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Abstract. We present an efficient method to solve the time dependent Schrödinger
equation for modeling the dynamics of diatomic molecules irradiated by intense ultra-
short laser pulse without Born-Oppenheimer approximation. By introducing a vari-
able prolate spheroidal coordinates and discrete variable representations of the Hamil-
tonian, we can accurately and efficiently simulate the motion of both electronic and
molecular dynamics. The accuracy and convergence of this method are tested by sim-
ulating the molecular structure, photon ionization and high harmonic generation of
H+

2 .
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1 Introduction

The interaction of atoms and molecules with intense ultrashort laser pulses has attracted
increasing attention. Particularly, the high-order harmonic generation (HHG) [1, 2],
above threshold ionization (ATI) [3] and dissociation [4], are extensively investigated in
recent years. By using the high-order harmonics, attosecond coherent x-ray source has
been produced [5, 6]. Such attosecond pulses make a breakthrough to image the motion
of an electron inside atoms, molecules [7, 8] and lots of new applications are also devel-
oped [9–13]. For all of these investigations, an accurate and efficient theoretical model is
of great importance to faithfully describe the electronic and molecular dynamics and to
understand the underlying physics.
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The most accurate way to describe laser-atom and molecule interaction is ab initio so-
lution of time-dependent Schrödinger equation (TDSE). This model has lead to remark-
able advancements in understanding the strong field phenomena. Nevertheless, this ap-
proach is quite computationally demanding because of the long range Coulomb potential
and the high nonlinearity in the strong laser field. To accurately represent the Coulomb
singularity, dense grid points near the nuclear origin must be employed. On the other
hand, Coulomb effect is a long interaction force and also both HHG and ATI rely on a
rescattering process [14]. According to this model, the electron is first ionized, then os-
cillates in the laser field and finally rescatters with the parent nucleus. The amplitude of
electron motion is E0/ω2

0 [14], where E0 and ω0 are the laser amplitude and wavelength,
respectively. Therefore, to simulate the electron motion, the space region should be sev-
eral times larger than E0/ω2

0. Typically, a wide region of several tens angstrom or even
larger is needed. Consequently, even with the state-of-the-art computer, it is still a big
challenge to directly solve the full-dimensional TDSE for laser-atom interaction involving
more than two electrons [15]. Fortunately, single-active-electron (SAE) is proven to be a
good approximation and has been successfully utilized for describing the HHG, ATI and
other phenomena. Within the SAE approximation, direct numerical solution of TDSE for
laser-atom interaction has been well established. Nevertheless, compared with atoms, the
molecules have additional degree of freedom and more complicated structure, the phys-
ical phenomena of molecular HHG [16–20] and ATI [23–25] are richer. These processes
have attracted more and more interests because of the applications of imaging of molecu-
lar orbital [26]. Due to the extra internuclear motion, the response of molecules to strong
fields usually depends on the structure and alignment of the molecules [16, 27], thus
making it more complicated than that of atoms [17, 28]. Currently, the simulation is gen-
erally concentrated on the simple diatomic molecule. Although several numerical meth-
ods have been proposed for solving the TDSE, previous theoretical studies are mostly
restricted either to the Born-Oppenheimer approximation [21, 22, 29–32] or to reduced-
dimensionality TDSE [16, 17, 33], which however seems questionable to give an accurate
results in quantity [34]. Whilst the nuclear motion was shown to play an important role
in molecular HHG [17], therefore, the non-Born-Oppenheimer approach is indeed nec-
essary for most simply molecules. In this work, to achieve a faithful theoretical model,
we present an efficient way to ab initio solve the three dimensional TDSE without Born-
Oppenheimer approximation, including both the electronic and molecular dynamics of
diatomic molecules irradiated by intense ultrashort laser pulse.

2 Theoretical model

In this work, we focus on the interaction of diatomic molecule with a linearly polarized
laser field. The simplest diatomic molecular ion H+

2 and its isotopes has been the basis
of much study. Hence it is of special interest both in theory and experiment. Here we
also set our model for treating H+

2 . The TDSE can be expressed as (atomic units (a.u.) are
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used unless otherwise noted)

i
∂

∂t
Ψ(R,r,t)= [TR(R)+Te(r)+Vc(R,r)+V(t)]Ψ(R,r,t). (2.1)

