

(

Λ−1
)

ji
[(∂t+viα∂α) fi]+O(∂2). (3.2)

This is important because we can express the equilibrium distributions f 0
i in terms of ρ

and u in Eq. (2.9) but not the local distributions fi. Here we have made the assumption
that both, spatial and temporal derivatives, are small quantities of the same order of
magnitude. As a byproduct we see that the conservation equations by virtue of Eq. (2.11)
and the ψa,c

i being left-eigenvectors of Λij require

∑
j

ψa,c
j ∑

i

(

Λ−1
)

ji
[(∂t+viα∂α) fi]=∑

i

τaψa,c
i [(∂t+viα∂α) fi]=O(∂2), (3.3)

which we will use later. Replacing all occurrences of fi in Eq. (3.1) with Eq. (3.2) up to
second order we obtain

(

∂t+vjα∂α

)

f 0
j −

(

∂t+vjα∂α

)

∑
i

[

(

Λ−1
)

ji
−

1

2
δji

]

(

∂t+viβ∂β

)

f 0
i +O(∂3)

=∑
i

Λji

(

f 0
i − fi

)

. (3.4)
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Because we know f 0
i as a function of ρ and j this is an equation expressed entirely in

terms of our hydrodynamic variables, except for the collision term. So far the only re-
quirement on the collision Matrix Λ is that it be invertible and fulfill Eq. (2.11). The
general approach now to obtain a conservation equations is to take the inner product of
the conserved quantity vectors ψa,c with Eq. (3.4). The collision term then vanishes, we
retain no dependencies on the fi, and, after some algebra, we obtain the conservation
equations.

3.1 The continuity equation

To obtain the continuity equation we take the inner product of ψ0,c
j =1j with Eq. (3.4) from

the left hand side, i.e. we just sum over Eq. (3.4) while making use of mass conservation
in Eq. (2.11). We get

∑
j

1j

(

∂t+vjα ∂α

)

f 0
j −∑

j

1j

(

∂t+vjα∂α

)

∑
i

[

(

Λ−1
)

ji
−

1

2
δji

]

(

∂t+viβ∂β

)

f 0
i +O(∂3)=0. (3.5)

We can rewrite the second order terms as

∂t∑
j

1j∑
i

[

(

Λ−1
)

ji
−

1

2
δji

]

(

∂t+viβ∂β

)

f 0
i =O(∂3), (3.6)

∂α∑
j

1jvjα∑
i

[

(

Λ−1
)

ji
−

1

2
δji

]

(

∂t+viβ∂β

)

f 0
i =O(∂3), (3.7)

where we used that both 1j and 1jvjα =vjα are conserved quantity vectors so that we can
apply Eq. (3.3). We are left with

∑
j

(

∂t+vjα ∂α

)

f 0
j +O(∂3)=0, (3.8)

which using Eq. (2.5) and Eq. (2.6) becomes the continuity equation

∂tρ+∂α (ρuα)+O(∂3)=0. (3.9)

3.2 The Navier-Stokes equation

As the Navier Stokes equation describes the conservation of momentum we take the first
order velocity moment of Eq. (3.4) and obtain

∑
j

vjα

(

∂t+vjβ∂β

)

f 0
j −∑

j

vjα

(

∂t+vjγ∂γ

)

∑
i

[

(

Λ−1
)

ji
−

1

2
δji

]

(

∂t+viβ∂β

)

f 0
i

+O(∂3)=0. (3.10)
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The collision term vanishes according to Eq. (2.11). We can rewrite the first of the second
order terms as

∂t∑
j

vjα ∑
i

[

(

Λ−1
)

ji
−

1

2
δji

]

(

∂t+viβ∂β

)

f 0
i =O(∂3), (3.11)

which vanishes to third order due to Eq. (3.3) much like Eq. (3.7). To evaluate the remain-
ing gradient term

∂γ∑
j

vjαvjγ ∑
i

[

(

Λ−1
)

ji
−

1

2
δki

]

