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Abstract. Gases in microfluidic structures or devices are often in a non-equilibrium
state. The conventional thermodynamic models for fluids and heat transfer break
down and the Navier-Stokes-Fourier equations are no longer accurate or valid. In
this paper, the extended thermodynamic approach is employed to study the rarefied
gas flow in microstructures, including the heat transfer between a parallel channel and
pressure-driven Poiseuille flows through a parallel microchannel and circular micro-
tube. The gas flow characteristics are studied and it is shown that the heat transfer in
the non-equilibrium state no longer obeys the Fourier gradient transport law. In addi-
tion, the bimodal distribution of streamwise and spanwise velocity and temperature
through a long circular microtube is captured for the first time.

AMS subject classifications: 76P05, 82B40
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1 Introduction

Due to the rapid development in fabrication technology for constructing micro-electro-
mechanical systems (MEMS), fluid flow at the micro- and nano-scale has received con-
siderable attention. A basic understanding of the nature of flow and heat transfer in these
devices or structures is considered essential for efficient design and control of MEMS. Gas
flows in micro-scale devices suffer from non-equilibrium effects when the gas molecular
mean free path is the same order as the characteristic length of the device. The degree of
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non-equilibrium of a gas is generally expressed through the Knudsen number (Kn=λ/L)
which is the ratio of the molecular mean free path, λ, to a typical dimension of the flow
field, L. The different rarefaction regimes can be summarised according to the value of
the Knudsen number [1]: (i) no slip (Kn≤10−3); (ii) slip (10−3

<Kn≤10−1); (iii) transition
(10−1

<Kn≤10); and (iv) free molecular flow Kn>10, respectively. Most MEMS operate
at the slip and early transition regime (Kn< 1) [2]. Different approaches have been em-
ployed by various researchers to capture and describe the non-equilibrium phenomena
that arise due to an insufficient number of molecular collisions occurring under rarefied
conditions. Microscopically, the Boltzmann equation [3] provides an accurate descrip-
tion of a dilute gas at all degrees of rarefaction and describes its state through a molec-
ular distribution function that treats the gas as a large number of interacting molecules,
colliding and rebounding according to prescribed laws. However, solutions of the Boltz-
mann equation, either directly or through the direct simulation Monte Carlo (DSMC)
method [4], entail significant mathematical complexity and are computationally expen-
sive, particularly for low-speed, low Knudsen number flows in the slip and transition
regime in microchannels.

Due to the difficulties associated with solving the Boltzmann equation, there is sig-
nificant effort being made to construct alternative solution strategies that can provide
an accurate description of a gas with Knudsen numbers that extend into the early tran-
sition regime, such as the lattice Boltzmann method (LBM) [5, 6], the discrete-velocity
method (DVM) [7–9], the Boltzmann kinetic equation, and the unified gas-kinetic scheme
(UGKS) [10]. Among these methods, the extended thermodynamic equations developed
with the method of moments, which have been used to predict the hydrodynamic quan-
tities successfully [11–15], is being paid more and more attention.

Grad [16] introduced the moment method for an approximate solution procedure for
the Boltzmann equation. He expanded the phase-density distribution function in Her-
mite polynomials, the coefficients of which are linear combinations of the moments of
the molecular distribution function. The 13 moment equations (G13) was first proposed
by Grad via truncated distribution function at the third order in Hermite polynomials,
which include the five lowest moments of the collision invariants, and stress and heat
fluxes proposed by Stokes and Fourier. Struchtrup [17,18] regularized the G13 equations
by using a Chapman-Enskog-like expansion for the closure conditions. The R13 method,
which can capture Knudsen layers close to the solid surfaces, is an improvement over
the G13 method for some problems [19, 20]. However, the R13 equations cannot cap-
ture the Knudsen-layer velocity profile accurately, and overpredict the mass flow rate
sometimes [21]. In the present study, a set of 26 moment equations, which are based on
the regularizing procedure of Struchtrup for R13 method, are employed by truncating the
Hermite polynomials at the fourth order. It is proved to overcome many of the limitations
in the R13 method [11]. The R26 method also has limitations. One of the problems by
using the regularized moment method is that the equation set, which is a mixed system
of the first- and second-order partial differential equations (PDEs), is more complicated.
Another problem is that moments higher than second-order have no clear intuitive phys-
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ical meaning. That is why moment methods are not well known in the field of continuum
fluid dynamics. However, it is able to predict the fluid flow in the early transition regime,
and still well known in kinetic theory and provides an alternative solution procedure to
the Boltzmann equation with low computational expense.

Analysis of the R26 method for planar Couette flow and force-driven Poiseuille flows
has been conducted at previous work. And the set of 26 moment equations is proved
effective in the early transition regime. However the existing studies of the moment
method are not for non-gradient transport phenomena of heat transfer between paral-
lel channel and pressure-driven flow through a long microchannel, especially for a cir-
cular microtube. In this paper, first, the regularised 26 moment equations are briefly
introduced. Then, they are employed to study three cases of rarefied gas flow. The tem-
perature profiles and heat transfer are firstly studied for the rarefied gas between two
stationary parallel plates at different temperatures. The other two are pressure-driven
Poiseuille flows through a long parallel microchannel and a long circular microtube with
different outlet Knudsen numbers, respectively.

2 Governing equations

The Boltzmann equation is the central equation in kinetic theory, the properties of which
can be used to guide the development of kinetic and macroscopic models for rarefied
gas flow. Once the distribution function, f , is known, its moments with respect to the
velocity vector, ξ, can be determined. It is convenient to introduce the intrinsic or peculiar
velocity as ci = ξi−ui, where ξi and ui represent the particle speed and the local velocity,
respectively, so that the moments with respect to ui can be calculated conveniently. A set
of N moments are then used to describe the state of the gas through

ρi1 i2···iN
=
∫

ci1 ci2 ···ciN
f dξ. (2.1)

The molecular distribution function, f , can be reconstructed from the values of its
moments. Grad [16] expressed f in Hermite polynomials as:

f = fM lim
N→∞

N

∑
n=0

1

n!
a
(n)
A H

(n)
A , (2.2)

where H
(n)
A are the Hermite polynomials and a

(n)
A are the coefficients, which are linear

combinations of the moments. fM is the Maxwellian distribution function. To describe
the state of a gas accurately, an infinite number of moments (N →∞) is required to re-
construct the distribution function. However, for gases not too far from equilibrium, a
finite number of moments should provide an adequate approximation. All the moments
included in the truncated distribution function construct the ’Grad moment manifold’
(GMM). These moments relax to the equilibrium state at a rate governed by their cor-
responding governing equations. The remaining higher moments outside the GMM, as
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calculated from the truncated distribution function, approach the GMM at a fast finite
rate and then relax to the equilibrium state along with the GMM.