In this equation, TR and Te denote the kinetic energy operator for nuclear and electronic
motions, respectively. Vc describes the Coulomb potential and V(t) denotes the interac-
tion of the external laser field. A full solution to this equation requires the propagation of
a six-dimensional wave function. Unfortunately, this task is beyond our capability even
using a supercomputer. We first consider the response of electron and nuclei in the ex-
ternal laser field. For molecular dynamics, the time scale of rotation is several hundreds
femtosecond (fs) while the vibration is on the order of 10 fs. On the other hand, optical
period of the driving laser field is 2.7 fs for the Ti:sapphire laser and electronic response
is even faster. Therefore, the molecular rotation is much slower than the other processes
and commonly can be neglected in the ultrashort laser field. We can only consider the
nuclear motion along the polarization direction of the laser field. Moreover, since the
molecule H+

2 initially is on the ground state of 1sσg, the azimuthal electron coordinate
can be eliminated due to the symmetry in the linearly polarized field. Finally, we get a
three-dimensional TDSE. Note that the azimuthal coordinate should be considered in a
elliptically polarized field because of the broken of the cylindrical symmetry. Previous in-
vestigations usually solve the TDSE in the cylindrical coordinates [35–38] with the finite
difference method. As mentioned above, the treatment of Coulomb potential requires
very dense grid points near the nuclear origin and on the other hand, requires a wide
region of the coordinate space. Even through scaled finite-difference method can be ap-
plied, a large number of grid points have to be adopted. An alternative way is solving
the TDSE by discrete variable representations (DVR) [39], which is shown to be more effi-
cient. Very accurate results can be obtained even with much less grid points [44] than the
finite-difference method. However, in the cylindrical coordinate, the radial coordinate
is suitable for the Lagrange DVR treatment. Finite difference method is still adopted in
the axial coordinate [15] along which the laser is linearly polarized and a large number
grid points are required. To overcome these problems, in this work, we solve the TDSE in
the prolate spheroidal coordinates (ξ, η, φ), which is related to the Cartesian coordinates
(x,y,z) by

x=
R

2

√

(ξ2−1)(1−η2)cosφ, (2.2)

y=
R

2

√

(ξ2−1)(1−η2)sinφ, (2.3)

z=
R

2
ξη. (2.4)

In these equations, R is the internuclear distance, 1 ≤ ξ <+∞, −1 ≤ η ≤ 1. Note that
the prolate spheroidal coordinates were shown to be preferable compared with the other
coordinates within the Born-Oppenheimer approximation [29,30]. However, for the non-
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Born-Oppenheimer TDSE, we have to notice the movement of nuclei. Therefore we in-
troduce a generalized prolate spheroidal coordinates, where the internuclear distance R
can be changed from 0 to +∞. We call this treatment variable prolate spheroidal (VPS)
coordinates. We assume that H+

2 is aligned on the axil z, along which the electric field is
linearly polarized. Then the Coulomb potential between electron and two nuclei can be
expressed by the following equations in VPS coordinates

Vc(R,r)=− 1

|r−R/2| −
1

|r+R/2|+
1

R
=− 4ξ

R(ξ2−η2)
+

1

R
. (2.5)

By using the length gauge, the interaction with the external field E(t) is written as

V(t)=RE(t)
(

1+
1

1+2mp

)

ξη, (2.6)

where mp is the mass of proton. The kinetic operator in VPS coordinates can be expressed
as

TR(R)=− 1

2µp

∂2

∂R2
, (2.7)

Te(r)=− 1

2µe

4

R2(ξ2−η2)

[ ∂

∂ξ
(ξ2−1)

∂

∂ξ
+

∂

∂η
(1−η2)

∂

∂η

]

, (2.8)

where µp and µe are the reduced masses,

µp=mp/2 (2.9)

and

µe =
2mp

2mp+1
, (2.10)

respectively.
The above treatment in VPS coordinates is suitable for adopting the DVR method. To

efficiently solve the TDSE, one crucial issue is the discrete variable representation of the
Hamiltonian. For clarity, we describe such a process in four subsections. In Subsection
2.1, we outline the basic idea of DVR method. In Subsection 2.2, we show the details
of the treatment of electron coordinates, ξ and η. In Subsection 2.3, we discuss the dis-
cretization of the nuclear coordinates, R. Finally, the arithmetic of time propagation of
the wavefunction is shown in Subsection 2.4.

2.1 DVR arithmetic

DVR is a method based on the orthogonal polynomials and Gaussian quadrature, which
is shown to be an much efficient way in a number of applications. Here we present
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the outline of DVR constructed from orthogonal polynomials, more details can be found
in [39, 40].

