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Abstract. We employ the lattice Boltzmann method and random walk particle track-
ing to simulate the time evolution of hydrodynamic dispersion in bulk, random, mono-
disperse, hard-sphere packings with bed porosities (interparticle void volume frac-
tions) between the random-close and the random-loose packing limit. Using Jodrey-
Tory and Monte Carlo-based algorithms and a systematic variation of the packing pro-
tocols we generate a portfolio of packings, whose microstructures differ in their de-
gree of heterogeneity (DoH). Because the DoH quantifies the heterogeneity of the void
space distribution in a packing, the asymptotic longitudinal dispersion coefficient cal-
culated for the packings increases with the packings’ DoH. We investigate the influence
of packing length (up to 150 dp, where dp is the sphere diameter) and grid resolution
(up to 90 nodes per dp) on the simulated hydrodynamic dispersion coefficient, and
demonstrate that the chosen packing dimensions of 10 dp×10 dp×70 dp and the em-
ployed grid resolution of 60 nodes per dp are sufficient to observe asymptotic behavior
of the dispersion coefficient and to minimize finite size effects. Asymptotic values of
the dispersion coefficients calculated for the generated packings are compared with
simulated as well as experimental data from the literature and yield good to excellent
agreement.

PACS: 47.56.+r, 81.05.Rm, 05.40.-a, 61.43.Bn, 02.60.Cb

Key words: Packing microstructure, degree of heterogeneity, packing algorithm, hydrodynamic
dispersion, random sphere packings.

1 Introduction

Mass transport in porous media is a central research theme in science and engineering, af-
fecting such diverse fields as, e.g., separation of chemicals by chromatography, catalytic
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reactions using fixed-bed adsorbents, migration of soil pollutants, and water recovery.
Deriving morphology-transport relations to predict the transport properties of a porous
medium from its pore space structure is therefore of fundamental as well as applied in-
terest [1, 2]. The central structure-transport relationships can be established based on
experimental data from high-resolution techniques that enable the physical reconstruc-
tion of a porous medium, such as X-ray tomography [3–5], nuclear magnetic resonance
imaging [6], and confocal laser scanning microscopy [7, 8]. A real porous medium is the
result of its formation process and has definite properties that cannot be altered at will by
the researcher. Contrariwise, computer-generated models of porous media, such as ran-
dom sphere packings (particulate fixed beds, in general), allow the systematic variation
of packing properties (e.g., the final bed density, the particle porosity, as well as particle
shape and size distribution functions) independent of other parameters. Random sphere
packings, for example, can be computer-generated with high reproducibility over a range
of bed porosities (interparticle void volume fractions), which is a pre-requisite to study
the porosity-scaling of the transport coefficients for hydraulic permeability, effective dif-
fusion, and hydrodynamic dispersion [9–11]. Another consideration is the observation of
asymptotic behavior of the mass transport coefficients in the simulations, which requires
packing models of sufficient size. As of now, samples that fit this requirement are diffi-
cult to obtain by physical reconstruction, whereas large computer-generated packings are
readily available. The benefit of performing hydrodynamic dispersion simulations up to
the asymptotic limit lies in the unequivocal meaning of the time-independent values of
the transport coefficients. Only asymptotic values can be compared with certainty, which
is of particular importance when packings with systematically varied DoH are studied,
and asymptotic values for the mass transport coefficients are also needed to fit equations
that link specific structural features of a porous medium to its (effective) mass transport
properties [12].

The complex solid-liquid boundaries characterizing the pore space of a porous me-
dium (whether a reconstructed sample or a computer-generated model) and the large
model size required to observe asymptotic behavior of the mass transport coefficients
needs supercomputing resources to perform pore-scale simulations of advective-diffusive
transport. In this work, we perform pore-scale simulations of hydrodynamic dispersion
in bulk (unconfined) random packings of uniform, hard spheres. These packings mimic
infinitely wide, randomly packed beds without walls, and our simulations therefore se-
lectively address bulk transport properties. A set of packings with targeted bed prop-
erties (final packing density, systematically varied DoH) are generated with two princi-
pally different algorithms, and fluid flow and advective-diffusive mass transport inside
the packings’ void space is simulated by the lattice Boltzmann (LBM) and random-walk
particle-tracking (RWPT) methods, respectively. LBM and RWPT are attractive for use
on supercomputers, because their local update rule minimizes the information transfer
(communication time) between the processing units during execution of a parallel pro-
gram, leaving the maximum amount of computation time for the calculations.

In this work we are interested in quantifying hydrodynamic dispersion resulting from
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molecular diffusion and the inequalities of the local values of the linear velocity in the
different channels available to the fluid stream in a packing. This process is critically af-
fected by a packing’s DoH, resulting in an intrinsic morphology-transport behavior and
hydrodynamic dispersion. We describe our simulation workflow and discuss the chosen
methods and algorithms with respect to large-scale simulations of hydrodynamic dis-
persion in random sphere packings. We quantify the influence of simulation parameters
such as the boundary conditions, the grid resolution, and the packing length on the re-
sulting numerical error, and validate our approach by comparison with literature data,
both from experiments and numerical simulations.

2 Generation of random sphere packings

An unconfined random packing of uniform, monosized, hard spheres is fully described
by the set of spatial coordinates of the sphere centers and the sphere diameter. Each pack-
ing has a distinct microstructure, i.e., a particular distribution of solid and void space
within the packing. The packing microstructure is not captured by the packing’s bed
porosity ε, which gives only the void volume fraction. Instead, systematic microstruc-
tural differences between bulk random sphere packings are described by their degree
of heterogeneity (DoH) [9, 13]. A packing’s DoH can be understood as the amount of
heterogeneity in the void space distribution and can be unequivocally determined by
spatial tessellation and statistical analysis methods. The DoH of a packing determines
its transport properties, which is why the study of structure-transport relationships in
porous media requires a portfolio of random sphere packings with varying DoHs over
a range of bed porosities [9, 10]. Equally important for mass transport simulations in
porous media are the packing dimensions: simulation of hydrodynamic dispersion up
to the asymptotic limit necessitates sufficiently large packings containing about 103-104

spheres. To generate sufficiently large packings with systematically varied DoH and bed
porosity, we use either a modified Jodrey-Tory (JT) algorithm [14] or a Monte Carlo-based
procedure [15].

