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Abstract. Orbital-free density functional theory (OFDFT) is a quantum mechanical
method in which the energy of a material depends only on the electron density and
ionic positions. We examine some popular algorithms for optimizing the electron
density distribution in OFDFT, explaining their suitability, benchmarking their per-
formance, and suggesting some improvements. We start by describing the constrained
optimization problem that encompasses electron density optimization. Next, we dis-
cuss the line search (including Wolfe conditions) and the nonlinear conjugate gradient
and truncated Newton algorithms, as implemented in our open source OFDFT code.
We finally focus on preconditioners derived from OFDFT energy functionals. Newly-
derived preconditioners are successful for simulation cells of all sizes without regions
of low electron-density and for small simulation cells with such regions.
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1 Introduction

When modeling materials, a quantum mechanical theory’s utility is limited by its com-
putational cost. Part of the cost comes from the evaluation of energy functionals. In
this respect, orbital-free density functional theory (OFDFT) [1] is relatively inexpensive
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compared to the more-popular Kohn-Sham density functional theory (KSDFT). OFDFT
describes the electronic energy of a system solely using electron density and an ionic
external potential; it does not use any wavefunctions and all energy functionals can be
formulated to be quasilinear scaling (O(N log(N)) with a small prefactor [2, 3]. These
computational advantages come as a trade-off with accuracy, such that materials with
large spatial fluctuations in electron density are not yet well represented by kinetic energy
density functionals (KEDFs) in OFDFT. However, main group metals such as aluminum
(Al) can be modeled with energies reproducing KSDFT results to ∼10 meV [4, 5].

The second part of the computational cost in materials science simulations is due to
the optimization method used to minimize the energy. Optimizations must be performed
on several levels to fully minimize the total energy of the system. To optimize the cell
lattice vectors, cell stresses are minimized. To optimize ion positions, the forces are mini-
mized. And to evaluate the ground state energies, forces, or stresses for a fixed geometry,
the electron density must be fully optimized. Princeton Orbital-Free Electronic Structure
Software (PROFESS) [2, 6], which uses OFDFT to compute energies, optimizes the elec-
tron density, atomic configurations, and cell lattice vectors using iterative methods. In
this work, we describe recent improvements to electron density optimization algorithms
implemented within PROFESS and report benchmark results.

In Section 2, we introduce the specific OFDFT optimization problem and the treat-
ment of constraints. Unlike wavefunction-based methods, there is no need to orthogo-
nalize orbitals; only two physical conditions must be satisfied. First, the total number of
electrons Ne must remain constant. Second, the electron density at any given point must
be non-negative. These constraints are satisfied by a judicious choice of optimization
variable and the use of a Lagrange multiplier.

Next, we describe our calculational details and benchmarking metrics in Section 3.

In Section 4, we detail the iterative line-search optimization methods implemented
within PROFESS. We first describe a line search that conserves the total number of elec-
trons in the simulation [8], and derive the line-search-termination criteria that are anal-
ogous to the Wolfe conditions for a standard line search. We then review the nonlinear
conjugate gradient (CG) and the truncated Newton (TN) methods, which determine the
descent direction to take during the line search. Some benchmarks comparing CG and
TN performance for simulation cells containing Al are also included in this section.

In Section 5, we derive and test preconditioners for the inner CG loop of the TN
method. In the past, a preconditioner based on the von Weizsäcker (vW) [9] KEDF was
found to accelerate convergence in bulk crystals but caused optimization to fail in the
presence of vacuum [10]. Here, we propose preconditioners based on Lindhard linear
response and preconditioners that include both a Hartree energy term together with a
kinetic energy term. The preconditioners are benchmarked with simulation cells of bulk
material (no surfaces/vacuum) and with simulation cells containing vacuum.
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2 Optimization constraints

In OFDFT, we perform a constrained optimization of the electron density ρ, which is
defined in 3-dimensional space, to minimize the electronic energy

E[ρ]=TS [ρ]+ J [ρ]+Exc [ρ]+Ei−e[ρ]. (2.1)