For a complete set of orthogonal polynomials, PN(x), defined on a domain a≤ x≤ b
with the corresponding weight function w(x), we have

1

h

∫ b

a
w(x)Pm(x)Pn(x)=δm,n, (2.11)

where h is a normalization constant. Then we can introduce a cardinal function Ck(x)
such that Ck(xj)=δkj, where

Ck(x)=
1

gn(xk)′
gn(x)

x−xk
, (2.12)

gn(x)=
√

w(x)/hPn(x). (2.13)

g′n(xk) denotes the first derivative of gn(x) at xk and xk (k = 1,2,··· ,N) are the roots of
PN(x). The basis function of DVR fi(x) is constructed from the cardinal function,

fk(x)=
1

wk
Ck(x), (2.14)

which satisfies that fk(xj)=δk,j/
√

wk. By using the Gaussian quadrature,

∫ b

a
dxF(x)≃

N

∑
i=1

wiF(xj), (2.15)

where wj is the weight at xj. According to the theory of Gaussian quadrature, this inte-
gration is exact as long as F(x) is a polynomial with an order less than 2N−1.

To show how to solve the TDSE with DVR method, we abbreviate the TDSE as

i
∂

∂t
Ψ(x,t)= [T+V(x,t)]Ψ(x,t). (2.16)

Note that the meaning of the abbreviation x in Eq. (2.16) includes all the spatial coordi-
nates. We expand the wavefunction in the basis f (x),

Ψ(x,t)=∑
i

cj(t) f j(x), (2.17)

where cj(t)=< f j(x) |Ψ(x)>. By substituting Eq. (2.17) into (2.16), TDSE can be written
as

∑
j

[

Tkj+V(xj,t)δk,j−i
∂

∂t
δk,j

]

cj(t)=0, (2.18)

where Tkj =< fk(x) |T | f j(x)>. In the following subsections, we will show the details of
the solution of this set of equations.
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2.2 Discretization of the electron coordinates

We first consider to apply the DVR method to the electron coordinates, ξ,η. For the
coordinate η, we adopt the Legendre polynomial PNy and Legendre-Gauss quadrature
[29]. According to the DVR algorithm shown above, the discrete grid points are the roots
of Legendre polynomial and the weights are expressed by

ηj : PNy(ηj)=0, (2.19)

wj =
1

(1−η2
j )(P′

Ny
(ηj))2

. (2.20)

Note that Ny is the number of grid points used for η. The differentiation of a function
f (η) at ηj can be performed by

d f (ηj)

dη
=

Ny

∑
j=1

Djj′ f (ηj′ ), (2.21)

where Djj′ = djj′ P
′
Ny
(ηj)/P′

Ny
(ηj′) and djj′ is defined as djj′ =

1
ηj−ηj′

if j 6= j′ and djj =
ηj

1−η2
j

.

It should be noted that f (η) has to be a continuous function. Otherwise the above equa-
tion will fail. For the interaction of molecules and laser pulse, the time dependent wave
function always satisfies this requirement.

On the other hand, we consider the radial coordinate ξ. Note that the maximum of
ξ can not be infinite in practical simulations. We generally adopt a value L that is large
enough for electron’s motion. For convenience, we first map the coordinate ξ to the range
[−1,1]

ξ=1+α
1+x

1−x+ 2α
L−1

, (2.22)

where α is a mapping parameter. The advantage is that the density of the grid points can
be adjusted by changing the parameter α [29]. Usually, more grid points are selected near
the origin to faithfully describe the Coulomb potential. The variable x is selected as the
roots of the difference of two Legendre polynomials, i.e.,

xk : PNx(xk)−PNx+1(xk)=0. (2.23)

Note that Nx+1 roots can be obtained from this equation, however the root xk = 1 is
selected as the boundary as [29]. We adopt the Legendre-Gauss-Radau quadrature, the
corresponding weights are

wk =
1

(Nx+1)2

1+xk

PNx(xk)2
. (2.24)

The differentiation of a function f (x) can be calculated by

d f (xk)

dx
=

Nx+1

∑
k=1

Dkk′ f (xk′), (2.25)
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where

Dkk′ =dkk′
(1+xk′)PNx(xk)

(1+xk)PNx(xk′)
, (2.26)

and dNx+1,Nx+1 = Nx(Nx+2)/4, dkk′ =
1

xk−xk′
if k 6= k′ and dkk =− 1

2(1+xk)
. By substituting

these formulas to Eq. (2.8), we can get the discrete form of the kinetic operator. Note
however that the Hamiltonian is a full matrix with this DVR arithmetic. Recently, the
DVR method has been combined with the finite element method, called FEDVR [41],
which provides an even more flexible approach to adopt the size of the elements and the
number of points in each element. Moreover, FEDVR leads to a sparse representation of
the Hamiltonian matrix. This feature enables us to save the computational memory and
may also to efficiently parallelize the computation [42, 43].