(

∂t+viβ∂β

)

f 0
i (3.12)

we need to know the stress moments ∑j vjαvjγ

[

(Λ−1)ji−
1
2 δji

]

of the collision matrix. From
the single-relaxation time derivation [24] we know that these terms lead to the stress
terms in the Navier-Stokes equation we wish to obtain. Because we want to distinguish
between bulk and shear stress now we separate these into a trace and a traceless velocity
moment

∑
j

vjαvjγΛji =∑
j

vjδvjδ
δαγ

D
Λji+∑

j

(

vjαvjγ−vjδvjδ
δαγ

D

)

Λji. (3.13)

The key requirement is now that the trace and the (D−1)
(

D
2 +1

)

elements of the traceless
part are left eigenvectors of the collision matrix Λ. For the trace part we demand

∑
j

vjδvjδ
δαγ

D

(

Λ−1
)

ji
=τBviδviδ

δαγ

D
, (3.14)

where τB is the bulk relaxation time and for the traceless part we require

∑
j

(

vjαvjγ−vjδvjδ
δαγ

D

)

(

Λ−1
)

ji
=τS

(

viαviγ−viδviδ
δαγ

D

)

, (3.15)

where the shear stress relaxation time τS is the eigenvalue. These eigenvalue equations
for the second order velocity moments are the key property of the collision matrix that
allows us to recover the Navier-Stokes equation. Because of the freedom to choose differ-
ent eigenvalues for the trace and the traceless part we can obtain independent bulk and
shear stresses.

What follows is essentially the same derivation as in the single-relaxation time
case [24], except that we now have two stress terms with associated relaxation times
that need to be treated independently. We use the eigenvalue equations (3.14) and (3.15)
in Eq. (3.12) to replace Λ−1 with the appropriate eigenvalues. The different velocity mo-
ments are substituted by the expressions in Eqs. (2.5)-(2.8) and we replace τB−

1
2=ωB and
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τS−
1
2 =ωS. We get

∂γ∂t∑
j

∑
i

vjαvjγ

[

(

Λ−1
)

ji
−

1

2
δji

]

f 0
i +∂γ∂β∑

j
∑

i

vjαvjγ

[

(

Λ−1
)

ji
−

1

2
δji

]

viβ f 0
i

=∂γωB

[

∂t

(

ρuδuδ
δαγ

D
+ρθδαγ

)

+θ
D+2

D
δαγ∂β

(

ρuβ

)

+
δαγ

D
∂β

(

ρuδuδuβ+Qδδβ

)

]

+∂γωS

[

∂t

(

ρuαuγ−ρuδuδ
δαγ

D

)

+∂β

(

ρθ
(

uαδβγ+uβδγα+uγδαβ

)

+ρuαuβuγ+Qαβγ

)

−∂β

(

θ
D+2

D
δαγρuβ+

δαγ

D

(

ρuδuδuβ+Qδδβ

)

)]

. (3.16)

To treat the second order terms further we need two identities we obtain by looking at the
first order terms of Eq. (3.10). Inserting the moments (2.5), (2.6) and ignoring all second
order terms we get

∂t (ρuα)=−∂β

(

ρθδαβ+ρuαuβ

)

+O(∂2). (3.17)

Using the continuity equation (3.9), we obtain the second identity

ρ∂tuα=−ρuβ∂βuα−∂βρθδαβ+O(∂2). (3.18)

These two identities and the continuity equation (3.9) now replace the time derivatives
in Eq. (3.16)

∂γωB

{

−θδαγ∂β

(

ρuβ

)

−
δαγ

D

[

uδ∂β

(

ρθδβδ+ρuβuδ

)

+uδ

(

ρuβ∂βuδ+∂βρθδβδ

)]

+
D+2

D
θδαγ∂β

(

ρuβ

)

+
δαγ

D
∂β

(

ρuδuδuβ+Qδδβ

)

}

+ ∂γωS

{

−uγ∂β

(

ρθδαβ+ρuαuβ

)

−uα

(

ρuβ∂βuγ+∂βρθδγβ

)

+∂β

(

ρuαuβuγ+Qαβγ

)

+
δαγ

D

[

uδ∂β

(

ρθδβδ+ρuβuβ

)

+uδ

(

ρuβ∂βuδ+∂βρθδβδ

)]