Here, TS is the KEDF, J is the Hartree energy density functional (electron-electron Coulom-
bic repulsion energy), Exc is the exchange-correlation density functional, and Ei−e is the
energy due to interaction of the electrons with the ions (here defined as nuclei screened
by the core electrons). Several KEDFs currently in use [4, 11–13] can be further broken
into the components

TS [ρ]=TTF [ρ]+TvW [ρ]+Tx[ρ], (2.2)

where TTF is the Thomas-Fermi (TF) KEDF, which is exact for a homogeneous electron
gas [14, 15], TvW is the vW KEDF, exact for a single orbital system [9], and Tx is a nonlocal
term, which, when combined with the TF and vW KEDFs, allows the KEDF to reproduce
Lindhard linear response [16, 17].

In minimizing E, the first constraint is that the electron density ρ at any given point x

within the simulation cell must always remain non-negative, i.e.,

ρ(x)>0. (2.3)

An effective way to satisfy this constraint is to redefine the optimization variable [2].
In Lignères’s thesis [10], the substitutions φ (with φ2 = ρ) and χ (with exp(χ)= ρ) were
compared. While both variables guarantee that the non-negativity constraint is satisfied,
χ has the advantage of a one-to-one mapping with ρ, while φ has a more relevant physical
interpretation as being analogous to a wavefunction. In practice, φ is found to be much
more stable and efficient, and is commonly used for OFDFT optimization [2, 8, 18–20].
Therefore, we focus our discussion on φ, which we term the ”pseudo-wavefunction”
since it satisfies |φ|2=ρ.

While optimization algorithms using the pseudo-wavefunction always retain a non-
negative ρ, φ still has the potential to cause problems when it changes sign when using a
common form for the vW KEDF,

TvW [φ]=−1

2

∫

Ω

√

ρ(x)∇2
√

ρ(x)dx=−1

2

∫

Ω
|φ(x)|∇2 |φ(x)|dx, (2.4)

where Ω is the simulation cell domain. In this formulation, numerical artifacts may ap-
pear in the energy density and potential whenever φ changes sign. Fortunately, this ob-
stacle is easily overcome by using the alternative expression

TvW [φ]=−1

2

∫

Ω
φ(x)∇2φ(x)dx, (2.5)
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where the only difference in the resulting energy densities occurs when φ is close to zero.
Some researchers have suggested that (2.5) might cause problems, since it becomes pos-
sible for two discretized pseudo-wavefunctions that produce the same electron density
distribution (φ1 and φ2, with φ2

1 = φ2
2 = ρ) to have different energies [2, 19]. One exam-

ple where this would occur would be if φ1 on a grid was purely positive and φ2 had
changes in sign. Previous researchers have even suggested resetting φ at the start of each
optimization iteration. However, this reintroduces the numerical artifacts as in (2.4) and
makes CG optimization algorithms invalid, since previous conjugate directions no longer
apply to the reset wavefunction.

Fortunately, this non-uniqueness problem – where the kinetic energy is not uniquely
defined by ρ – is not an issue if ρ and φ are differentiable. This differentiability is assumed
in our case, since CG and TN are used to determine φ. Then even if φ1 and φ2 both
satisfy φ2 = ρ on a grid, they do not correspond to the same differentiable φ or ρ if one
keeps the same sign and the other changes sign. Therefore, there is only one kinetic
energy associated with any given ρ when using (2.5) to evaluate the vW KEDF, and there
is no need to constrain φ to be non-negative everywhere. Without the non-negativity
constraint, there are two equivalent local minima (φ∗ and −φ∗), but regardless of the
minimum approached with CG and TN optimizations, both give identical energies and
the same ground state electron configuration.