2.1 Navier-Stokes-Fourier equations

The traditional hydrodynamic quantities of density ρ, velocity ui and temperature T cor-
respond to the first five lowest order moments of the molecular distribution function. The
governing equations of these hydrodynamic quantities for a dilute gas can be obtained
from the Boltzmann equation and represent mass, momentum and energy conservation
laws, respectively:

∂ρ

∂t
+

∂ρui

∂xi
=0, (2.3)

∂ρui

∂t
+

∂ρuiuj

∂xj
+

∂σij

∂xj
=− ∂p

∂xi
+ρai , (2.4)

3

2
R

∂ρT

∂t
+

3

2
R

∂ρTui

∂xi
+

∂qi

∂xi
=−p

∂ui

∂xi
−σij

∂uj

∂xi
, (2.5)

in which t and xi are temporal and spatial coordinates, respectively. The external accel-
eration is denoted by ai, and pressure, p, is related to the temperature and the density by
the ideal gas law p= ρRT, where R is the specific gas constant. To close the set of equa-
tions, the stress term σij and heat flux qi are given by a Chapman-Enskog (CE) expansion
of the molecular distribution function in terms of Kn around the Maxwellian for Maxwell
molecules:

σG
ij =−2µ

∂u〈i
∂xj〉

and qG
i =−15

4
Rµ

∂T

∂xi
, (2.6)

where µ is the viscosity, and the angular brackets denote the traceless part of a symmetric
tensor. Eq. (2.6) expresses an import transport mechanism for ui and T, and the gradient
transport mechanism (GTM), where the superscript G is used to emphasize the impor-
tance of this mechanism. If we let

σij =σG
ij and qi =qG

i , (2.7)

and insert Eqs. (2.6) and (2.7) into Eqs. (2.4) and (2.5), the results are the traditional hy-
drodynamic equations, just as the NSF equations. For the NSF equations, the moments
included in the GMM are {ρ, ui, T}. The CE expansion allows the higher moments σij

and qi outside the manifold to deviate from the GMM. The second-order CE expansion
adds the non-gradient transport mechanism (NGTM) components to σij and qi and then
results in the Burnett equations.

2.2 R13 moment equations

To describe the non-equilibrium phenomenon as the Kn increases, Grad extended the
GMM from {ρ, ui, T} to {ρ, ui, T, σij, qi}, introduced σij and qi as extended variables,
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and derived a set of governing equations for them from the Boltzmann equation. For
Maxwell molecules, the stress and heat flux equations are shown as:

∂σij

∂t
+

∂σijuk

∂xk
+

∂mijk

∂xk
=− p

µ
σij−2p

∂u〈i
∂xj〉

+Σij , (2.8)

∂qi

∂t
+

∂qiuj

∂xj
+

1

2

∂Rij

∂xj
=−2

3

p

µ
qi−

5

2
pR

∂T

∂xi
+Qi , (2.9)

in which

Σij =−2σk〈i
∂uj〉
∂xk

− 4

5

∂q〈i
∂xj〉

, (2.10)

Qi =−7

2
σikR

∂T

∂xk
−RT

∂σik

∂xk
+

σij

ρ

(

∂p

∂xj
+

∂σjk

∂xk

)

− 2

5

(

7

2
qk

∂ui

∂xk
+qk

∂uk

∂xi
+qi

∂uk

∂xk

)

− 1

6

∂∆

∂xi
−mijk

∂uj

∂xk
. (2.11)

Here, mijk, Rij and ∆ represent the differences between the true values of the higher mo-
ments and their approximate values with fG13. They are unknown and correspond to

mijk =ρ〈ijk〉, Rij =ρ〈ij〉rr−7RTσij and ∆=ρrrss−15pRT. (2.12)

Eqs. (2.3)-(2.5), (2.8) and (2.9) form the 13 moment equations. In Grad’s original method,
which is the well known G13 equations, such deviations were omitted, so that mijk, Rij

and ∆ are set to zero to close the 13 moment equations. Instead, Struchtrup and Torrilhon
[17] regularized the G13 equations by applying a Chapman-Enskog-like expansion to
the governing equations of the higher moments with linearized production terms for
Maxwell molecules and obtained the following closures:

mijk =−2µ
∂
(

σ〈ij/ρ
)

∂xk〉
− 8µ

5p
q〈i

∂uj

∂xk〉
, (2.13)

Rij =−24

5
µ

∂
(

q〈i/ρ
)

∂xj〉
− 24

5

µ

p
q〈i

∂RT

∂xj〉
− 24

7

µ

ρ

(

σk〈i
∂uj〉
∂xk

+σk〈i
∂uk

∂xj〉
− 2

3
σij

∂uk

∂xk

)

− 4

7

σk〈iσj〉k
ρ

, (2.14)

∆=−12µ
∂(qk/ρ )

∂xk
−20

µ

p
qk

∂RT

∂xk
−12

µ

ρ
σij

∂ui

∂xj
− σijσij

ρ
. (2.15)

This set of 13 moment equations with the above closure is the R13 equations. The first
terms on the right-hand sides of Eqs. (2.13)-(2.15) provide the GTM for σij and qi and help
to stabilize the R13 equations. The gradient transport mechanism of mijk, Rij and ∆, are
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given by

mG
ijk =−2µ

∂
(

σ〈ij/ρ
)

∂xk〉
, RG

ij =−24

5
µ

∂
(

q〈i/ρ
)

∂xj〉
, ∆G =−12µ

∂(qk/ρ )

∂xk
. (2.16)

The rest terms in Eqs. (2.13)-(2.15) represent the NGTM components of the corresponding
moments. It is clear that the GTM not only exists for lower-rank moments, but also for
higher-rank moments.

2.3 R26 moment equations

Eqs. (2.13) and (2.14) show the relationships for mijk and Rij. They can only provide a
mechanism to produce a boundary layer for the lower-order moments σij and qi but have
no mechanism to produce their own boundary layer near the wall [22]. In the present
approach, the GTMs for mijk and Rij near the wall are provided by extending GMM from
13 to 26 moments, which includes the moments mijk, Rij and ∆ as extended hydrody-
namic variables. The distribution function is truncated to the incomplete fourth order in
Hermite polynomials, and the GMM is extended from {ρ, ui, T, σij, qi} to {ρ, ui, T, σij, qi,
mijk, Rij, ∆}. From the Boltzmann equation, it is possible to obtain governing equations
for mijk, Rij and ∆ for Maxwell molecules as follows:

∂mijk

∂t
+

∂ulmijk

∂xl
+

∂φijkl

∂xl
=−3

2

p

µ
mijk−3p

∂
(

σ〈ij/ρ
)

∂xk〉
+Mijk , (2.17)

∂Rij

∂t
+

∂ukRij

∂xk
+

∂ψijk

∂xk
=−7

6

p

µ
Rij−

28

5
p

∂
(

q〈i/ρ
)

∂xj〉
+ℜij , (2.18)

∂∆

∂t
+

∂∆ui

∂xi
+

∂Ωi

∂xi
=−2

3

p

µ
∆−8p

∂(qi/ρ )