A modified JT algorithm starts from a random distribution of Nsp sphere centers in a
simulation box of volume Vbox. Sphere overlap is typical in the initial configuration if the
targeted (final) bed porosity εfin is low. The value of Nsp is calculated from εfin, Vbox, and
the final sphere diameter dfin as

εfin =1− Nspπd3
fin

6Vbox
. (2.1)

Each iteration includes i) the search of two sphere centers C1 and C2 with the minimum
pair-wise distance dmin, where dmin defines the maximal sphere diameter at which no
overlap occurs in the current packing configuration with the corresponding bed porosity

εmin=1− Nspπd3
min

6Vbox
, (2.2)
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and ii) the symmetrical spreading of these two sphere centers along a line C1C2 up to a
new distance, dmax, according to the following equation:

dmax=dmin

(

1+αlog10

(

dfin

dmin

))

, (2.3)

where α is a constant. According to Eq. (2.3), as dmin asymptotically approaches dfin, εmin

approaches εfin. The algorithm exits when the condition

|εmin−εfin|<0.001εfin (2.4)

is satisfied. The functional dependence dmax = f (dmin) may be chosen differently, but
each choice affects the convergence possibility and rate as well as the lower limit of bed
porosities that can be realized.

The initial distribution of sphere centers and the value of the constant α, which ac-
cording to Eq. (2.3) defines the magnitude for the displacement of sphere centers C1 and
C2, are varied to generate JT-packings with different DoHs. In this work, JT-packings are
denoted as “TxA”, where T is the type of initial distribution of sphere centers (R or S,
see below) and A is the value of α. (For α= 1, the generated packings are referred to as
“T”.) R-packings generation starts from a uniform random distribution of sphere centers
in the simulation box, whereas for S-packings the simulation box was initially divided
into Nsp equal cubic cells and each cell was then filled with one sphere center, placed in
a random position into the cell. With a small value of α sphere centers tend to remain
close to their initial positions during packing generation, so that the final packing config-
uration reflects the randomness of the initial distribution; a larger value of α provides a
more homogeneous distribution of sphere centers in the final configuration.

The influence of the initial distribution scheme and the value of the parameter α on
the final packing microstructure is demonstrated in Fig. 1, where the sphere packings are
replaced by two-dimensional disk packings for clarity. The microstructure of the final
packings in selected regions is compared with the respective initial disk distributions in
Fig. 1. The generated packings reflect their respective packing protocols: i) S-packings are
more homogeneous than R-packings, due to the more uniform initial disk distribution,
and ii) initial maldistribution of void space is best balanced in the Sx6 configuration and
least balanced in the Rx0.001 configuration.

Monte Carlo (MC)-based packing generation starts from a uniform distribution of Nsp

spheres of diameter dp in a dilute cubic array derived from expansion of a simple cubic
packing by a factor F while keeping the sphere diameter constant. In our simulations
we use F = 2 resulting in an 8 times larger volume of the initial packing domain com-
pared with a packing where Nsp spheres are arranged in a simple cubic array. Then each
sphere is moved in a random direction a distance ∆d. If a given sphere intersects with an-
other, the move is rejected. The distance ∆d depends on the current fraction of accepted
moves a: ∆d is decreased when a< 0.5 and vice versa. After a series of Nit iterations is
performed for the whole sphere ensemble (Nit=5000 in this work), the minimal distance
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Figure 1: Bulk random packings of 900 monosized hard disks at ε≈0.46 generated with the JT algorithm using
different packing protocols. Shown are the initial distributions of the disks for S- and R-configurations (top) and
the generated two-dimensional packings ((Sx6, S) and (R, Rx0.001); bottom). Circles around selected regions
help to compare initial and final disk distribution in the packings.

between sphere centers dmin is calculated and the simulation box is scaled by the factor
dp/[dp+Ω·(dmin−dp)] while keeping the sphere diameter constant. Here, Ω is the com-
pression rate 0<Ω≤ 1. By compression, the bed porosity decreases and the algorithm
stops execution when the current porosity reaches the targeted value εfin. MC-packings
are denoted as “ΩxC” where C is the magnitude of the compression rate Ω used in the
packing protocol.

MC-based methods tend to create closely-packed (quasi-crystalline) regions within a
packing when slow compression rates and low packing densities are combined, as men-
tioned in [16]. We demonstrate this with two-dimensional disk packings. Packings gen-
erated with slower and faster compression rates (Ω = 0.025 and 0.99, respectively) are

Ä < 1.06 dmax p Ä < 1.09 dmax p

Ùx0.025 Ùx0.99 Ùx0.025 Ùx0.99

Figure 2: Bulk random packings of 900 monosized hard disks at ε≈0.34 generated with the MC-based algorithm
using different compression rates (Ωx0.025 and Ωx0.99 packings) in the packing protocol. Red disks form closely
packed (quasi-crystalline) regions according to the value of ∆max, which is indicated above the gray blocks.
Lower values of the compression rate (Ωx0.025 packings) result in a larger fraction of dense regions, which
translates to a higher DoH for the generated packings due to a maldistribution of the available void space.
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shown in Fig. 2. Closely-packed regions were identified by Delaunay triangulation [17]
performed on the disk centers. Closely packed disks (marked in red) form close-to-
regular triangles on the Delaunay mesh and can be identified according to the criterion
of maximal edge length ∆max, i.e., disks forming triangles with a maximal edge length
shorter than ∆max are assumed as closely packed. At equal bed porosity, a packing with a
larger fraction of densely packed spheres has a higher DoH than a packing with a lower
fraction of dense regions due to a higher maldistribution of the available void space [10].

For this study, unconfined packings of uniform hard spheres with diameter dp were
generated in a rectangular box of about 10 dp×10 dp×70 dp with periodic boundary con-
ditions at its faces. Each packing contained about 7·103 spheres, the exact amount de-
pending on the packing void fraction, where the range between random-close and ran-
dom-loose packing was covered (ε = 0.366-0.46). Four JT- (Rx0.001, R, S, and Sx2) and
two MC-based packing types (Ωx0.95 and Ωx0.05) were generated at each of the follow-
ing bed porosities: ε= 0.366, 0.38, 0.40, 0.42, 0.44, and 0.46, except for the Sx2-packing,
for which JT generation did not converge for the lowest bed porosity of 0.366. Ten ran-
dom realizations of each packing were generated to account for statistical variations in
the microstructure of a packing with defined DoH and bed porosity.