+∂βρθ
(

uαδβγ+uβδγα+uγδαβ

)

−
δαγ

D
∂β

(

ρuδuδuβ+Qδδβ

)

}

+O(∂3)

= ωB

[

2

D
θ∂αρ∂γuγ+

1

D
∂α∂γQγδδ

]

+ωS

[

θ∂γ (∂γuα+∂αuγ)+∂β∂γQαβγ−
2

D
θ∂αρ∂γuγ−

1

D
∂α∂γQγδδ

]

+O(∂3). (3.19)

If we now combine the first order terms Eq. (3.17) with the second order terms Eq. (3.19)
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of the first order velocity moment of the LBE (3.10) we find the Navier-Stokes equation

∂t (ρuα)+∂β

(

ρuαuβ

)

=− ∂αρθ+∂αωB
2

D
θρ∂γuγ+∂γωS

[

ρθ(∂γuα+∂αuγ)−
2

D
θρ∂γuγδαγ

]

+ ∂αωB
1

D
∂γQγδδ+∂γωS

(

∂βQαβγ−∂γ
1

D
Qγδδ

)

+O(∂3)

=− ∂αρθ+∂αµ∂γuγ+∂γη[(∂γuα+∂αuγ)−
2

D
∂γuγδαγ]+O(∂2Q)+O(∂3), (3.20)

where µ= 2
D ρθ(τB−

1
2 ) is the bulk and η=ρθ(τS−

1
2) the shear viscosity.

In summary we recover the continuity and Navier-Stokes equations in a similar form
as found from multi-relaxation time approaches with independently adjustable bulk and
shear viscosities provided that three conditions are fulfilled:

1. The first four velocity moments of the equilibrium distribution are given by
Eqs. (2.5)-(2.8).

2. The moments of the conserved quantity vectors 1k and vkα are not altered in the
collision step.

3. The collision matrix has the left eigenvectors vkαvkβ−vkγvkγ
δαβ

D and vkγvkγ. This has
already been hinted at by Dellar in a similar context [28]. We should mention here
that these left eigenvectors retain the freedom to be altered by linear combination
of conserved quantity eigenvectors. This is illustrated in the next section.

Unfortunately none of the published multi-relaxation time lattice Boltzmann meth-
ods [17, 29] fulfill this last requirement. This is because we have some additional free-
dom in combining the ψa

i vectors with vectors from the conserved quantities as we will
explain below. It is interesting to note that we have constraints up to the third order ve-
locity moments for the equilibrium distribution, but only up to second order moments
for the collision matrix.

We should mention that the derivation presented here does not impose any require-
ments on the extra degrees of freedom that are typically present in a lattice-Boltzmann
implementation. A DDQQ simulation with a Q component base velocity set in D dimen-
sions only requires K=1+D+D(D+1)/2 base vectors to reproduce isothermal hydrody-
namics: 1 for the density, D for the momentum components, and D(D+1)/2 for the stress
tensor. Our derivation makes no assumptions about the structure of the remaining Q−K
’ghost’ or kinetic modes or the choice of their corresponding relaxation times. Often the
relaxation times for these ghost degrees of freedom are uniformly set to 1. In this case all
possible choices for ghost eigenvectors of the collision matrix lead to identical collision
matrices. The choice of ghost modes can influence the performance of the LB method if
one wants to make use of the freedom to choose arbitrary relaxation times [30]. The in-
troduction of fluctuations to the LBM requires careful treatment of the ghost modes and
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their relaxation times [31], particularly in the context of boundary conditions [32]. Fur-
thermore Adhikari and Succi suggested a duality between conserved quantity vectors
and ghost modes [33] as guideline for constructing base velocity sets for multi-relaxation
time implementation.