∂xi
+ℵ, (2.19)

in which

Mijk =3
∂σ〈ij

ρ

∂σk〉l
∂xl

− 12

5
q〈i

∂uj

∂xk〉
−3ml〈ij

∂uk〉
∂xl

− 3

7

∂R〈ij
∂xk〉

, (2.20)

ℜij =− 2

3

p

µ

σk〈iσj〉k
ρ

− 28

5
q〈i

∂RT

∂xj〉
+

28

5

q〈i
ρ

∂σj〉k
∂xk

+
14

3

σij

ρ

(

∂qk

∂xk
+σkl

∂uk

∂xl

)

−2RT
∂mijk

∂xk

−4RT

(

σk〈i
∂uk

∂xj〉
+σk〈i

∂uj〉
∂xk

− 2

3
σij

∂uk

∂xk

)

−
(

6

7
R〈ij

∂uk〉
∂xk

+
4

5
Rk〈i

∂uk

∂xj〉
+2Rk〈i

∂uj〉
∂xk

)

−9mijk
∂RT

∂xk
−2φijkl

∂uk

∂xl
+2

mijk

ρ

(

∂p

∂xk
+

∂σkl

∂xl

)

− 14

15
∆

∂u〈i
∂xj〉

− 2

5

∂Ω〈i
∂xj〉

, (2.21)

ℵ=− 2

3

p

µ

σijσij

ρ
−4
(

2RTσij+Rij

) ∂ui

∂xj
+8

qi

ρ

∂σij

∂xj
−20qi

∂RT

∂xi
− 4

3
∆

∂ui

∂xi
. (2.22)
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Here, φijkl , ψijk and Ωi are the differences between the true value of the higher moments
and their approximated value calculated with fG26. They correspond to

φijkl =ρ〈ijkl〉, ψijk =ρrr〈ijk〉−9RTmijk and Ωi =ρrrssi−28RTqi. (2.23)

If deviations are not allowed for the higher moments away from the GMM, the above
equations become a Grad-type 26 moment set of equations. These equations are regular-
ized following the procedure used by Struchtrup. The governing equations for φijkl , ψijk

and Ωi are derived from the Boltzmann equation, and a Chapman-Enskog-like expansion
is applied to them. When the nonlinear collision terms are included in these equations,
we must take care to ensure that the CE expansion only allow φijkl , ψijk and Ωi to ap-
proach the GMM at a fast rate and then follow the GMM towards the equilibrium state.
The 26 moment field equations are closed by

φijkl =− 4µ

C1

∂
(

m〈ijk/ρ
)

∂xl〉
− 12

C1

µ

ρ
σ〈ij

∂uk

∂xl〉
+

4µ

C1pρ
m〈ijk

∂σl〉m
∂xm

− 12

7

µR〈ij
C1p

∂uk

∂xl〉

−C2

C1

σ〈ijσkl〉
ρ

, (2.24)

ψijk =− 27µ

7Y1

∂
(

R〈ij/ρ
)

∂xk〉
− 27

7

µ

Y1p

(

R〈ij+7RTσ〈ij
) ∂RT

∂xk〉
− 108

5Y1

µ

ρ
q〈i

∂uj

∂xk〉
+

27µ

7Y1

R〈ij
pρ

∂σk〉m
∂xm

+
6µ

Y1p

mijk

ρ

(

∂qm

∂xm
+σml

∂um

∂xl

)

− µ

Y1ρ

(

54

7
mm〈ij

∂um

∂xk〉
+8m〈ijk

∂um〉
∂xm

−6mijk
∂um

∂xm

)

−
(

Y2

Y1

σ〈limjkl〉
ρ

+
Y3

Y1

q〈iσjk〉
ρ

)

, (2.25)

Ωi =− 7µ

3

∂(∆/ρ )

∂xi
−4µ

∂
(

Rij/ρ
)

∂xj
− 56

5

µ

ρ

(

qj
∂ui

∂xj
+qj

∂uj

∂xi

)

−8
µ

ρ
mijk

∂uj

∂xk
−14

µ

p

×
(

2RTσij+Rij

) ∂RT

∂xj
+

56

3

µ

p

qi

ρ

(

∂qj

∂xj
+σjk

∂uj

∂xk

)

+4
µ

p

Rij

ρ

∂σjk

∂xk
+

7

3

µ

p
∆

(

∂σij

ρ∂xj
−2

∂RT

∂xi

)

− 2

15

(

5mijkσjk+14qjσij

ρ

)

, (2.26)

in which, C1, C2, Y1, Y2 and Y3 are collision term constants, which have been given in
[11]. The first terms on the right-hand side of Eqs. (2.24)-(2.26) provide the GTM for mijk,
Rij and ∆, and play an important role in the region close to the wall. The GTM can be
explicitly expressed by

φG
ijkl =−4µ

C1

∂
(

m〈ijk/ρ
)

∂xl〉
, ψG

ijk =−27µ

7Y1

∂
(

R〈ij/ρ
)

∂xk〉
and ΩG

i =−7µ

3

∂
(

∆/ρ
)

∂xi
. (2.27)

The closed set of 26 moment equations is denoted as the R26 moment equations, which
is a mixed system of first- and second-order partial differential equations.
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2.4 Wall boundary conditions

To construct wall boundary conditions for the R26 equations, a fifth-order approximation
of the molecular distribution function, f (5), is required, which is expressed by

f (5)= fM(1+ϕ), (2.28)

in which

ϕ=
σijcicj

2pRT
+

ciqi

pRT

(

c2

5RT
−1

)

+
mijkcicjck

6p(RT)2
+

Rijcicj

4p(RT)2

(

c2

7RT
−1

)

+
ψijkcicjck

12p(RT)3

(

c2

9RT
−1

)

+
∆

8pRT

(

c4

15(RT)2
− 2c2

3RT
+1

)

+
φijklcicjckcl

24p(RT)3
+

ciΩi

40p(RT)2

(

c4

7(RT)2
− 2c2

RT
+5

)

, (2.29)

where c2 = ckck. The higher moments involved in Eq. (2.29) are not part of the GMM so
that f (5) is not a Grad-type distribution function but a regularized fG26, and is used to
construct the WBCs to increase the accuracy near the wall.