3 Simulation of fluid flow

For the simulation of low-Reynolds number flow (Re= dpuav/ν∼10−3, where uav is the
average flow velocity and ν is the kinematic viscosity) of an incompressible fluid through
the packing void space, the packings are discretized on a uniform cubic grid, marking
each voxel as solid or fluid according to the spatial position of its geometrical center,
inside or outside the closest sphere, respectively. The flow simulation is based on the
LBM, used with the BGK collision operator, the D3Q19 lattice, and a bounce-back rule
applied at the solid-liquid interface [18]. Simulations are performed at low Mach num-
ber (Ma∼ 10−3), with fixed lattice (kinematic) viscosity ν= 1/6 (this corresponds to the
relaxation parameter τ = 1, which was shown to provide an accurate performance for
the employed scheme [19]), and a body force approach [20] to drive the fluid through
the packing. Values of the pressure gradient were chosen from 10−7 (in lattice units) at a
resolution of 90 nodes/dp to 10−4 at 10 nodes/dp, which keeps small the numerical error
due to the employed realization of the forcing term [21].

4 Simulation of hydrodynamic dispersion

4.1 Advection-diffusion equation

The classical advection-diffusion equation (ADE) states that in the absence of sources
the evolution of a solute concentration C(x,t) within a control volume is given by the
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diffusive and advective fluxes entering this volume

∂C

∂t
=∇·(D∇C)−∇·(vC), (4.1)

where v(x,t) is the fluid velocity and D is the diffusion tensor [1]. The combination
of parabolic and hyperbolic differential equations [22] makes a numerical solution of
Eq. (4.1) difficult, because a discrete version of this equation changes its nature from
parabolic to hyperbolic as advection starts to dominate diffusion [23]. Discrete schemes
based on a solution of Eq. (4.1) suffer from mass loss, oscillating solutions, and numer-
ical dispersion [24–27], the latter yielding artificially distorted concentration profiles in
advection-dominated flow regimes. The large difference often observed between trans-
verse and longitudinal dispersion coefficients [28] aggravates this problem.

Although numerical solution of the ADE is often stated as being unable to repro-
duce non-Fickian behavior of the hydrodynamic dispersion coefficient, the opposite has
been demonstrated if the spatial heterogeneities of porous media are resolved at the pore
level [29]. This underlines the importance of pore-scale transport processes for the macro-
scopic mass transport in porous media.

4.2 Random-walk particle-tracking method (RWPT)

Contrary to the Eulerian methods mentioned above, RWPT is a Lagrangian approach
that does not solve the ADE (Eq. (4.1)) directly. The basic concept of RWPT is to simulate
solute transport as the motion of a large number of fictitious particles, referred to as an
ensemble of inert tracers [30–32]. The tracers have point-like dimension and no mass,
and they are inert in the sense that they neither interact with each other nor adsorb to
the surface of the porous medium nor affect the motion of the fluid. Time evolution of
a tracer results from drift due to the underlying flow field and Brownian motion due to
molecular diffusion. This is described by a stochastic differential equation:

dr(t)=v(r(t))dt+BdW(t), (4.2)

where r(t) and v(r(t)) are the tracer coordinates and the fluid flow velocity at this loca-
tion, B is a second-order tensor with non-zero diagonal elements equal to

√
2Dm (with

Dm as molecular diffusion coefficient), and dW(t) is an increment of the vector Wiener
process (often called Brownian motion). The connection between Eq. (4.2), the Fokker-
Planck equation, and the ADE is described in [32].

In the general case, Eq. (4.2) cannot be solved analytically. The simplest and often
used [33, 34] numerical solution of Eq. (4.2) employs a one-step Euler approximation in
the following form [35]

r(t+∆t)= r(t)+v(r(t))∆t+
√

2Dm∆tN, (4.3)

where ∆t is the time step and N a vector with random components following a normal
distribution with zero mean and unity variance. A sequence of normally distributed
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pseudo-random numbers generated by digital computers can be used to approximate
the Wiener process increment dW and thus to serve as the components of N [35].

Tailing of the normal distribution may produce random numbers with a value in the
infinite range. To avoid very large values for the diffusive tracer displacement, we use a
truncated normal distribution for random-number generation: the maximal value for dif-
fusive tracer displacement does not exceed 4

√
Dm∆t, which is sufficiently large to render

the truncation error negligible [36].

The advantages of RWPT for our purpose are mass conservation (due to a constant
number of tracers in the simulation domain), absence of numerical dispersion, and the
simplicity of the program realization and its further parallelization. Compared with
methods based on the solution of the ADE, RWPT simulations of mass transport in sys-
tems with simple solid-liquid geometries (for example, dispersion in an open tube) need
higher computational times, but in systems with complex solid-liquid boundaries, like
the random sphere packings studied here, the opposite is true [27, 37]. In our study we
do not operate with the spatial concentration profiles; if the accurate reproduction of con-
centration profiles is of interest, then RWPT may not be the best choice because a large
amount of tracers is required [37].

At the start of the RWPT simulation, the tracers are randomly distributed in the whole
packing void space. This initial condition enables a faster data collection with respect to
spatial heterogeneity and the intrinsic DoH of a packing than the plane-wise deposition
of tracers at the inlet (which would correspond to a simulation of pulse-injection experi-
ments).

4.3 Program realization

The program realization of LBM and RWPT methods was implemented as parallel codes
in C/C++ languages using the Message Passing Interface standard. The details of the
program realization and scaling of parallel performance of the codes can be found else-
where [38, 39]. In this study the largest simulation domain had dimensions of about
900×900×13 500 lattice nodes (10 dp×10 dp×150 dp; cf. Fig. 4); in such a domain simula-
tion of the flow field took about 2.1 hours while simulation of hydrodynamic dispersion
at one average velocity required 0.15 hours on 4096 processor cores of a BlueGene R©/P
system.

4.4 Hydrodynamic dispersion coefficient and Péclet number

The time-dependent hydrodynamic dispersion coefficient along the z-direction is calcu-
lated as the rate of spreading of a tracer ensemble as

Dz(t)=
1

2Ntr

d

dt

Ntr

∑
i=1

(∆zi(t)−〈∆zi(t)〉)2
, (4.4)
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where Ntr is the number of tracers, ∆zi(t) is the displacement in z-direction of the i-th
tracer at time t, and 〈∆zi(t)〉 is the average displacement in z-direction of the whole tracer
ensemble [40]. In our study, the hydrodynamic dispersion coefficient is calculated along
two principal directions, parallel and orthogonal to the macroscopic flow direction, and
denoted as longitudinal (DL) or transverse (DT) dispersion coefficient, respectively. The
calculated values are normalized by the molecular diffusion coefficient of the tracer, Dm;
the normalized values Dz(t)/Dm reflect the ratio between the rate of tracer spreading in
the packing void space due to hydrodynamic dispersion and the rate of spreading due to
molecular diffusion in bulk solution. In our study, Dz(t)/Dm takes values from close to
unity up to several hundreds, depending on the particular packing, the direction along
which dispersion is calculated, and the average flow velocity.