The second constraint in OFDFT is that the total number of electrons in the simulation
cell must remain a constant Ne, i.e.,

∫

Ω
ρ(x)dx=

∫

Ω
φ2(x)dx=Ne . (2.6)

This conservation of total electron number during energy minimization can be imple-
mented using the method of Lagrange multipliers, with the Lagrange function defined
as [21]:

L[φ,µ]=E[φ]−µ

(

∫

Ω
φ2dx−Ne

)

. (2.7)

The minimized energy E[φ] subject to constraint (2.6) then lies at the saddle point

max
µ

min
φ

L. (2.8)

The potential δL/δφ vanishes at this constrained minimum, δE/δφ is parallel to pseudo-
wavefunction φ, and the maximizing µ is the ratio between the two such that

0=
δL

δφ
=

δE

δφ
−2µφ → 2µφ=

δE

δφ
. (2.9)

In PROFESS, the constrained minimum is reached by approximating the µ that maxi-
mizes L with µ0 and performing an unconstrained minimization on L[φ,µ0]. The expres-
sion for µ0 is equivalent to the maximizing µ at the saddle point (2.9), with

µ0=
1

2Ne

∫

Ω

(

δE

δφ
φ

)

dx. (2.10)
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Of course, other approximations for µ can also reduce to (2.9) at the saddle point. Another
candidate tested, µ̃0=0.5(Ne)−1/2

∫

(δE/δφ)dx, does not converge as fast as (2.10).
While guaranteed to be exact at the constrained minimum, and close to an optimal µ

when φ is close to optimized, an approximate µ0 may be far from the true value of µ that
maximizes the Lagrange function when φ is far from the optimized electronic structure.
Because an inaccurate µ0 can prevent convergence, this possible problem is addressed in
two parts. First, when the potential is large, optimizations to determine minφ L[φ,µ0] may
proceed for multiple steps with fixed µ0. By choosing how often to update µ0, optimiza-
tion can be tuned to be faster or more stable. Second, because inaccurate µ0 may cause the
electron count Ne to deviate far from the initial value – which, in turn, may make µ0 even
less accurate – the pseudo-wavefunction φ is rescaled at every iteration so that it always
satisfies constraint (2.6). Because the rescaling occurs during the line search and must
satisfy the modified Wolfe conditions described in the next section, it does not adversely
affect convergence. This use of rescaling is only a preventative measure for instabilities
and alone cannot replace Lagrange multipliers in optimization algorithms.

3 Benchmark setups

In the following sections, optimization algorithms are benchmarked to assess their per-
formance using a version of the PROFESS that includes preconditioners not implemented
in the publicly-released software [2, 6]. All simulation cells have uniform 3-dimensional
grids with periodic boundary conditions imposed. For calculation of energies and poten-
tials that take place at each optimization iteration, an overall O(N log(N)) scaling with
system size occurs via fast Fourier transforms (FFTs), which are used to make all other
calculations local in real or reciprocal space and scaling linearly [2]. Although some op-
timization wall times are included in the results, benchmarks are mostly determined by
counting the number of FFTs, which is a good metric since they are relatively expensive
and are used in the calculation of most functionals.

At the beginning of all electron density optimizations in this work, the pseudo-wave-
function is uniform throughout the simulation cell. Electron density is optimized until
the norm of the potential, defined as

∥

∥

∥

∥

δL

δφ

∥

∥

∥

∥

=

√

√

√

√

(

∫

Ω

(

δL

δφ

)2

dx

)

(

∫

Ω
dx

)−1

, (3.1)

is sufficiently low, or when the energy of the simulation cell has sufficiently converged
for three successive iterations.

Energy differences reported in graphs are defined differently from the energy con-
vergence stopping criterion. Any energy differences listed in the following sections are
relative to the lowest energy obtained for the system among all the optimization meth-
ods tested. This allows us to better compare algorithms, since a method that produces a
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significantly higher energy than other methods has not reached the ground state electron
configuration, despite any apparent convergences in energy or potential.

Unless otherwise noted, benchmarks use the Wang-Govind-Carter 1999 (WGC99)
KEDF with or without vacuum damping (depending whether large regions of low elec-
tron density are present in the simulation cell) [4,22,23], the local density approximation
for the exchange-correlation energy [24,25], the Huang-Carter pseudopotential for Al [5],
and a plane-wave kinetic energy cutoff of 600 eV (grid density of ∼4 Å−1). WGC99 pa-
rameters are ρ∗ = 0.1919, γ = 2.7, and {α,β}= {(5±

√
5)/6}. In some benchmarks, the

Huang-Carter (HC) KEDF is also used, with parameters λ=0 and β=0.51 [13].