Maxwell’s kinetic boundary condition [23] is one of the simplest models and it states
that a fraction, (1−α), undergoes specular reflection while the remaining fraction, α, is
diffusely reflected with a Maxwellian distribution, f w

M, at the temperature of the wall, Tw.
In a frame in which the coordinates are attached to the wall, with ni the normal vector of
the wall pointing towards the gas and τi the tangential vector of the wall, such that all
molecules with ξini<0 are incident upon the wall and molecules with ξini≥0 are emitted
by the wall, Maxwell’s boundary condition can be expressed by [24]

f w =

{

α f w
M+(1−α) f (−ξini), ξini≥0,

f (ξini), ξini<0,
(2.30)

and

fM =
ρ

√

(2πRT)3
exp

(

− c2

2RT

)

. (2.31)

By definition, the value of any moment at the wall can be obtained from
∫

ξini≥0
ci1 ci2 ···cin f (ξini)dξ=

∫

ξini≥0
ci1 ci2 ···cin [α f w

M+(1−α) f (−ξini)]dξ. (2.32)

Grad considered the special case of α = 0 and concluded that only moments that are
odd functions of cini can be used to construct the wall boundary conditions. This limits
the choice of moments to ψ = (cn,cτcn,c2cn,c2

τcn,c3
n,c2cτcn,c3

τcn,cτc3
n,c3

τc3
n,c4

τcn,c5
n,c4cn), in

which cn = cini and cτ = ciτi. Replace f in Eq. (2.32) with its fifth-order approximation,
f (5), and gives the slip velocity, uτ, parallel to the wall and temperature jump conditions:

uτ =−2−α

α

√

πRT

2

σnτ

pα
− 5mnnτ+2qτ

10pα
+

9Ωτ+70ψnnτ

2520pα RT
, (2.33)

RT−RTw=−2−α

α

√

πRT

2

qn

2pα
− RTσnn

4pα
+

u2
τ

4
− 75Rnn+28∆

840pα
+

φnnnn

24pα
, (2.34)



1338 G. H. Tang et al. / Commun. Comput. Phys., 13 (2013), pp. 1330-1356

where

pα = p+
σnn

2
− 30Rnn+7∆

840RT
− φnnnn

24RT
. (2.35)

Here σnn=σijninj, σnτ=σijniτj, qτ=qiτi, mnnτ=mijkninjτk, mnnn=mijkninjnk, Rnn=Rijninj,
ψnnτ =ψijkninjτk, Ωτ =Ωiτi and φnnnn = φijklninjnknl are tangential and normal compo-
nents of σij, qi, mijk, Rij, ψijk, Ωi and φijkl relative to the wall. Since there is no gas flow
through the wall, the normal velocity at the wall keeps at un=0. Eqs. (2.33) and (2.34) are
similar to the slip velocity and temperature jump conditions for the NSF equations with
the underlined terms on the right-hand side providing higher-order moment corrections.
The underlined terms can be related to second- or higher-order velocity slip and tem-
perature jump boundary conditions. The second-order velocity-slip boundary condition
from Hadjiconstantinou [25] is used in the present work for comparison. The rest of the
wall boundary conditions are not listed here. The details can be found in [11].

The variable hard sphere model for argon has been employed with the gas constant
R=208J/kg·K. The molecular mean free path is given by

λ=
µ

p

√

πRT

2
. (2.36)

The wall temperature, Tw, and the initial pressure are used as reference values to estimate
λ. The viscosity was obtained from Sutherland’ law:

µ=µ0

(

T

T0

)1.5 T0+S

T+S
, (2.37)

where the reference viscosity and temperature are, µ0 = 21.25×10−6Pa·s and T0 = 273K,
respectively, and the Sutherland’s constant, S=144K, for argon.

3 The numerical method

In the moment system, the higher moments provide the transport mechanism for the
moments one order lower. The moment method results in a set of equations in a conven-
tional convection-diffusion format, with appropriate source terms, which can be used to
capture nonequilibrium phenomena. In most situations, there are no analytical solutions
for this complex set of PDEs, and a numerical procedure is therefore required.

3.1 Primitive variable transformation

In the theory of differential equations, variable substitutions or transformations are often
used to show that certain classes of equations are equivalent to a standard form. Prim-
itive variables of the governing equations for moments have been transformed during
the development of the moment method. The full tensorial moments have been decom-
posed into their trace and traceless parts and further decomposed into their values on
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the GMM and their corresponding deviations. These decompositions are local, and the
resultant governing equations are always of a hyperbolic nature regardless of the flow
conditions. This is inherited from the streaming part of the Boltzmann equation. How-
ever, the collisions at the microscopic level cause the macroscopic quantities of the flow to
diffuse. The GTM exists for all the moments considered in the GMM up to 26 moments.
The GTM of the low moments are embedded in the moments one order higher. With
Eqs. (2.6), (2.16) and (2.27), Eqs. (2.8), (2.9) and (2.17)-(2.19) can be recast in terms of the
GTM as

∂σij

∂t
+

∂σijuk

∂xk
+

∂mijk

∂xk
=− p

µ

(

σij−σG
ij

)

+Σij , (3.1)

∂qi

∂t
+

∂qiuj

∂xj
+

1

2

∂Rij

∂xj
=−2

3

p

µ

(

qi−qG
i

)

+Qi , (3.2)

∂mijk

∂t
+

∂ulmijk

∂xl
+

∂φijkl

∂xl
=−3

2

p

µ

(

mijk−mG
ijk

)

+Mijk , (3.3)

∂Rij

∂t
+

∂ukRij

∂xk
+

∂ψijk

∂xk
=−7

6

p

µ

(

Rij−RG
ij

)

+ℜij , (3.4)

∂∆

∂t
+

∂∆ui

∂xi
+

∂Ωi

∂xi
=−2

3

p

µ

(

∆−∆G
)

+ℵ. (3.5)

The above set of equations have a common feature in that these moments tend to relax
towards the equilibrium state via the values which provide the gradient transport for
the moments one order lower, as expressed by the first terms on the right-hand sides
of Eqs. (3.2)-(3.5). This phenomenon is clearly caused by the collisions between the
molecules. To make full use of the physical aspect of this phenomenon for computa-
tion, the moments are decomposed into their GTM and NGTM components defined by

σij =σG
ij +ρgij , qi=qG

i +ρhi, mijk =mG
ijk+ρωijk, (3.6a)

Rij=RG
ij +ργij, ∆=∆G+ρχ, (3.6b)

where ρgij, ρhi, ρωijk, ργij and ρχ are the NGTM components for σij, qi, mijk, Rij and ∆,
respectively. Inserting Eqs. (2.6), (2.16), (2.27), and (3.6) into Eqs. (2.4), (2.5) and (3.1)-(3.5),
the governing equations for the new variables are obtained after mathematical manipu-
lation. The primitive variables of the moment equations have been transformed from {ρ,
ui, T, σij, qi, mijk, Rij, ∆} to {ρ, ui, T, gij, hi, ωijk, γij, χ}. The resultant equations have the
following general convection-diffusion form:

∂ρΦ

∂t
+

∂ρulΦ

∂xl
− ∂

∂xl

(

µ

ΓΦ

∂Φ

∂xl

)

=SΦ , (3.7)

in which Φ={ui, T, gij, hi, ωijk, γij, χ}; ΓΦ = (1,2/5,3/2,5/6,C1,7Y1/9,3/7); and the
source terms SΦ = {Sui

,ST,Sgij
,Shi

,Sωijk
,Sγij

,Sχ}. These equations form a set of second-
order PDEs.
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3.2 Boundary fitted coordinate systems

For two dimensional flows in Cartesian (n=0) or axisymmetric cylindrical (n=1) coor-
dinates (x,r), Eq. (3.7) can be expressed as:

∂ρΦ

∂t
+

∂ρuΦ

∂x
+

∂rnρvΦ

rn∂r
− ∂

∂x

(

µ

ΓΦ

∂Φ

∂x

)

− ∂

rn∂r

(

rnµ

ΓΦ

∂Φ

∂r

)

=SΦ. (3.8)

Use a curvilinear coordinate transformation to map the complex flow domain in physical
space to a simple flow domain in computational space. The Cartesian coordinate system
xi=(x,r) in the physical domain is replaced by a curvilinear coordinate system ξi=(ξ,η)
such that boundaries of the flow domain correspond to surface ξi=constant. Eq. (3.8) can
be transformed to a general curvilinear system (ξ,η):

∂Φ

∂x
=

1

J

(

yη
∂Φ

∂ξ
−yξ

∂Φ

∂η

)

and
∂Φ

∂r
=

1

J

(

−xη
∂Φ

∂ξ
+xξ

∂Φ

∂η

)

, (3.9)

where J= xξyη−xηyξ is the Jacobean coefficient and

xξ =
∂x

∂ξ
, xη =

∂x

∂η
, yξ =

∂r

∂ξ
, yη =

∂r

∂η
. (3.10)

The transformed equation has the general form of

rn J
∂ρΦ

∂t
+

∂rnρG1Φ

∂ξ
+

∂rnρG2Φ

∂η
− ∂

∂ξ

(

rn̟µ

ΓΦ

∂Φ

∂ξ

)

− ∂

∂η

(

rnγµ

ΓΦ

∂Φ

∂η

)

= rn JSΦ+Dcr
Φ (3.11)

with G1=uyη−vxη , G2=vxξ−uyξ and

Dcr
Φ =− µ

ΓΦ

[

(

̟yξ+xη

) ∂Φ

∂ξ
+
(

γyη−xξ

) ∂Φ

∂η

]

−rn

[

∂

∂ξ

(

µβ

ΓΦ

∂Φ

∂η

)

+
∂

∂η

(

µβ

ΓΦ

∂Φ

∂ξ

)]

, (3.12)

in which

̟=
x2

η+y2
η

J
, β=

xξ xη+yξyη

J
and γ=

x2
ξ+y2

ξ

J
. (3.13)

3.3 The discretization procedure

A collocate, rather staggered, grid approach is adopted, which stores all variables at the
same grid points WW, W, P, E, EE, SS, S, N, and NN, as shown in Fig. 1. All the
transport equations are formulated and discretized in the curvilinear coordinates with
the finite volume method in (ξ,η) domain. A discrete approximation to Eq. (3.11), for
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Figure 1: Collocated grid arrangement.

any variable, Φ, is achieved by integrating the equation over a macro-control volume
surrounding the nodal point P,

∫ n

s

∫ e

w

[

∂rnρG1Φ

∂ξ
− ∂

∂ξ

(

rn̟µ

ΓΦ

∂Φ

∂ξ

)]

dξdη+
∫ n

s

∫ e

w

[

∂rnρG2Φ

∂η
− ∂

∂η

(

rnγµ

ΓΦ

∂Φ

∂η

)]

dξdη

=
∫ n

s

∫ e

w
(rn JSΦ+Dcr

Φ)dξdη , (3.14)

where n, s, e and w refer to the location of the space average of any quantity prevailing
over the faces of the control volume. Using the mean-value theorem, Eq. (3.14) can be
written as:

[(

rnρG1Φ− rn̟µ

ΓΦ

∂Φ

∂ξ

)

e

−
(

rnρG1Φ− rn̟µ

ΓΦ

∂Φ

∂ξ

)

w

]

δη+

[(

rnρG2Φ− rnγµ

ΓΦ

∂Φ

∂η

)

n

−
(

rnρG2Φ− rnγµ

ΓΦ

∂Φ

∂η

)

s

]

δξ=
∫ n

s

∫ e

w
(rn JSΦ+Dcr

Φ)dξdη. (3.15)

This equation expresses the balance between the net influx of the flow property under
consideration through the volume surface, the property’s volumetric rate of accumula-
tion and its volumetric rate of generation. A finite difference equation (FDE), linking the
value of Φ at P to its value at neighbouring nodes (EE, E, WW, W, NN, N, SS, S) is
constructed under the following assumptions:

(1) (rn JSΦ+Dcr
Φ) is taken to be uniform over the cell volume and has the following

linearised form
∫ n

s

∫ e
w (r

n JSΦ+Dcr
Φ)dξdη =Ss+SPΦP;
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(2) Standard central differencing is used to discretize any term in (rn JSΦ+Dcr
Φ), and

Sp is chosen to have a negative sink in order to make the resulting matrix more
diagonally dominant;

(3) For the diffusion terms, Φ is taken to vary linearly between nodes;

(4) For the convection terms, the face values, Φs, Φn, Φw and Φe are approximated by

Φw =βWW
w ΦWW+βW

w ΦW+βP
wΦP+βE

wΦE , (3.16a)

Φe =βW
e ΦW+βP

e ΦP+βE
e ΦE+βEE

e ΦEE , (3.16b)

Φs =βSS
s ΦSS+βS

s ΦS+βP
s ΦP+βN

s ΦN , (3.16c)

Φn =βS
nΦS+βP

nΦP+βN
n ΦN+βNN

n ΦNN , (3.16d)

where β represents the rating factors depending on the numerical scheme used.
Here the CUBISTA scheme was selected for the present work. The resulting general
FDE is

(AP−SP)ΦP =
EE,WW,NN,SS

∑
i=E,W,N,S

AiΦi+Ss , (3.17)

where Φi is the value of Φ at point i (i=E,W,N,S,EE,WW,NN,SS) and

Aw=Dw+CwβW
w −CeβW

e , AE=De−CeβE
e +CwβE

w , (3.18a)

AS=Ds+CsβS
s −CnβS

n, AN =Dn−CnβN
n −CsβN

s , (3.18b)

AWW =CwβWW
w , AEE=−Ceβ

EE
e , ASS=CsβSS

s , ANN =−CnβNN
n . (3.18c)

Here D and C are diffusion and convection fluxes across the control volume faces
(δξ=1, δη=1):

Ce=(rnρ)eG1e, Cw=(rnρ)wG1w, Cn=(rnρ)nG2n, Cs=(rnρ)sG2s, (3.19a)

De =(rn̟µ)e, Dw =(rn̟µ)w , Dn =(rnγµ)n , Ds =(rnγµ)s. (3.19b)

3.4 Solution of the algebraic equations

When equations similar to Eq. (3.17) are constructed at each of the computational grid
point covering the solution domain, a coefficient matrix is obtained for the variable Φ.
The transport coefficients and source coefficients may themselves depend on the solu-
tion for any one or more of the dependent variables. The solution of this set of non-
linear algebraic equations can be obtained by an iterative method. Here a line-by-line
’Penta-Diagonal-Matrix-Algorithm’ (PDMA) is employed to solve Eq. (3.17) with a dou-
ble sweep in each coordinate direction. The change of coefficients A and Φ, between iter-
ations, may result in large variations with a consequent slowing of convergence and/or
even divergence. The convergence rate can be improved by ’off-line successive relax-
ation’. If a relaxation factor ϑ is used in order to reduce the variation in Φ, Eq. (3.17)
becomes:

AP

ϑ
ΦP =∑AiΦi+SS+

1−ϑ

ϑ
APΦ∗

P (3.20)
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with AP = ∑ Ai−SP. The superscript ∗ denotes the value at the previous iteration. A
value of ϑ between zero and unity or greater than unity is equivalent to under-relaxation
or over-relaxation respectively. Under relaxation is a very useful device for avoiding
divergence during the iteration of strongly nonlinear equations. When the iterations con-
verge, Φ becomes equal to Φ∗. Eq. (3.20) ensures that the converged values of Φ do satisfy
the original Eq. (3.17).