Flow of an average velocity uav through a porous material can be characterized by the
Péclet number

Pe=
uavlc
Dm

, (4.5)

which relates advective to diffusive transport in a system with a characteristic dimen-
sion lc (for sphere packings lc≡dp). Mass transport becomes diffusion-limited for Pe<1
and advection-dominated if Pe≈10 or higher (although the contribution of diffusion can-
not be neglected). An in-depth study of the hydrodynamic dispersion characteristics of
random sphere packings requires simulations over a wide range of Péclet numbers to dis-
tinguish between individual dispersion contributions and their characteristic velocity de-
pendence [28]. The typical flow regime in dense porous media is low-Reynolds-number
flow (Re≪ 1), also known as creeping or Stokes flow. According to Darcy’s law [1], the
pressure gradient driving the flow and the average flow velocity are directly propor-
tional as long as Re≪1 is satisfied [41], and the local flow vector components follow the
same linear scaling [42, 43]. This allows to calculate the flow field for a given packing at
low Reynolds number (Re<0.01) and then realize the required Péclet numbers by linear
rescaling of the flow field components.

4.5 Boundary conditions

The no-flux boundary condition (BC) at the solid-liquid interface was implemented us-
ing the multiple-rejection scheme, which effects that each tracer move that crosses the
solid-liquid interface is rejected and the diffusive component of the tracer displacement
recalculated until the tracer move remains strictly in the fluid phase. Multiple rejection
has been shown to lead to artificially distorted concentration profiles near the solid-liquid
interface, as opposed to the more precise, but computationally expensive specular reflec-
tion scheme [36]. To investigate the influence of the numerical error introduced by the
multiple rejection BC on the simulated hydrodynamic dispersion coefficients, we per-
formed simulations [38] in which the time step was varied from a particular default value
of ∆t to ∆t0.1=0.1∆t and ∆t0.02=0.02∆t. The default time step ∆t was chosen such that the
maximal advective-diffusive displacement of a tracer does not exceed half of the lattice-
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spacing ∆x. A smaller time step results in a reduced influence of the multiple rejection
BC on the tracer motion and thus on the hydrodynamic dispersion coefficient. These
test simulations were performed for a bulk random sphere packing at the random-close
packing limit (ε= 0.366), for which the error introduced by the multiple-rejection BC is
assumed to be the largest. Performing simulations at Pe= 500 and a discretization res-
olution of 30 nodes/dp, we found only 3% difference in the asymptotic values of the
dispersion coefficient between ∆t and ∆t0.02 [38]. Our findings are in agreement with the
results previously reported by Maier et al. [33].

4.6 Hydrodynamic dispersion in an open channel

We begin the validation of our RWPT approach with a simple geometry, for which an
analytical solution to calculate the hydrodynamic dispersion coefficient is available: an
open channel with circular cross-section (cylindrical channel). Dispersion in an open
channel, also known as Taylor-Aris dispersion [44, 45] can by quantified as:

DL

Dm
=1+

Pe2

210
f , (4.6)

where f is a function that depends on the geometry of the open channel [46]: f = 1 for
parallel plates and f = fcir = 210/192 ≈ 1.09 for a cylindrical channel. The simulation
domain was discretized at 25 nodes/lc, with the cylinder radius as the characteristic di-
mension lc. Fig. 3(a) shows the normalized longitudinal dispersion coefficient DL(t)/Dm

as a function of the diffusive time τdiff = t2Dm/l2
c . The dispersion curve contains a pre-

asymptotic or transient part, in which the dispersion coefficient undergoes rapid increase,
and an asymptotic part, in which the value stays approximately constant. The growth
of DL(t)/Dm in the transient part is a result of the difference between convective (∼ t)
and diffusive (∼

√
t) tracer displacements: at very short times (τdiff ≪ 1), the solute is

spread mainly due to diffusion and DL(t)/Dm is close to 1. With increasing simulation
time, the nonuniform displacement of the solute originating from a nonuniform flow

2 lc

f  = 210/192cir
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Figure 3: a) Time evolution of the hydrodynamic dispersion coefficient in an open channel with circular cross-
section at Pe = 100. b) Asymptotic values of the dispersion coefficient normalized by its theoretical value
calculated using Eq. (4.6) with fcir=210/192.
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field leads to the growth of DL(t)/Dm; after the tracers have explored the longest dis-
tance between the different velocities of the flow field (which in the studied system are
located near the channel wall and at its center), asymptotic behavior of DL(t)/Dm is ob-
served. The theoretical values for the asymptotic normalized hydrodynamic dispersion
coefficient DL/Dm calculated with Eq. (4.6) are indicated in Fig. 3(a) by a dashed line; our
simulated values show excellent agreement with the theoretical prediction for the open
channel at Pe=100. Fig. 3(b) shows the deviation of the simulated dispersion coefficients
from the corresponding analytical values as a function of Péclet number for 5≤Pe≤1000,
demonstrating a low numerical error for all studied Pe values.

4.7 Influence of the packing length on the hydrodynamic dispersion
coefficient

Whereas simulations in ordered packings can be performed in the smallest repetitive
unit of the structure (e.g., the unit cell of a crystal), the appropriate choice of domain size
or packing dimensions is not trivial for random packings. Fig. 4 shows how the cho-
sen packing length affects the simulated hydrodynamic dispersion coefficient of a dense
random sphere packing (ε = 0.366). For this study, we used a JT-packing, because the
microstructures of the JT-generated packings at ε= 0.366 (Rx0.001, R, and S) are highly
similar, due to the severe space restrictions put by the random-close packing limit on
the possible placement of spheres in the packing. As a consequence, the DoH and thus
the hydrodynamic dispersion coefficient of the JT-packings converge to a minimum at
the random-close packing limit (ε = 0.366) [9]. (The same does not apply to the MC-
packings [10].) At lateral packing dimensions of 10 dp×10 dp, the packing length was
varied as L= 6, 15, 25, 75, and 150 dp. We used a high spatial resolution of 90 nodes/dp