2.3 Discretization of the nuclear coordinates

The nuclear coordinate R can be treated with the same way as that to the electron co-
ordinates. However, consider the oscillation motion of the molecular wavepacket, we
prefer to adopt the sine polynomial as the basis function. The grid points are uniformly
selected in the range [Rmin,Rmax], i.e., rl=Rmin+∆(l−1), where l = 1,2,··· ,N and ∆ =
(Rmax−Rmin)/(N−1). The kinetic operator TR can be simply calculated as − 1

2µp
Dll′ ,

where

Dll′ =(−1)(l−l′−1) 1

(l−l′)2
, l 6= l′, Dll =−π2/6. (2.27)

2.4 Arnoldi time propagator

In this section, we discuss the propagation of wavepacket in the time domain. The TDSE
can be abbreviated as

i
∂

∂t
Ψ(x,t)=HΨ(x,t). (2.28)

Note that the wave function and Hamiltonian become a vector and matrix after the dis-
cretization of the spatial coordinates. The time propagation can be expressed by Ψ(t+
δt)= exp[−iH(t)δt]Ψ(t). Several algorithms have been proposed to solve this exponen-
tials evolution, such as the split operator [45], Runge-Kutta [30] and Taylor series [15]
methods. The split operator and Runge-Kutta methods usually achieve an accuracy of
(δt)2 and (δt)4, respectively. The Taylor series method expresses the exponentials propa-
gation operator by polynomials series, which can provide a higher order accuracy but is
not efficient. In this work, we adopt the Arnoldi algorithm, which can offer an accurate
and efficient treatment of the matrix exponentials [15, 40]. To apply the Arnoldi algo-
rithm, we construct the Krylov subspace spanned by Ψ, HΨ,··· , HmΨ with 0≤ m≤ M.
Orthonormalizing the basis vectors by the Gram-Schmidt procedure produces a new or-
thogonal set of vectors, which can be written as q0,q1,··· ,qM. Let Q denotes the matrix
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formed by the M+1 vectors [q0,q1,··· ,qM], we define a new matrix S, which is iteratively
calculated by

Sj,k−1=q†
j qk, qk =qk−Sj,k−1qj, j=1,2,··· ,k−1, (2.29)

Sk,k−1=
√

|qk |, qk =qk/Sk,k−1, k=2,3,··· ,M. (2.30)

S is the Krylov subspace Hamiltonian, we have S=Q†HQ. The exponential time propa-
gation can be performed by

exp[−iH(t)δt]≃Qexp(−iSδt)Q†. (2.31)

S is typically a traditional matrix with a dimension of (M+1)2. In practical simulation,
M usually is set to about 20, therefore, exp(−iSδt) can be easily exponentiated by diag-
onalizing S. Note that Arnoldi algorithm is correct to the order of δtM+1 in time. There-
fore the accuracy can be improved by increasing M or by reducing δt. Moreover, we
should note that the Arnoldi method in principle is not unitary. The truncation error can
be approximately estimated by H(M+1)Ψδt(M+1). We can expand the wave function as
Ψ=∑En≤0Cnψn+∑En>0Cnψn where ψn is the eigenfunction and En is the corresponding
eigenenergy. Hence the first term corresponds to the bound states and the second term
corresponds to the continue states.

H(M+1) ∑
En≤0

Cnψnδt(M+1)= ∑
En≤0

CnE
(M+1)
n ψnδt(M+1)

< ∑
En≤0

Cn|E0|M+1δt(M+1), (2.32)

where E0 is the eigenenergy of the ground state, i.e., the ionization energy. As mentioned
above, the maximum energy of the electron obtained in the laser field is 3.17Up. Then we
can show that

H(M+1) ∑
En>0

Cnψnδt(M+1)
< ∑

En>0

Cn|3.17Up|M+1δt(M+1). (2.33)

For an intensity of 3×1014 W/cm2, 3.17Up is 1.97 a.u. for the Ti:saphire laser (800 nm).
The ionization energy of H+

2 is about 1.1 a.u. Hence the truncation error is estimated to
be less than (1.97δt)M+1. Generally, δt is about 0.05 a.u., the truncation error is less than
10−21 when M = 20. It is small enough for the double-precision values adopted in the
simulation. In this situation, the Arnoldi method can be considered as unitary.