3.3 Limited freedom of choice of the eigenvectors

When we required Eqs. (3.14) and (3.15) we ignored that there is a remaining freedom of
choice for the eigenvectors. To understand this, let us first remember that the relaxation
times for the conserved moments τρ and τjα are entirely arbitrary by construction. Be-
cause the conserved moments of the fi and f 0

i are identical the collision term simply can
not alter the values of the conserved quantities, independent of the value of τρ and τjα .
This also implies that the effect of adding multiples of a conserved mode eigenvector ψa,c

j

to any of the eigenvectors will still result in suitable eigenvectors. Consider an alternative
collision matrix Λ̂ with a left eigenvector

(

ψn
j +ψc

j

)

:

∑
j

[(

ψn
j +ψc

j

)

−ψc
j

](

Λ̂−1
)

ji
=τn (ψn

i +ψc
i )−τcψc

i . (3.21)

Here ψn
j is an eigenvector of the original matrix Λ−1. The n indicates that it corresponds

to a non-conserved quantity and τn is the associated eigenvalue. In contrast ψc
j is an

eigenvector that corresponds to a conserved quantity, i.e. ρ or vα, with the associated
eigenvalue τc. Now, terms that depend on τc have to vanish because its value is entirely
arbitrary. Therefore we will only retain the τnψn

i terms in the hydrodynamic equations.
The collision matrices Λ and Λ̂ will lead to identical hydrodynamic equations. To illus-
trate this we re-investigate the bulk stress component in the second order terms in the
Navier-Stokes derivation in Eq. (3.16) for the alternative collision matrix Λ̂. We replace
vjδvjδ with (vjδvjδ+K1j)−K1j and use the aforementioned new collision matrix Λ̂−1 and
obtain

∂γ∂t∑
i

∑
j

[

(vjδvjδ+K1j)−K1j

]

[

(

Λ̂−1
)

ji
−

1

2
δji

]

f 0
i

+ ∂γ∂β∑
i

∑
j

[

(vjδvjδ+K1j)−K1j

]

[

(

Λ̂−1
)

ji
−

1

2
δji

]

viβ f 0
i

=∂γωB

[

∂t

(

ρuδuδ
δαγ

D
+ρθδαγ

)

+
D+2

D
θδαγ∂β

(

ρuβ

)

]

− ∂γωBK
[

∂tρ+∂β

(

ρuβ

)] δαγ

D
+∂γωρK

[

∂tρ+∂β

(

ρuβ

)] δαγ

D
. (3.22)

For readability we omit the ρuαuβuγ+Qαβγ correction terms from Eq. (2.8) here as no
additional third order velocity moments are generated by the 1j term in the new bulk
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viscosity eigenvector. The 1j contributions lead to additional terms consisting of deriva-
tives of the continuity equation. Since these contributions vanish to third order Eq. (3.9)
the resulting Navier-Stokes equation remains unaffected. If we decided to add a first or-
der velocity moment to one of the non-conserved eigenvectors we would find a Navier-
Stokes equation instead of the continuity equation here which again vanishes to third
order. We are thus free to add any vectors corresponding to our conserved quantities to
the non-conserved eigenvectors. This is the degree of freedom that allows us to impose
orthogonality on the eigenvectors with respect to different inner products.

To recover the approach of d’Humieres we now need to require all of the left eigen-
vectors of Λji be orthogonal, with respect to the inner product ∑j ψ

m
j ψn

j = δnmNn where

Nn is the norm of the vector ψn which need not be normalized. The only non-orthogonal
left eigenvectors here are 1j and vjγvjγ. We remedy this by applying a Gram-Schmidt
orthogonalization procedure to find the new orthogonalized bulk stress

vjγvjγ−
∑

N
j′ 1j′vj′γvj′γ

N
1j (3.23)

and thus recover d’Humieres’ basis. In contrast recovering the Benzi approach requires
that the eigenvectors obey orthogonality with respect to the Hermite norm: ∑j ψ

m
j ψn

j wj=

δmnMn. Again only one pair of eigenvectors is not orthogonal, 1j and vjγvjγ. We apply
the same orthogonalization procedure, however, with the new norm and thus obtain

vjγvjγ−
∑

N
j′ 1j′wjvj′γvj′γ

N
1j (3.24)

as the orthogonal bulk stress vector. While d’Humieres’ and Benzi’s approaches lead to
different collision matrices it is important to note that a practical implementation of the
approaches is entirely identical. This is because the eigenvectors only differ by a multiple
of 1j, which is the density eigenvector and therefore a conserved quantity eigenvector.