for discretization to eliminate the possible influence of insufficient grid resolution on the
study. Simulations were performed at high flow velocity (Pe= 500), where the effect of
insufficient packing length is most apparent. The time evolution curves for the hydro-
dynamic dispersion coefficient in Fig. 4 converge at a packing length of 75 dp; increasing
the packing length up to 150 dp does not improve the simulation result further. Pack-
ing lengths <75 dp yield distorted dispersion curves. This results when the longitudinal
displacement of some tracers exceeds the packing length, so that some flow paths are
explored more than once due to the periodic boundary conditions. To avoid these recor-
relation effects the simulation domain must be long enough. Values of (L/dp)/τconv=2-4
were previously suggested for the minimal domain length [33, 47]. At longer evolution
times (larger values of τconv than shown in Fig. 4) close-to-asymptotic behavior was at-
tained for all tested packing lengths, which demonstrates that observation of asymptotic
behavior does not guarantee the absence of recorrelation effects. If periodic boundary
conditions are not applied, an insufficient packing length according to the criterion above
will put the simulated hydrodynamic dispersion coefficient into the transient regime,
where the relative difference between simulated and asymptotic value of the dispersion
coefficient increases steeply with the flow rate (cf. Fig. 13 in [33]). This introduces an
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of convective τconv and dispersive τdisp time. τconv=uavt/dp, where uav is the average flow velocity and dp is

the sphere diameter. τdisp=2DTt/d2
p, where DT denotes the time-independent transverse dispersion coefficient.

Simulations were performed at Pe= 500 in a dense R-packing (ε= 0.366) discretized with a spatial resolution
of n=90 grid nodes per sphere diameter. At lateral dimensions of 10 dp×10 dp, the packing length was varied
between 6, 15, 25, 75, and 150 dp.

additional difficulty for comparison with dispersion data from other studies; however
if one is aware of this problem, a qualitative comparison is still possible. Nevertheless,
asymptotic values of the dispersion coefficient are required for comparison with theoret-
ical predictions [28].

4.8 Influence of the grid resolution on the hydrodynamic dispersion
coefficient

The influence of the grid resolution (n, in lattice nodes/dp) on the hydrodynamic dis-
persion coefficient was evaluated for the Rx0.001-packing type, because we expect the
effects of insufficient grid resolution to be strongest for the most heterogeneous packing
microstructure. At the lower limit of bed porosities (ε= 0.366), the DoH of the Rx0.001-
packing and its hydrodynamic dispersion coefficient are quasi-identical to those of the
other JT-packing types at this bed porosity (R and S). But the DoH of the Rx0.001-packing
type increases stronger than those of the other packing types with the bed porosity, so
that at the random-loose packing limit (ε=0.46), the Rx0.001 packing has the largest DoH
and hydrodynamic dispersion coefficient among the generated packing types [9]. For
packing dimensions of 10 dp×10 dp×75 dp, the grid resolution was varied from n = 10
to n= 90. Asymptotic values of the dispersion coefficient were estimated as its average
value between 2 and 4 dispersive times τdisp [28]. Fig. 5(a) displays the error in the disper-
sion coefficient simulated at lower grid resolutions relative to the dispersion coefficient
simulated at the highest grid resolution (n=90) for low (Pe=5), moderate (Pe=50), and
high (Pe = 500) flow velocities. At lower grid resolution (n ≤ 30) the relative error val-
ues decrease monotonously, but deviate from the monotonous trend when the relative
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Figure 5: a) Dependence of the relative error in asymptotic values of the hydrodynamic dispersion coefficient
on the grid resolution at Pe= 5, 50, and 500 in Rx0.001 packings with a porosity as indicated in the figure
legend. b) Evolution of the hydrodynamic dispersion coefficient in a bulk packing (Rx0.001, ε= 0.46) at low
(n= 10), moderate (n= 30), and high (n= 90) grid resolution as a function of the transverse dispersive time,

τdisp = 2DTt/d2
p. Because for some of the studied packings asymptotic behavior of the dispersion coefficient

was not observed at n=10-25 and Pe=500, the respective data were not included in panel a).

error reaches values of ∼ 10−2. The latter can be attributed to low-frequency oscilla-
tions of the time-dependent dispersion curve, whose amplitudes are more pronounced
in looser packings (ε = 0.46) with higher maldistribution of the void space. The slope
of convergence depends on several factors that are influenced by the grid resolution: i)
The stair-step representation of the spheres’ contours in the packing approaches smooth
boundaries closer with higher grid resolution. ii) The accuracy of the bed porosity for a
discretized packing increases with the grid resolution. iii) The local error introduced by
the bounce-back scheme (used with D3Q19 BGK LBM [48]) near the boundary of each
sphere decreases with the grid resolution. iv) The error introduced by the zero-order
approximation (flow velocity is assumed to be constant over a lattice voxel) used to cal-
culate advective tracer displacement decreases with the grid resolution. v) The tracer
displacement relative to the sphere diameter dp (as mentioned before, the maximal tracer
displacement does not exceed half the lattice spacing) decreases with the grid resolution.
Under consideration of the available computational resources, we employed a resolution
of n = 60 in further simulations. According to Fig. 5, the relative (to n= 90) numerical
error of the simulated dispersion coefficients introduced by the chosen grid resolution is
about 10−2.

At low grid resolution (n = 10-25) the high-velocity data (Pe = 500) are missing in
Fig. 5(a). This issue is addressed in Fig. 5(b), where we present the time evolution of the
hydrodynamic dispersion coefficient at Pe=50, 250, and 500 for grid resolutions of n=10,
30, and 90. The use of the dispersive time scale τdisp allows to relate the transient time of
the hydrodynamic dispersion coefficient to its time-independent value, because in bulk
random sphere packings close-to-asymptotic behavior of the hydrodynamic dispersion
coefficient is observed after τdisp ≈ 1-2, independent from the Péclet number [28]. The
dispersion coefficients simulated at moderate flow velocity (Pe = 50) reach their close-
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to-asymptotic value after τdisp ≈ 1 for all grid resolutions. This also holds for higher
Péclet numbers (Pe=250, 500) and grid resolutions of n=30, 90. Qualitatively different
behavior is observed at low spatial resolution (n=10), where for higher Péclet numbers
the dispersion coefficients diverge after τdisp ≈1, and the corresponding divergence rate
increases with the Péclet number (cf. red curves at Pe = 250 and Pe = 500 in Fig. 5(b)).
This behavior of DL/Dm was also observed at high Péclet numbers by Maier et al. [33]
(see Fig. 13 in their work).