3.5 Pressure-velocity coupling

The coupling of the velocity and pressure fields is through the Semi-Implicit Pressure-
Linked Equation (SIMPLE) algorithm [26]. A collocated grid arrangement, which can
give rise to spurious pressure oscillations and present an additional challenge for the
implementation of second-moment turbulence closures, is used in the present study. The
interpolation scheme of Rhie and Chow [27] is employed to eliminate any non-physical
pressure oscillations.

Application of Eq. (3.17) to the velocity u for the control volume at P gives

Au
PuP =∑Aiui+Su+Bu

P (pe−pw)+Cu
P(pn−ps), (3.21)

where Su is the source term, except pressure, in the u equation. The face area coefficients
are shown as:

Bu
P=−

(

yηrn
)

P
and Cu

P =
(

yξrn
)

P
. (3.22)

Since the pressure field is generally unknown, a pressure distribution p∗ is assumed,
which, when substituted into Eq. (3.21), yields the corresponding approximate velocity
field u∗,

Au
Pu∗

P=∑Aiu
∗
i +Su+Bu

P(p∗e −p∗w)+Cu
P(p∗n−p∗s ). (3.23)

If u and p are the correct solutions of velocity and pressure field, then:

u=u∗+u′ and p= p∗+p′, (3.24)

where u′ and p′ are the corrections to the current velocity and pressure. Subtracting
Eq. (3.23) from Eq. (3.21) gives

Au
Pu′

P =∑Aiu
′
i+Bu

P

(

p′e−p′w
)

+Cu
P

(

p′n−p′s
)

. (3.25)

The SIMPLE algorithm neglected the first term on the right hand side of Eq. (3.23) to give
the following simplified expression:

uP=u∗
P+

Bu
P

Au
P

(

p′e−p′w
)

+
Cu

P

Au
P

(

p′n−p′s
)

. (3.26)

An analogous expression for v is easily obtained,

vP =v∗P+
Bv

P

Av
P

(

p′e−p′w
)

+
Cv

P

Av
P

(

p′n−p′s
)

, (3.27)
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in which

Bv
P=
(

xηrn
)

P
and Cv

P=−
(

xξrn
)

P
. (3.28)

Inserting Eqs. (3.26) and (3.27) into G1=uyη−vxη and G2=vxξ−uyξ gives

G1P=G∗
1P+QP

(

p′e−p′w
)

+EP

(

p′n−p′s
)

, (3.29a)

G2P=G∗
2P+FP

(

p′e−p′w
)

+HP

(

p′n−p′s
)

, (3.29b)

in which

QP =
Bu

P

Au
P

yη−
Bv

P

Av
P

xη , EP =
Cu

P

Au
P

yη−
Cv

P

Av
P

xη , (3.30a)

FP =
Bv

P

Av
P

xξ−
Bu

P

Au
P

yξ , HP =
Cv

P

Av
P

xξ−
Cu

P

Au
P

yξ . (3.30b)

For the control volume centered at P, the discretized continuity equation can be expressed
as

Ce−Cw+Cn−Cs=0, (3.31)

in which the values of G1e, G1w, G2n and G2s are required. Following the same procedure
for G1P and G2P, it is readily to obtain:

G1w=G∗
1w+Qw

(

p′P−p′W
)

+
1

4
EP

(

p′N−p′S
)

+
1

4
EW

(

p′N−p′S
)

W
, (3.32a)

G1e=G∗
1e+Qe

(

p′E−p′P
)

+
1

4
EE

(

p′N−p′S
)

E
+

1

4
EP

(

p′N−p′S
)

, (3.32b)

G2s=G∗
2s+Hs

(

p′P−p′S
)

+
1

4
FP

(

p′E−p′W
)

+
1

4
FS

(

p′E−p′W
)

S
, (3.32c)

G2n=G∗
2n+Hn

(

p′N−p′P
)

+
1

4
FN

(

p′E−p′W
)

N
+

1

4
FP

(

p′E−p′W
)

, (3.32d)

in which

Qw =
QW+QP

2
, Qe =

QE+QP

2
, Hs =

HS+HP

2
, Hn =

HN+HP

2
, (3.33a)

G∗
1w =

G∗
1W+G∗

1P

2
, G∗

1e=
G∗

1E+G∗
1P

2
, G∗

2s=
G∗

2S+G∗
2P

2
, G∗

2n=
G∗

2N+G∗
2P

2
. (3.33b)

By introducing Eq. (3.32) into Eqs. (3.19) and (3.31), the following pressure correction
equation is obtained:

AP p′P =∑Ai p
′
i+S1+S2 , (3.34)
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in which

AE=(rnρ)eQe+R2, AW =(rnρ)wQw−R2 , (3.35a)

AN =(rnρ)nHn+R1, AS=(rnρ)sHs−R1 , (3.35b)

R1=
1

4
EP [(r

nρ)e−(rnρ)w], R2=
1

4
FP [(r

nρ)n−(rnρ)s], (3.35c)

AP=AE+AW+AN+AS , (3.35d)

S1=(rnρ)eG∗
1e−(rnρ)wG∗

1w−
1

4

[

(rnρ)eEE

(

p′N−p′S
)

E
−(rnρ)wEW

(

p′N−p′S
)

W

]

, (3.35e)

S2=(rnρ)nG∗
2n−(rnρ)sG∗

2s−
1

4

[

(rnρ)nFN

(

p′E−p′W
)

N
−(rnρ)sFS

(

p′E−p′W
)

S

]

. (3.35f)

The solution of p′ from Eq. (3.34) updates the pressure and velocity through Eqs. (3.26),
(3.27), (3.29) and (3.32). However, the pressure field obtained from the above approach
in the collocated grid has spurious oscillations. This is caused by the interpolation of the
values of G1 and G2 at the control volume faces. To overcome this, the linear interpolation
of the values of G1 and G2 at the control volume faces in Eq. (3.33) is replaced by the
interpolation scheme of Rhie and Chow:

G∗
1w =

G∗
1P+G∗

1W

2
− 1

4
[QP (pE−pW)+QW (pP−pWW)]+Qw (pP−pW). (3.36)

By doing so, G∗
1w is proportional to QW(pP−pW) rather than to QP(pE−pW)+QW(pP−

pWW) which is implicitly included in the first term in the right hand side of Eq. (3.36). The
boundary values of both p′ and p are obtained by the extrapolation along the curvilinear
coordinates with

(

∂2 p′

∂s2

)

ξ=c,or, η=c

=0 and

(

∂2 p

∂s2

)

ξ=c,or, η=c

=0. (3.37)

The solution procedure is summarized as follows:

(1) Solve ui at iteration n+1 using the values of other variables at the previous iteration n.