Before we proceed to the simulation, we briefly estimate the required resource for the
calculation. For the single-electron system discussed above, the number of the grid points
related to the wavefunction is Nξ Nη NR and the Hamiltonian is a matrix of (Nξ Nη NR)

2,
which typically requires a memory of about several Gigabyte. However, the required
memory grows exponentially with increasing the number of the degrees of freedom. For
the two-electron system, e.g., H2 molecules, we also need to consider the azimuthal an-
gle because of the Coulomb interaction between the electrons. In this case, the number of
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the grid points related to the wavefunction is (Nξ Nη)2NaNR and the size of Hamiltonian
is (Nξ Nη)4N2

a N2
R, where Na denotes the number of grid points related to the azimuthal

angle. Of course, we do not need to save the full Hamiltonian matrix in the memory
(it is actually very difficult for such a huge matrix). However, we have to calculate the
multiplication of the Hamiltonian and wavefunction, which is very time consuming and
parallel calculation is required. For larger systems including more than 2 electrons, it
becomes very difficult for ab initio solving the full dimensional TDSE. Alternative model,
such as time dependent Hartree-Fock or density function theory, can be considered. In
this case, the DVR and Arnoldi time propagator methods shown above still work effi-
ciently.

3 Simulation results and discussions

To illustrate the algorithm outlined above, we simulate the electronic dynamics of H+
2 in

the presence of a time-dependent intense laser field. In our simulation, we have adopted
60 and 15 Legendre basis functions for treating the electron coordinates of ξ, η, respec-
tively. The mapping parameter α= 160 and L= 40 a.u.. While 80 sine polynomials are
used to discretize the nuclear coordinate R and the step ∆R = 0.25 a.u. Note that for
the nuclear coordinates, discrete grid points are evenly spaced. However, as mentioned
above, the discrete grid points are not uniformly located for the electron coordinates.
Fig. 1 shows the distribution of the discrete grid points in the two dimensional (x and z)
electron coordinates, where the internuclear distance R is assumed to be 2 a.u. We can
see from Fig. 1 that dense grid points are located near the cores of the nuclei, therefore
the Coulomb potential can be described more accurately. On the other hand, apart from
the nuclei, the Coulomb potential becomes very weak and smooth and therefore sparse
grid points are adopted. Note that the representation of the Coulomb potential is very

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

5

10

15

20

z (a.u.)

x 
(a

.u
.)

Figure 1: (Color online) Distribution of the discrete grid points in the two-dimensional electron coordinates.
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computationally demanding because of the singularity and the long range interaction.
The commonly-used finite different method adopts uniform grid points. A large num-
ber of grid points are required for an accurate representation of the Coulomb potential.
By contrast, DVR method adopts nonuniformly spaced grid points, which enables us to
overcome this problem by adjusting the density of the grid points. Such a method is
much more efficient.

Because DVR method enables us to efficiently describe the Coulomb potential, we can
simulate the electronic structure of the molecule H+

2 very accurately. Table 1 shows the
eigenenergies for the first 12 electric bound states. For comparison, eigenvalues reported
in [46] are also presented. We can see that for the ground and first two bound states,
more than 13 digit accuracy can be achieved. About 10 digit accuracy can be achieved
for the states from 3P to 4D. The eigenstate becomes more and more dense as increasing
the eigenenergy, nevertheless high accuracy still can be achieved. Note that the number
of the grid points and basis functions we adopted is intended to accurately solve the
TDSE involving the continuum states. Actually, much less basis functions (about 15) is
sufficient to achieve a 14 digit accuracy for the ground state.

Table 1: Eigenenergies of the bound states of H+
2 obtained with our method and [46]. The internuclear distance

is assumed to be 2 a.u.

State Energy in present work Energy in Ref. [46]

1S SIGMA G -0.602634214494947 -0.6026342144949
2P SIGMA U -0.167534392202413 -0.1675343922024

2P PI U 0.0712281801041407 0.07122818010413

2S SIGMA G 0.139135124660516 0.1391351246617
3P SIGMA U 0.244586834913515 0.2445868349143

3D SIGMA G 0.264222371174451 0.2642223711745
3D PI G 0.273300373356347 0.2733003733563

3S SIGMA G 0.322318954873545 0.3223189549591

4P SIGMA U 0.362687075637494 0.3626870757439
4D SIGMA G 0.369208122266617 0.3692081223681

4F SIGMA U 0.373289868596324 0.3733561298504
5F SIGMA U 0.419155465395248 0.4191557039293

5F SIGMA G 0.419626476198921 0.4196265315607

Lots of the molecular dynamics, such as dissociation, bond soft, can be understood
from the potential curve of eigenenergy as a function of internuclear distance [usually
called Born-Oppenheimer (BO) potential]. Therefore, the accuracy simulation of the BO
potential is of great importance for representing the molecular dynamics. Fig. 2 shows
the BO potential of the 1sσg and 2pσu states of H+

2 obtained with our numerical method.
We can see that the results agree quite well with the data in [46].