The aforementioned divergence of the dispersion coefficients was reported by Lowe
and Frenkel [47] (and later commented on by Koch et al. [49] and Maier et al. [33]), who
simulated advective-diffusive transport in a bulk random sphere packing with dimen-
sions of 10 dp×10 dp×28 dp, a bed porosity of 0.55, and discretized at grid resolutions
of n= 5 and n= 9. They used LBM and the moment propagation method [51] to simu-
late flow and dispersion, respectively. (The authors analyzed the time evolution of the
longitudinal dispersion coefficient DL(t) by the velocity autocorrelation function CL(t),

which is related to the former through DL(t)=
∫ t

0 CL(t
′)dt′.) Observing a time behavior

as indicated by the red lines in Fig. 5(b), these authors [47] questioned the existence of
hydrodynamic dispersion coefficients. Maier et al. [33] argued that the divergence of the
dispersion coefficients in the work of Lowe and Frenkel [47] could arise from numerical
dispersion caused by the moment propagation method. However, as Fig. 5(b) shows, a
poorly resolved simulation domain may also contribute to the observed divergence of
the dispersion coefficients.

5 Comparison of hydrodynamic dispersion coefficients with

literature data

Fig. 6 shows asymptotic values of the dispersion coefficient DL(t)/Dm for the generated
six sphere packing types (JT-packings: Rx0.001, R, S, Sx2; MC-packings: Ωx0.05, Ωx0.95)
over the whole bed porosity range (ε=0.366-0.46). Statistical variations in our simulated
dispersion coefficients are given by the standard error of the mean, calculated from ten
random realizations of each packing. The low values for the standard error prove that
differences between individual packings of a given type and bed porosity are smaller
than differences between the packing types. This was our goal with the different packing
types: to introduce a systematic variation of a packing’s DoH which is reflected in the dis-
persion coefficients. Each packing type (Rx0.001, R, S, Sx2, Ωx0.05, Ωx0.95) demonstrates
a distinct porosity-dependence of the dispersion coefficient. For example, the dispersion
coefficient of the Ωx0.95 MC packing type is almost independent of the porosity (this
was also mentioned in other studies where the MC algorithm was employed for pack-
ing generation [47,52]), whereas in the Rx0.001 JT packing type the dispersion coefficient
increases strongly with the porosity. The porosity-dependence of the dispersion coeffi-
cients scales with the DoH of the generated packings, as quantified by statistical analysis
of a geometrical measure derived by Voronoi tessellation [9, 10].
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Figure 6: Asymptotic values of the hydrodynamic dispersion coefficient from i) LBM and RWPT simulations in
bulk packings generated with JT (R- and S-packings) and MC (Ω-packings) algorithms, ii) NMR measurements
of Seymour and Callaghan [53], iii) NMR measurements of Scheven et al. [55], iv) LBM and RWPT simulations
of Maier et al. [33, 52] in sphere packings generated with the MC-algorithm, and v) simulations of Augier
et al. [54] based on the solution of the ADE in a packing generated with the discrete element method. Results
are shown for a) Pe=100 and b) Pe=500. The dashed line denotes the correlation proposed by Scheven et al. [55]
(Eq. (5.1)). Error bars for our simulations indicate 95% confidence intervals calculated using dispersion values
from 10 random realizations of each packing of a given type and porosity. Error bars for the data of Scheven
et al. [55] were digitized from their publication.

We compared our simulated dispersion coefficients at Pe = 100 (Fig. 6(a)) and Pe =
500 (Fig. 6(b)) with i) data from NMR measurements of Seymour and Callaghan [53], ii)
dispersion coefficients from the simulations of Augier et al. [54], which are based on the
numerical solution of Navier-Stokes and advection-diffusion equations, iii) dispersion
coefficients simulated by Maier et al. [33,52] in computer-generated sphere packings, and
iv) NMR data of Scheven et al. [55]. The hydrodynamic dispersion data in these studies
refer to a range of bed porosities and fluid velocities. For comparison at equal Pe, we
scaled the original values of the dispersion coefficients DL/Dm given by the authors at a
certain Pe to the respective value of DL/Dm at Pe=100 (Fig. 6(a)) or Pe=500 (Fig. 6(b)),
using either the DL(Pe)/Dm correlations proposed by the authors themselves or, when
such a correlation was not given, the widely accepted power law scaling DL(Pe)/Dm ∼
Peβ, with β=1.2 [56]. For clarity, the authors’ original hydrodynamic data (Pe, DL/Dm),
bed porosities, and the scaled values used in our comparison (Fig. 6), together with the
employed scaling law, are summarized in Table 1.

The NMR measurements of Seymour and Callaghan [53], whose data are shown as
red crosses in Fig. 6, were performed in a confined cylindrical packing with a cylinder-
to-particle diameter ratio of ∼21 and a bed porosity of ε= 0.44. As we have previously
shown [28], the asymptotic dispersion coefficient of a packing confined in a cylinder of
such lateral dimensions is several times larger than that of a bulk packing of similar bed
porosity, and the time required to reach asymptotic values of the dispersion coefficient
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Table 1: Dispersion coefficients (DL/Dm) taken from the literature. Original values given at a certain Péclet
number were scaled to Pe=100 (Fig. 6(a)) and Pe=500 (Fig. 6(b)) for comparison with our simulated data.

Original study ε Pe DL/Dm Scaling law

original scaled original scaled

Seymour and Callaghan [53] 0.44 68 100 22.5 38.6 DL/Dm∼Pe1.37

99 100 32.8 33.5

134 100 43.4 29.1

340 500 221 375

400 500 257 349

811 500 732 377

Augier et al. [54] 0.37 70 100 31.4 44.3 DL/Dm∼Pe1.0

1464 500 630 219

Maier et al. [33] 0.44 95 100 28 29 DL/Dm∼Pe1.2

476 500 191 203

Maier et al. [52] 0.36 476 500 222 235 DL/Dm∼Pe1.2

0.40 476 500 197 208

0.45 476 500 200 212

Scheven et al. [55] 0.367 85.9 100 29.1 34.9 DL/Dm∼Pe1.2

0.374 87.0 100 30.0 35.5

130.9 100 48.5 35.1

is even two orders of magnitude larger compared with the bulk packing. Seymour and
Callaghan presented data from two sets of NMR measurements, with ∆ = 10 ms and
∆ = 30 ms (where ∆ is the experimental observation time in their pulsed field gradient
NMR measurements). In Fig. 6, we present dispersion coefficients measured after a time
of ∆=30 ms, which corresponds to a convective time of τconv=uavt/dp≈0.8 and τconv≈4.0
for Pe=uavdp/Dm =100 (Fig. 6(a)) and Pe=500 (Fig. 6(b)), respectively. At these values
of convective time and Péclet number the dispersion coefficient of even a bulk packing at
Pe=100 and Pe=500 (for the corresponding time scales see, for example, Fig. 13 in [33]) is
still in the transient regime. Maier et al. [57] demonstrated that at such short observation
times the dispersion coefficient of a confined packing is close to that of a bulk packing
with similar properties, which are defined by the packing protocol and bed porosity.
Hence, the data of Seymour and Callaghan [53] acquired with ∆= 30 ms correspond to
dispersion values from the bulk region of their packing, and the observed dispersion
coefficient is closer to the asymptotic value at Pe = 500 than at Pe = 100. This agrees
with the shift of their data in Fig. 6 (red crosses) from the lower range of the dispersion
coefficients at Pe=100 (Fig. 6(a)) to the upper range at Pe=500 (Fig. 6(b)).