(2) Solve the pressure correction equation using the SIMPLE algorithm to update p and ui at iteration
n+1.

(3) Solve T, gij, hi, ωijk, γij, χ at iteration n+1 using updated pressure and velocity fields.

(4) Calculate values of the moments σij, qi, mijk, Rij and ∆.

(5) Update the boundary conditions.

(6) Return to step (1) and repeat until residuals of each governing equation reach a specified con-
vergence criterion.
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4 Numerical results

4.1 Heat transfer between a parallel channel

In this section, the heat transfer between two parallel plates with different temperatures
is studied with the extended thermodynamic model. To be consistent with the DSMC
simulation [28], the lower wall with a temperature of 263K sits at y = 0 and the upper
wall with a temperature of 283K at y=H. H is fixed at 1mm. All the derivatives in the x-
direction parallel to the walls are zero. Both walls are stationary. The Knudsen number is
calculated at a reference temperature of 273K and different reference pressures, as given
in [28]. The predicted temperature profiles at different Knudsen numbers are shown in
Fig. 2 in comparison with the DSMC data [28]. When Kn = 0.0475 in the slip regime,
both NSF and extended thermodynamic models can predict the temperature between
the plates accurately, except that the NSF equations cannot capture the thermal Knudsen
layer close to the walls as shown in Fig. 2(a). As the Knudsen number increases, the NSF
equations with the temperature jump condition overpredict the temperature jump sig-
nificantly while the 26 moment equations are in rough agreement with the DSMC data,
as shown in Figs. 2(b) and (c). In addition, predictions for the temperature of the 26 mo-
ment equations are a little better than those of the 13 moment equations. When Kn is
larger than 1, both macroscopic models fail to predict the temperature profile, and results
predicted by the 13 moment equations are unavailable during our numerical computa-
tion which are not shown in the figures.

The normal heat flux, qy, between two plates is a constant as shown in Fig. 3(a). How-
ever the NSF equations underpredict the value of heat flux as the Knudsen number in-
creases. Compared to 26 moment equations, the 13 moment equations overpredict the
value of heat flux. The NSF equations predict a constant pressure distribution between
the two plates. However, the 26 moment equations show that the pressure close to the hot
wall is higher than that close to the cold wall, as demonstrated in Fig. 3(b). More inter-
estingly, the normal stresses, σxx and σyy are not equal to zero even without any velocity
gradient and the NSF equations completely fail to capture this non-equilibrium effect as
indicated in Fig. 3(c).

4.2 Pressure driven gas flow in a long parallel microchannel

Pressure-driven gas flow through a long microchannel, which has wide applications in
MEMS, is studied with the extended thermodynamic model. The walls with a tempera-
ture of T0 = 273K sit at y= 0 and y= H separately. The height of the channel, H, is 1µm
and the ratio of the channel length, L, to height keeps at 100. Pressure ratio Pi of the
inlet to outlet is 2.0. Knudsen number is calculated based on the temperature of 273K
and the outlet pressure pe. The predicted velocity and pressure profiles at different out-
let Knudsen numbers are shown in Fig. 4 in comparison with the R13 data and DSMC
data [29, 30]. The streamwise velocity is normalized by the maximum streamwise veloc-
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Figure 2: Predicted temperature profile between two parallel plates with different temperatures at different
values of Knudsen numbers. DSMC data are digitised from [28].
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Figure 4: Streamwise velocity at the outlet and streamwise pressure deviation from a linear distribution for
pressure-driven flow through a long microchannel. (a, b) Kn=0.194; (c, d) Kn=0.388.

ity umax at the outlet, and the pressure p−pl , which presents the pressure deviation from
linear pressure drop corresponding to incompressible laminar flow, is normalized by the
outlet pressure. The velocity profiles from the 26 moment equations are in good agree-
ment with the DSMC data as shown in Figs. 4(a) and (c). There is a little deviation of
the velocity profiles from the 13 moment equations compared to those of the 26 moment
equations and DSMC data. As shown in Fig. 4(c) at Kn=0.388, the 13 moment equations
overpredict the velocity slip at the wall. Deviation of the pressure distribution from a
linear pressure can also be captured by the extended thermodynamic model. In Fig. 4(b),
when Kn= 0.194, the pressure distributions from the 13 moments and 26 moments are
in rough agreement with the DSMC data. When the Kn increases, as shown in Fig. 4(d),
both moment methods fail to capture the pressure distribution. It is interesting that the
pressure distribution by the 13 moment equations even agrees better than that by the
26 moments at Kn= 0.388. Considering the velocity distribution by the 13 moments at
Kn= 0.388, the pressure distribution may not be used solely to evaluate the accuracy of
the extended thermodynamic models.

The Knudsen number and pressure ratio of the inlet to outlet have important impact
on the profiles of pressure in the microchannel with pressure boundary condition. When
Kn is fixed at 0.194, the effect of the pressure ratio is shown in Fig. 5(a). As the pressure
ratio increases, deviation of the pressure distribution from a linear pressure decreases.
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Fig. 5(b) shows the effect of the increasing Kn when pressure ratio is fixed at 2.0. It can
be observed that the stronger the rarefaction effect, as indicated by the larger value of
Kn, the smaller the deviation from the linear pressure distribution and also the peak
of the curve moves toward the inlet of the microchannel slightly. This means that the
rarefaction effect serves to decrease the curvature in the pressure distribution caused by
the compressibility effect. Thus the effect of the compressibility and the effect of the
rarefaction on the pressure distribution are contrary. Generally speaking, the two effects
are not equal, resulting in a nonlinear pressure distribution.

The profiles of temperature along the y-direction are also shown in Fig. 6. From Fig. 6
we can see that the gas temperature is less than the reference temperature T0. The cen-
tre temperature is slightly lower than that near the wall along the y-direction and the
temperature gradient increases along the streamwise direction, since the viscous heat-
ing is surpassed by the expansion cooling, especially in the outlet region. In addition,
the temperature gradient decreases as the Knudsen number increases. As the Knudsen
number increases, both the jump temperature and the slip velocity at the wall increase.
The increased jump temperature results in a marked decrease in wall temperature gradi-
ent while the increase in wall temperature gradient caused by the increased slip velocity
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is not evident. Thus the expansion cooling heat transfer effect decreases due to the in-
creased thermal resistance. However, the temperature variation in Fig. 6 is quite small on
the scale of 10−5, and further studies by using other numerical methods are still needed
for verification.