For another application of our model, we have considered the ionization process of
H+

2 subjected to an intense ultrashort laser pulse. The electric field is taken as linearly
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Figure 2: (Color online) BO potential curve of the 1sσg and 2pσu states of H+
2 . Solid and dashed lines are

obtained with our method and the dots and triangles are the data in [46]. The solid line and dots correspond
to the 1sσg state. The dashed line and triangles correspond to the 2pσu state.

polarized, which can be expressed by [47]

E(t)=E0sin
(πt

T

)2
sin(ωt+φ0). (3.1)

E0 is the laser amplitude, ω and φ0 are the frequency and carrier-envelope phase [48],
respectively. The time is in the range from 0 to T where T = nT0 and T0 is the optical
cycle of the driving laser pulse. We adopt a few-cycle laser pulse, T = 4T0, and a wave-
length of 800 nm. The carrier-envelope phase is set to be 0. The laser intensity is 3×1014

W/cm2. Fig. 3(a) shows the temporal profile of the electric field. TDSE is solved with
the method outlined above. The initial state is taken as the ground state 1sσg. Arnoldi
method with a 30 order accuracy is used to simulate the time propagation of the wave-
function. The time step is 0.05 a.u. In the time propagation process, wave packets that
reach the boundary can be reflected, causing artifact effects of ionization. To eliminate
these reflections, we have adopted an absorbing boundary which smoothly absorbs the
wave function reflected from the boundary.

Fig. 3(b) shows the population of nonionized electron of H+
2 subjected in the few-

cycle laser pulse. We can see that the population drops step by step, which corresponds
the ionization at the most intense peaks, P1, P2 and P3 of the driving field. To confirm
the convergence of our algorithm, we have performed a simulation by using the Arnoldi
method with a 40 order accuracy. The good agreement between these two simulations
demonstrates the convergence of our algorithm. We have also performed a lots of test
simulations, usually 30 and higher order Arnoldi propagator enable us to get a good
accuracy. Of course, a lower order Arnoldi propagator can be adopted when reducing
time step δt. However, because the accuracy of Arnoldi propagator is proportional to
(δt)n. The computing efforts of reducing δt by half are similar to that of increasing n by
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Figure 3: (Color online) (a) The electric field with an intensity of 3×1014 W/cm2 and pulse duration of 4 optical
cycles. The central wavelength is 800 nm. (b) The population of the nonionized electrons of H+

2 subjected in
the laser field. The solid line and dashed line correspond to the simulation by using the 30 and 40 order Arnoldi
methods, respectively. (c) The evolution of the molecular wave packet in the laser field shown in (a). Note that
logarithmic scale is used for the color bar.

a factor of 2. Since δt is a small value, (δt)n decreases very fast as increasing n. In other
words, it is more efficient to improve the accuracy by increasing n.

The non-Born-Oppenheimer model shown in above enables us to investigate not only
the electric motion, but also to investigate the molecular dynamics. Fig. 3(c) shows the
evolution of the molecular wave packet driven by the few-cycle laser pulse. The prob-
ability distribution of molecular wave packet is calculated by integrating the electron
motion, i.e., P(R,t)= (R/2)3

∫

dξ
∫

dη(ξ2−η2)Ψ(R,ξ,η,t)∗Ψ(R,ξ,η,t). Note that the term

ξ2−η2 can be eliminated by introducing ψ=Ψ/
√

ξ2−η2. We can see that H+
2 initially

is on the equilibrium state with an internuclear distance of 2 a.u. In the leading edge
of the few-cycle pulse, the molecule expands very slowly. However, as the laser inten-
sity increases, the molecular wave packet rapidly expands and the internuclear distance
increases to 6 a.u. at the trail of the driving pulse.