The simulations of Augier et al. [54] (Fig. 6, green crosses) were performed in a
bulk packing extracted from the central region of a confined cylindrical packing with
a cylinder-to-particle diameter ratio of ∼24. The confined polydisperse sphere packing
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was generated with the discrete element method [58]. The actual aspect ratio of the cylin-
drical packing (∼24) and the polydispersity of spheres resulted in a relatively low bed
porosity of 0.33. Flow and mass transport problems were solved using traditional com-
putational approaches based on the numerical solution of Navier-Stokes and advection-
diffusion equations. We therefore included the work of Augier et al. [54] (Table 1, Fig. 6)
as it is insightful to compare very similar transport problems solved by fundamentally
different simulation approaches. The numerical methods employed by Augier et al. [54]
require tessellation of the interparticle void space and sphere surfaces into a set of irreg-
ular space elements. The authors reported an inability of their software to perform the
space tessellation for the original packing with touching spheres. Therefore, each sphere
of the generated packing was contracted by 2% of its diameter, which increased the bed
porosity to 0.37. Fig. 6 shows moderate agreement of our simulated data with those of
Augier et al. [54]: the value of DL/Dm at Pe= 100 (Fig. 6(a)) corresponds to the disper-
sion coefficient we simulated for Ωx0.05 packings, while the value of DL/Dm at Pe=500
(Fig. 6(b)) corresponds to the dispersion coefficient we simulated for the Ωx0.95 pack-
ings. This may not be attributed to possible numerical artefacts of ADE-based solvers or
numerical dispersion (because the latter would increase the hydrodynamic dispersion co-
efficient as the Péclet number grows), but can be explained by the following differences
between our simulations and those of Augier et al. [54]: i) packings of monodisperse
spheres vs. packings of polydisperse spheres, ii) true bulk packings with periodic bound-
ary conditions vs. bulk packings cut from larger confined packings and with “symmetric
planes” lateral boundary conditions, and iii) low Reynolds number (Re≪1) vs. moderate
Reynolds number (1<Re<100) flow.

Maier et al. [33,52] performed simulations of hydrodynamic dispersion in bulk sphere
packings generated with the MC algorithm (the corresponding dispersion coefficients
are shown in Fig. 6 as black and magenta crosses). Low Reynolds number flow and
mass transport were simulated using LBM and RWPT. The authors took care to observe
asymptotic time behavior of the dispersion coefficient, which is free from finite size or
numerical artifacts. The similarity of our and Maier’s packing generation allows a com-
parison of the dispersion coefficients between bulk packings of similar microstructures.
Maier et al. [52] reported a weak dependence of the dispersion coefficients on bed poros-
ity (within a range of ε=0.36-0.50) if a low compression rate (Ωx0.05) was used for pack-
ing generation (see Section 2 for the description of the MC algorithm). This behavior
observed by Maier et al. [52] is represented by the magenta crosses in Fig. 6(b). These
data compare excellently with the dispersion coefficients obtained for our MC-packings
at porosities ε ≥ 0.40. Yet, at porosities ε < 0.40 and low compression rate (Ωx0.05) we
observe a stronger dependence of the dispersion coefficients on the bed porosity than in
the work of Maier et al. [52], whereas MC-packings obtained at high compression rate
(Ωx0.95) remain little affected with respect to the resulting dispersion. We have recently
analyzed the microstructure of these MC-packings (and the JT-packings) by spatial tes-
sellation techniques and found that at low bed porosities the Ωx0.05 packings are charac-
terized by a higher nonuniformity in the distribution of the interparticle void space (see,
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e.g., Fig. 5 in [10]). This is also illustrated by Fig. 2: the lower compression rate results in
a larger fraction of dense regions, which translates to a higher DoH due to a maldistribu-
tion of the available void space. The difference in the microstructures (and corresponding
dispersion coefficients) between our and Maier’s MC-packings may originate from a dif-
ferent number of iterations (Nit) before compression of the simulation box is executed. In
our study Nit = 5000 while Maier et al. [33, 52] did not mention the value of Nit in their
study. To summarize, Fig. 6 shows excellent agreement of the hydrodynamic dispersion
coefficients simulated for the Ωx0.95 packings with the data of Maier et al. [33, 52].

Dark blue crosses in Fig. 6(a) denote the NMR data from Scheven et al. [55]. The
NMR measurements were performed in cylindrical columns with a cylinder-to-particle
diameter ratio of ∼375 and bed porosities of ε= 0.367 and 0.374. The observation time
was long enough (τconv > 20) to observe close-to-asymptotic behavior of the dispersion
coefficients for the bulk region of these packings. According to Fig. 6(a), our simulation
results agree excellently with those data.

Scheven et al. [55,59] suggested the existence of an intrinsic value of the dispersion co-
efficient for bulk random sphere packings. They stated that dispersion in an unconfined
sphere packing is defined solely by the Péclet number and the hydrodynamic radius (rh)
of a packing (rh =(1/6)dp ε/(1−ε)), and proposed the following equation (dashed lines
in Fig. 6):

DL

Dm
=Peeff(Aln(Peeff)+B), (5.1)

where Peeff=6uavrh/Dm=Peε/(1−ε), A=0.12±0.007, and B=0.11±0.03 (in later work [59]
Scheven suggested A=0.131±0.007 and B=0.07±0.03 for 10≤Peeff ≤2100). According
to the authors, Eq. (5.1) specifies the lower bound for dispersion values in bulk pack-
ings, and higher dispersion coefficients, if they are observed, are caused by factors not
related to the packing microstructure, such as nonuniform injection of a tracer plug or
faster flow near the confining wall where the bulk random-dense packing microstructure
is distorted. However, our results in Fig. 6 demonstrate that the dispersion coefficients
of bulk random sphere packings take values that are significantly lower or higher than
predicted by Eq. (5.1). Fig. 6 also reveals that any correlation for random sphere packings
in the form of Dax/Dm= f (Pe,ε) will fail to provide precise results if it does not take the
microstructural DoH of the packings into account.