The spanwise velocity of a gas in the microchannel normalized by umax is shown in
Fig. 7 when Kn=0.194 and Pi=2.0. The value of spanwise velocity is smaller substantially
than that of the streamwise velocity. However, the trend of the gas flowing from the
channel centerline toward the wall is observed. These observations are in consistent with
previous analytical solutions for microflows in a long channel qualitatively [31].

The friction coefficient is defined as

f =
2τw

ρu2
av

. (4.1)

Here τw is the shear stress at the wall, and uav is the average velocity along the y-direction.
Multiplying the friction coefficient by Reynolds number, the Poiseuille number ( f Re) can
be obtained by computing with the macroscopic expression with different slip velocity
models [32],

f Re=
24

1+6A1Kn+12A2Kn2
. (4.2)

A1 and A2 are the coefficients of various slip velocity models. In addition, we can also
derive the following equation [33]

f Re=
2
√

π

Kn Q
. (4.3)

Here Q is the non-dimensional flow rate decided by the linearized Boltzmann solution for
parallel channel [34]. Fig. 8 shows the relation between the f Re and Kn in the streamwise
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Figure 8: The Poiseuille number against the Knudsen number in a long parallel microchannel, compared with the
linearized Boltzmann equation solution [34] and macroscopic equation with different slip velocity models [32].

direction. The present numerical results of 26 moment method agree well with Eq. (4.3)
in which the non-dimensional flow rate data from the linearized Boltzmann equation
solution are used. The second-order slip model of the Sreekanth’s model with A1=1.1466
and A2=0.14 is also in rough agreement with the present numerical results, followed by
the Mitsuya model. The first-order Maxwell slip model deviates the largest.

4.3 Pressure-driven gas flow in a long circular microtube

Pressure-driven gas flow through a long microtube is also studied with the extended
thermodynamic model. The wall with a temperature of 273K sits at y=R, and the cen-
treline of the tube sits at y = 0. The radius of the tube, R, is 1µm and the ratio of the
channel length, L, to height keeps at 50. The pressure ratio, Pi, of the inlet to outlet is 2.0.
The Knudsen number is calculated based on the temperature of 273K, the pressure at the
outlet, and the diameter 2R.

The profiles of predicted velocity at different Knudsen numbers are shown in Fig. 9(a)
in comparison with the data calculated by the NSF equations with the second-order
boundary conditions. The streamwise velocity is normalized by the average velocity
uav of the corresponding cross-section. The numerical results of the 26 moment method
show that, as the Knudsen number increases, two peaks appear in the distribution of the
streamwise velocity. This bimodal distribution is unlike the velocity distribution in the
pressure-driven parallel channel flow. For rarefied gas flow, the velocity is made up of
the velocity slip, the Knudsen layer velocity and the bulk velocity. The R26 equations are
able to capture the Knudsen layer velocity profile due to the tangential heat flow and the
extra boundary layer contribution from mijk. The Knudsen layer velocity, which behaves
similar bimodal distribution, is responsible for this unique phenomenon. As shown in
Fig. 9(a), the NSF equations fail to capture the bimodal profiles. Note that the NSF re-
sults for Kn=0.5 and 0.7 are not presented here for comparison since they deviate from
the results of the 26 moment equations too much. In addition, the profiles of predicted
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Figure 10: Distribution of the dimensionless temperature along the y-direction in the microtube. (a) At different
Knudsen numbers. (b) At different streamwise positions.

velocity at different streamwise locations are shown in Fig. 9(b) at Kn=0.5. It is seen that
the bimodal profile becomes more evident from the inlet to outlet.

Fig. 10 presents the temperature distribution along the y-direction. We can see that
when the Knudsen number is smaller, the expansion cooling is dominant while the vis-
cous heating effect becomes more and more dominant as the Knudsen number increases
since the expansion cooling heat transfer effect reduces at larger Knudsen number. Com-
pared to Fig. 6(a) for a parallel channel, we can see that the viscous heating effect for a
circular tube is more evident at larger Knudsen number since the parallel channel is of
stronger expansion cooling heat transfer character than the circular tube. Similar to the
parallel channel, the expansion cooling effect increases from the inlet to outlet as shown
in Fig. 10(b).

The spanwise velocity in the microtube normalized by umax of the outlet is shown in
Fig. 11 when Kn= 0.3 and Pi = 2.0. The numerical results of the 26 moment method in
Fig. 11(a) show that there appears annular peak in the distribution of the spanwise veloc-
ity. In addition, the phenomenon of two peaks of spanwise velocity becomes more ob-
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Figure 11: Spanwise velocity for pressure-driven flow through a long microtube with Kn=0.3 and Pi=2.0. (a)
At outlet cross-section. (b) Along the streamwise direction.

vious along the streamwise direction as shown in Fig. 11(b). To the authors’ best knowl-
edge, it is for the first time to capture the unique bimodal profiles of streamwise and
spanwise velocity and temperature through a long circular microtube. Further studies
are expected to verify the interesting phenomena.

The friction coefficient in a long microtube is similar to that in a long microchannel,
and the macroscopic expression with different slip velocity models is [32]

f Re=
16

1+8A1Kn+16A2Kn2
. (4.4)

A1 and A2 are the coefficients of the slip velocity models. We can also derive [32]

f Re=

√
π

KnQ
. (4.5)

Here Q is the non-dimensional flow rate decided by the linearized Boltzmann solution
for a circular microtube [35]. The effect of the Kn on f Re is shown in Fig. 12. Similar
to the parallel channel, the present numerical results agree well with Eq. (4.5) by using
the non-dimensional flow rate data from the linearized Boltzmann solution. The second-
order Sreekanth’s model with A1 = 1.1466 and A2 = 0.14 is in rough agreement with the
present numerical results, followed by the Mitsuya model. The first-order Maxwell slip
model deviates the largest again.

5 Conclusions

In this paper, the 26 moment equations are employed to study non-equilibrium gas flow
in the microfluidic constructions. The extended thermodynamic approach has been val-
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Figure 12: The Poiseuille number against the Knudsen number in a long microtube, compared with the linearized
Boltzmann equation solution [35] and macroscopic equations with different slip velocity models [32].

idated by numerical simulations of heat transfer between two parallel plates with dif-
ferent temperatures and also gas flow characteristics in a long pressure-driven parallel
microchannel and circular microtube with different outlet Knudsen numbers. The R26
method predicts better results in the microfluidic structures than the R13 method and the
NSF with second-order boundary conditions, and the results agree well with available
DSMC data. The predicted friction coefficients for pressure-driven parallel microchannel
and circular microtube are also in good agreement with the analytical solution by us-
ing the flow rate of the linearized Boltzmann equation solution. In addition, the unique
bimodal profiles along the radius for velocity and temperature in the pressure-driven cir-
cular microtube flow are captured. It is demonstrated that the 26 moment method can
predict heat transfer and flow characteristics in non-equilibrium state in the early transi-
tion regime.
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