Moreover, we have investigated the high harmonics generation with the above model.
The high harmonic spectrum is calculated via the Fourier transform of the dipole momen-
tum, which can be defined either in the length or acceleration forms by dL(t)=<Ψ|z|Ψ>,
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Figure 4: (Color online) (a) The dipole momentum in the length and acceleration forms. Other parameters are
same with Fig. 3. (b) The harmonic spectra calculated from the length (blue solid line) and acceleration (red
dashed line) forms of the dipole momentum, respectively.

da(t)=<Ψ |∂2
t z |Ψ>, respectively. The harmonic spectrum are calculated accordingly,

PL=
ω4

4πc3
|dL(ω) |2, (3.2)

Pa=
1

4πc3
|da(ω) |2, (3.3)

where dL(ω) and da(ω) denote the Fourier transform of dL an da. Note that dL(ω)ω4 =
da(ω) and these two approaches become equal when the simulation is converged. There-
fore, it is generally used to check the convergence of the numerical simulation. Fig. 4(a)
shows the dipole momentums in the length and acceleration forms, respectively. The cor-
responding harmonic spectra are shown in Fig. 4(b). The good agreement between these
two spectra demonstrates the convergence of our simulation. On the other hand, it is
worthy noting that the harmonic spectra clearly show a “dip” around the 23rd harmonic.
This can be attributed to the destruct interference of the molecular wavepacket [30, 49].
A similar “dip” structure has been demonstrated with the Born-Oppenheimer approx-
imation model [30, 49]. However, it has not been demonstrated with the non-Born-
Oppenheimer model. Compared with [49], we can see that the “dip” becomes shallower
in our model. It is possibly due to the influence of the nuclear motion (see Fig. 3(c)).
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Figure 5: (Color online) The ionization rate as a function of internuclear distance. The laser pulse duration is

25 optical cycle (see Fig. 6(a)). The laser intensity is 1×1014 W/cm2 and central wavelength is 1064 nm.

The above simulation adopts a few-cycle pulse, to further test our model, we have
investigated the electronic and molecular dynamics in a long driving laser pulse. One
interesting phenomena of molecules is that the ionization becomes unexpected high at
some critical internuclear distance, which is called charge resonance enhanced ionization
(CREI) [50]. This process plays an important role for lots of ultrafast process in the inter-
action of molecules and intense lasers. Lots of efforts have been paid to the simulation
of CREI by different groups [22, 50, 51]. All these works adopted the model of solving
the TDSE in cylindrical coordinates (ρ, z, R). As mentioned in Section 2, Lagrange DVR
method can be applied to discretize the radical coordinate ρ. Then denser grid points can
be adopted near the origin. However, the axial coordinates z varies from −∞ to ∞, ei-
ther Lagrange or Legendre DVR methods are not suitable. Of course, the DVR methods
based on the sinc and fourier functions can be applied. However, these DVR methods
adopt uniformly distributed grid points. It does not show significant advantages com-
pared with the Finite definite and fast Fourier transform methods. On the other hand,
since the laser field is polarized along the axial direction, a larger number of grid points
usually have to be used in the simulation. By contrast, our model based on the VPS
is more efficient. For comparison, we have simulated the CREI process in a long driv-
ing pulse. As [22, 50, 51], the central wavelength is 1064 nm and the peak intensity of
the laser pulse is 1×1014 W/cm2. The total pulse duration T = 25T0. The laser field is
switched on in the first 5 optical cycles then kept on a constant intensity for 15 cycles
and is switched off in the last 5 cycles [see Fig. 6(a)]. In our simulation, we have adopted
72 and 24 Legendre basis functions for discretizing the coordinates of ξ, η, the mapping
parameter α=160, L=40 a.u. and the internuclear distance varies from 1 a.u. to 15 a.u.
The ionization rate is calculated with the same procedure as [50,51]. We first assume that
the internuclear distance is fixed (e.g., R=6 a.u. as shown in Fig. 6) and then calculate
the time dependent wavefunction. From the norm of the wavefunction, we can calcu-
late the population of the nonionized electrons as a function of time, which is denoted
as N(t). As [50, 51], N(t)= exp(−Γ t) where Γ is the ionization rate. It can be obtained
by Γ(t)=−dln[N(t)]/dt. Note that the laser amplitude is constant from t=5 T0 to 20 T0.
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Figure 6: (Color online) (a) The electric field with a duration of 25 optical cycles. The laser intensity is 1×1014

W/cm2 and central wavelength is 1064 nm. (b) The population of the nonionized electrons as a function
of time. The internuclear distance is set to be 6 a.u. and different grids were adopted for discretizing the
coordinates of ξ, η.