4 Optimization methods

4.1 Line search for modified Wolfe conditions

Returning to the discussion of optimization algorithms, we wish to minimize the La-
grange function described in (2.7), while approximating the Lagrange multiplier µ as the
function of δE/δφ and φ given as µ0 in (2.10). In PROFESS, we use line search methods
to minimize the Lagrange function.

Before each line search iteration, a search direction pk is first calculated; a typical line
search then determines an appropriate step size ak in that direction. If an exact line search
is performed, the chosen step size ak gives the minimum energy along the line search di-
rection. However, finding the precise minimum in a line search can be expensive. An
inexact line search is faster; the energy and ∂E/∂ak must only satisfy conditions of suf-
ficient decrease and curvature (Wolfe conditions) before terminating the search [7]. The
Wolfe conditions are as follows:

L[φk+1]6L[φk]+c1ak∇L[φk]·pk, (4.1)

∇L[φk+1]·pk > c2∇L[φk]·pk, (4.2)

where c1 ∈ (0,1) and c2 ∈ (c1,1) are constants that depend on the algorithm being used.
Equation (4.1) is a condition for sufficient decrease while (4.2) is a curvature condition.
After determining the step size, a standard line search optimization would update the
pseudo-wavefunction at each iteration with

φk+1=φk+ak pk. (4.3)

Unfortunately, the standard line search defined in (4.3) presents some difficulties when
applied to OFDFT. In particular, the line search does not keep the total electron count in
the simulation constant (constraint (2.6)). As mentioned earlier, the Lagrange multiplier
is approximated with µ0 while minimizing L[φ,µ0], so fluctuations of Ne that are too large
can potentially make µ0 very inaccurate and the entire optimization unstable.

Instead of (4.3), a line search should keep the total number of electrons constant with-
out arbitrarily rescaling. For this, we use a mixing method proposed in [8]. This method
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does not step in a straight line, but instead moves in a curved direction that conserves
total electron count. It is expressed as

φk+1=φ⊥
k sin(θk)+φkcos(θk), (4.4)

where φ⊥
k is the part of the search direction pk perpendicular to φk, normalized to

√
Ne,

i.e,

φ⊥
k =

√
Ne

|φ⊥,unnormalized
k |

φ⊥,unnormalized
k , (4.5)

φ⊥,unnormalized
k = pk−

(

φk ·pk

|φk|2
)

φk. (4.6)

In addition to conserving
∫

Ω
|φ|2dx = Ne, (4.4) has the advantage of being a bracketed

search; we require that 0< θk <π/2 in order to give a mix of the old and new pseudo-
wavefunctions. This provides a stability advantage over other electron-conserving line
searches [2, 19] that are unbracketed.

In reference [8], the step size along the descent direction was approximated analyti-
cally for the mixing method, which sped up computation by skipping the iterations in-
herent in a line search, but also was found to be unstable in some cases. We use a line
search in our implementation. For most optimization problems in OFDFT, the curved
line search (4.4) is nearly linear – approximately (4.3) – since the step size θk is typically
very small; Wolfe conditions (4.1)-(4.2) are sufficient for convergence. However, for larger
values of θ, the changes in search direction become more significant (pk no longer fixed),
and the standard Wolfe conditions should be modified to maintain the same convergence
properties. The appropriate criteria for line search termination, analogous to the Wolfe
conditions, become

L[φk+1]6L[φk]+c1θk∇L[φk]·qk, (4.7)

∇L[φk+1]·qk > c2∇L[φk]·qk. (4.8)

Here, the original line search variable ak is replaced by the new line search variable θk,
and pk is replaced by

qk(θk)=
φk+1−φk

θk
=φ⊥

k

sin(θk)

θk
+φk

cos(θk)−1

θk
(4.9)

for θk ∈ (0,π/2], and
qk (0)=φ⊥

k . (4.10)

In addition, qk must be a descent direction. In practice, (4.9) can be evaluated as a Taylor
expansion for better precision, due to the small values of θk in line searches. When using
the modified Wolfe conditions (4.7)-(4.8) and implementing periodic restarts from steep-
est descent, global convergence of line search algorithms like TN and CG is guaranteed
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for certain differentiable functions because the Zoutendijk condition is satisfied; proofs
closely follow those of the Wolfe conditions outlined in [7].