Scheven et al. [55] confirmed the validity of Eq. (5.1) by comparison with their NMR
data, theoretical predictions of Saffman [60,61] (which are based on the capillary model),
and simulations of Maier et al. [33]. Fig. 6 shows that Maier’s data are approximately 3/2
times lower than predicted by Eq. (5.1). Probably, this fact led the authors to assume the
hydrodynamic radius rh of Maier’s packings to be 3/2 times lower than rh of “smoothed”
spheres (due to the discrete representation of the packing spheres on a cubic lattice),
and to upscale Maier’s data accordingly. Maier and Bernard [48] in their later study
introduced the smooth representation of sphere surfaces and found that this results in
lower values of the dispersion coefficient, which contradicts the assumption of Scheven
et al. [55]. The homogeneous microstructure (low DoH) of the MC-packings used by
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Maier et al. [33, 52] yielded probably the lowest dispersion coefficients for bulk random
sphere packings reported in the literature [55, 62].

6 Conclusion

In this study we generated random packings of monodisperse, hard spheres with differ-
ent bed porosities (ε= 0.366-0.46) and degree of heterogeneity (DoH). Variation of DoH
was achieved by variation of the packing protocol, using different parameters settings as
well as two algorithms, Jodrey-Tory and Monte Carlo, and resulted in six distinct packing
types (Rx0.001, R, S, Sx2, Ωx0.05, Ωx0.95). Each packing was generated ten times to ad-
dress the influence of the random realization on the transport properties. We employed
LBM and RWPT to simulate advection-diffusion mass transport in the void space of the
generated packings, and estimate the asymptotic values of the corresponding hydrody-
namic dispersion coefficients. Ease of parallelization of LBM and RWPT program codes
enabled efficient use of supercomputing facilities, which allowed to perform resolution
studies up to a value of n=90 lattice nodes per sphere diameter and to observe grid in-
dependence of the simulated dispersion coefficients (with respect to highest employed
resolution). Most simulations were performed at n=60, which decreased the relative (to
n= 90) error in the simulated dispersion coefficients resulting from the discrete grid to
about 10−2.

The porosity-scaling of the dispersion coefficient depends on the packing type: for
example, the dispersion coefficient of Rx0.001 packings increases steeply with the bed
porosity, while the dispersion coefficient of Ωx0.95 packings is generally low and vir-
tually independent of the bed porosity. Our simulations have revealed that in bulk,
monodisperse, random sphere packings between the random-close and random-loose
packing limit (ε=0.366-0.46) variations in the DoH of the packings may lead to a differ-
ence in dispersion coefficients up to factor of 2.5. The systematic variation of packing
microstructures yielded a comprehensive set of dispersion coefficients, which allowed us
to demonstrate good-to-excellent agrement with experimental and simulated dispersion
data available in the literature.
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[9] S. Khirevich, A. Daneyko, A. Höltzel, A. Seidel-Morgenstern and U. Tallarek, Statistical anal-
ysis of packed beds, the origin of short-range disorder, and its impact on eddy dispersion, J.
Chromatogr. A, 1217 (2010), 4713–4722.
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[11] A. Daneyko, A. Höltzel, S. Khirevich and U. Tallarek, Influence of the particle size distri-
bution on hydraulic permeability and eddy dispersion in bulk packings, Anal. Chem., 83
(2011), 3903–3910.

[12] J. C. Giddings, ‘Eddy’ diffusion in chromatography, Nature, 184 (1959), 357–358.
[13] I. Schenker, F. T. Filser, L.J. Gauckler, T. Aste and H. J. Herrmann, Quantification of the

heterogeneity of particle packings, Phys. Rev. E, 80 (2009), 021302.
[14] W. S. Jodrey and E. M. Tory, E. M., Computer simulation of close random packing of equal

spheres, Phys. Rev. A, 32 (1985), 2347–2351.
[15] M. P. Allen and D. J. Tildesley, Computer simulation of liquids, Oxford University Press,

1989.
[16] A. Z. Zinchenko, Algorithm for random close packing of spheres with periodic boundary

conditions, J. Comput. Phys., 114 (1994), 298–307.
[17] A. Okabe, B. Boots, K. Sugihara and S. N. Chiu, Spatial tessellations: concepts and applica-

tions of Voronoi diagrams, 2 ed., John Wiley & Sons, 2000.
[18] S. Succi, The lattice Boltzmann equation for fluid dynamics and beyond, Oxford University

Press, 2001.
[19] C. Pan, L.-S. Luo, and C. T. Miller, An evaluation of lattice Boltzmann schemes for porous

medium flow simulation, Comput. Fluids, 35 (2006), 898–909.
[20] I. Ginzbourg and P. M. Adler, Boundary flow condition analysis for the three-dimensional

lattice Boltzmann model, J. Phys. II, 4 (1994), 191–214.
[21] Z. Guo, C. Zheng and B. Shi, Discrete lattice effects on the forcing term in the lattice Boltz-



S. Khirevich et al. / Commun. Comput. Phys., 13 (2013), pp. 801-822 821

mann method, Phys. Rev. E, 65 (2002), 046308.
[22] A. N. Tikhonov and A. A. Samarskii, Equations of mathematical physics, Dover Publica-

tions, 1990.
[23] O. C. Zienkiewicz, P. Nithiarasu and R. L. Taylor, The finite element method for fluid dy-

namics, Elsevier Butterworth–Heinemann, 2005.
[24] B. H. Devkota and J. Imberger, Lagrangian modeling of advection–diffusion transport in

open channel flow, Water Resour. Res., 45 (2009), W12406.
[25] B. Lin and R. A. Falconer, Tidal flow and transport modeling using ULTIMATE QUICKEST

scheme, J. Hydraul. Eng., 123 (1997), 303–314.
[26] B. P. Leonard, The ULTIMATE conservative difference scheme applied to unsteady one-

dimensional advection, Comput. Methods Appl. Mech. Eng., 88 (1991), 17–74.
[27] A. E. Hassan and M. M. Mohamed, On using particle tracking methods to simulate transport

in single-continuum and dual continua porous media, J. Hydrol., 275 (2003), 242–260.
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