Let us assume that we have two collision matrices Λ and Λ̂ and two corresponding
sets of left eigenvectors that only differ by a conserved quantity vector ψa and ψ̂a=ψa+ψc.
Vectors with the same index a correspond to the same physical quantity and will thus
correspond to the same time constant τa. The eigenvalue equations are then

ψaΛ=
1

τa
ψa, (ψa+ψc)Λ̂=

1

τa
(ψa+ψc). (3.25)

We know that conserved quantity vectors ψc are left eigenvectors of both Λ and Λ̂ and
Eq. (2.11) requires that

∑
i

ψc
i ∑

j

Λij

(

f 0
j − f j

)

=∑
i

ψc
i ∑

j

Λ̂ij

(

f 0
j − f j

)

=0, (3.26)

independent of the actual choice of basis. Now the collision operators Ω and Ω̂ can be
defined as

Ω=∑
j

Λij

(

f 0
j − f j

)

, Ω̂=∑
j

Λ̂ij

(

f 0
j − f j

)

. (3.27)
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Operators are defined by their action on a basis. Therefore we let Ω act on an arbitrary
vector chosen from its own left eigenvector basis. Using Eqs. (3.27), (3.25), and (3.26) we
get

∑
i

ψa
i Ωi=∑

i

ψa
i ∑

j

Λij

(

f 0
j − f j

)

=
1

τa ∑
j

ψa
j

(

f 0
j − f j

)

=
1

τa ∑
j

(

ψa
j +ψc

j

)(

f 0
j − f j

)

=∑
i

(ψa
i +ψc

i )∑
j

Λ̂ij

(

f 0
j − f j

)

=∑
i

ψa
i ∑

j

Λ̂ij

(

f 0
j − f j

)

=∑
i

ψa
i Ω̂i. (3.28)

Thus we have proved that as long as two different bases differ only by conserved quantity
left eigenvectors, the collision operators are, in fact, identical.

4 Summary

We presented a new general formulation for the derivation of hydrodynamics. Based on
the framework of generalized or multi-relaxation time formalism we performed a direct
asymptotic expansion to second order of the lattice Boltzmann equation and derived the
continuity and Navier-Stokes equations for the isothermal ideal gas. Our approach is
general in the sense that we do not require specific knowledge of the base velocity set
and equilibrium distribution function as long as the velocity moments to third order are
identical to those of the continuous case and the collision does not affect the conserved
quantities. We therefore do not require an explicit multi-relaxation time representation
but instead describe all physically relevant quantities in terms of left eigenvectors of a
collision matrix. These left eigenvectors can again be described in terms of velocity mo-
ments and thus we maintain a representation independent of the chosen base velocity set.
The eigenvalues of the collision matrix are chosen to be the inverse of the relaxation time
related to the physical quantity in question. Through the relaxation times associated with
bulk and shear stress terms we then get direct access to the bulk and shear viscosities.

The derivation illuminates a degree of freedom in the choice of the left eigenvectors.
This is rooted in the fact that the collision does not alter conserved quantities. Therefore
linear combinations of conserved quantity eigenvectors can be added to non-conserved
moment left eigenvectors without changing the collision operator and by extension the
hydrodynamic equations. We identify this degree of freedom as the reason for the equal-
ity of multi-relaxation time implementations based on different inner products such as
the standard vector and the Hermite norm. In fact, we show that for the simple case
of isothermal hydrodynamics the collision operators of any two realizations of multi-
relaxation time Lattice Boltzmann are identical provided they conserve mass and mo-
mentum and the appropriate equilibrium distribution is chosen.

The clear description of requirements on the collision operator and base vectors here
could be particularly useful in situations where the orthogonality condition of a given
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MRT implementation changes dynamically and the validity of hydrodynamics in such a
case might not necessarily be obvious. One such example would be a fluctuating lattice-
Boltzmann implementation where more than the zeroth order of the equilibrium distri-
bution enter the orthogonality condition. An in-depth analysis of this case is subject of a
forthcoming publication [21].
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