Therefore the overall ionization rate can be calculated by averaging Γ(t) from 5 T0 to 20
T0 [50, 51]. Fig. 5 shows the ionization rate as a function of internuclear distance. We can
see two maximums, the first one is around 4-6 a.u. and the other one appears around
8-10 a.u.. The ionization rate is highest (=0.28 1/fs) at 9 a.u. Such results agree very well
the previous simulations [22, 50, 51].

Furthermore, we have changed the number of grid points in our simulation. In
Fig. 6(b), the population of the nonionized electron is presented as a function of time.
Different grid points and mapping parameters were adopted for discretizing the coordi-
nates of ξ, η. As shown in this figure, the ionization is fully converged when Nξ = 120
and Nη =36 in our method. The change of mapping parameter α does not influence the
results either. Even through the ionization is very high at the end of laser pulse (≃65%),
the deviation is less than 2% when the number of grid points Nξ and Nη are reduced to 72
and 24. We have also changed the spatial region L to 60 and 80 a.u. and converged results
are obtained. For comparison, we have also simulated this process by solving the TDSE
in cylindrical coordinate. As [22], Lagrange DVR method is applied in the radical coordi-
nate ρ and Nρ =40. Uniformly distributed grid points are adopted in the axial direction
and 512 points were used. The result agrees very well with our simulation. However,
the required grid points are approximately 5 times higher in the cylindrical coordinates.
Accordingly, the required memories for the wavefunction and Hamiltonian are 5 and 25
times larger than our model. Note the evolution of the population is slightly different
for these simulations. It is because the wavefunction is integrated with different grids as
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Figure 7: (Color online) The ionization rate as a function of internuclear distance. The laser intensity is 3×1014

W/cm2 and the central wavelength is 800 nm. Other parameters are the same with Fig. 5.

changing the number of grid points. This artifact does not influence the final result, so
the results are convergent at the end of the laser pulse.

On the other hand, we have calculated the CREI at slightly higher laser intensity
of 3×1014 W/cm2 with our model. Note that Williams et al. [52] have experimentally
estimated the internuclear dependence of the ionization rate in an intense laser field.
However, only one maximum was found by Williams et al. and the highest ionization
appears at 6 a.u.. In Fig. 7, the ionization rate is presented as a function of internuclear
distance. Different from Fig. 5, the ionization indicates only one maximum at 6 a.u.,
which is in agreement with the experiment [52].

With the development of the laser technology, it becomes possible to produce an in-
tense laser pulse in the infrared region. In recent years, there is an increasing interest
to investigate the ultrafast dynamics using a infrared laser pulse in recent years [53, 54].
However, the CREI in the infrared region has not been simulated to the best of our knowl-
edge. In Fig. 8, we show the ionization rate as a function of internuclear distance in a
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Figure 8: (Color online) The ionization rate as a function of internuclear distance. The central wavelengths are
1400 nm (solid line) and 1800 nm (dashed line), respectively. Nξ = 200, Nη = 24, L= 120, α= 480 and other
parameters are the same with Fig. 5.
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1400-nm and 1800-nm laser fields, respectively. The laser intensity is same with Fig. 5,
i.e., 1×1014 W/cm2. Note that the oscillation amplitude of the electron motion becomes
larger in the infrared field. Therefore, a spatial range of 120 a.u. and larger number of
grid points (Nξ =200, Nη =24) were adopted in this simulation. From Fig. 8, we can see
that two maximums are presented at 6 and 10 a.u., respectively. However, the ionization
becomes higher around 6 a.u. compared with Fig. 5.

4 Conclusions

An efficient method to ab initio solve the time dependent Schrödinger equation without
Born-Oppenheimer approximation is presented. Our treatment is based on the variable
prolate spheroidal coordinates and discrete variable representations of the Hamiltonian.
This non-Born-Oppenheimer model has enabled us to visualize both the electronic and
molecular dynamics. With this model, we have accurately simulated the electronic struc-
ture and dynamics of H+

2 subjected to an intense ultrashort laser pulse. Moreover, the
evolutions of molecular wave packet and high harmonic generation are accurately sim-
ulated and the “dip” structure of the harmonic spectrum is demonstrated without the
Born-Oppenheimer approximation. Also the CREI of H+

2 subjected to an infrared (1400
and 1800 nm) driving pulse is simulated. Note that even through the simulation is shown
for hydrogen molecular ion, the method presented in this work gives a general approach
for modeling the diatomic molecular dynamics subjected to the intense laser fields. It can
be generated to a wide variety of applications.
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