In a standard line search, TN is initialized with ak,0 = 1, while CG does not have a
recommended value for ak,0. Therefore, to most closely reproduce the same initial step
size and direction in the electron-conserving line search, we initialize θk,0 so that the new
wavefunction is parallel to φk+pk and normalized to

√
Ne. Because the component of

φk+pk that is perpendicular to the current wavefunction φk is

|φk+pk|
∣

∣φ⊥
k

∣

∣

sin(θk,0)φ⊥
k =(φk+pk)

⊥=

∣

∣

∣
φ⊥,unnormalized

k

∣

∣

∣

∣

∣φ⊥
k

∣

∣

φ⊥
k , (4.11)

we initialize the line search variable with

θk,0≈sin(θk,0)=

∣

∣

∣
φ⊥,unnormalized

k

∣

∣

∣

|φk+pk|
. (4.12)

Here, we approximate θk,0 ≈ sin(θk,0), since the line search variable θk starts small and
decreases, making the initialization more accurate as the optimal electron density is ap-
proached.

Note that we use the Lagrange function L[φ,µ0] while describing the modified Wolfe
conditions. While L[φ,µ0] and E[φ] are equivalent at any point of the electron-conserving
line search (since the Lagrange multiplier term in (2.7) is zero), the difference between the
energy and Lagrange function becomes important when implementing the inexact line
search termination criteria. The modified Wolfe conditions (4.7)-(4.9) are not satisfied at
the same time for E[φ] and L[φ,µ0], and because we are searching for the saddle point of
the Lagrange function, the optimization can converge faster if we monitor the modified
Wolfe condition based on the Lagrange function instead of the energy. The benchmark
in Fig. 1 compares the termination criteria applied to CG optimization for an equilibrium
4-atom face-centered cubic (fcc) Al bulk simulation cell. The CG optimization of bulk fcc
Al using the line search checking for convergence of the Lagrange function is twice as
fast as an optimization that checks the energy.

However, for most other systems, the difference in using Lagrange and energy line
searches is much less dramatic. In some cases where the approximation µ0 for the La-
grange multiplier is not sufficiently accurate, convergence speeds can even be reversed,
since using energy and δE/δφ (i.e., fixing µ= 0) to check Wolfe conditions is more sta-
ble than allowing µ0 to vary. The choice of E or L for line searches is therefore problem-
dependent. Nevertheless, for the benchmarks in the remainder of this work, line searches
are performed for the Lagrange function L, with the Lagrange multiplier µ0 fixed at the
approximated value calculated at the beginning of each line search.

4.2 Nonlinear conjugate gradient and truncated Newton

In the previous section, we discussed inexact line search criteria that ensure convergence
as long as pk and qk are descent directions. Here, we explore the performance of the
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Figure 1: Convergence of electron density optimization for an Al fcc cubic unit cell (4 atoms), comparing the
performance of an optimization using a line search with the Lagrange function vs. an optimization using a line
search with energy.

optimization depending on the choice of search direction pk.

Electron density optimization in OFDFT is a very large scale problem even when
modeling materials at the nanoscale; a simulation cell containing 104 atoms has φ with
∼107 dimensions. As a result, OFDFT requires optimization algorithms that have mini-
mal computational and storage costs. Two families of line search optimization methods
that satisfy these requirements are the nonlinear CG and inexact Newton methods [7].
Neither method requires the Hessian to be computed, and relatively little memory is re-
quired since Newton methods do not use previous search directions and CG only uses
the immediately prior search direction to determine the next search direction.

The search direction pk at iteration k can be expressed as

pk =−B−1
k ∇Lk, (4.13)

where −∇Lk is the negative potential, which gives the steepest descent direction of the
Lagrange function (2.7) at iteration k, and the expression for B−1

k depends on the specific
algorithm (CG or Newton).

For linear CG, the search direction is chosen to be conjugate to previous search di-
rections. In nonlinear CG (for problems like OFDFT), a variety of algorithms generate
distinct search directions, although all reduce to linear CG when applied to a linear
problem. These include the standard Polak-Ribière method and the newer Hager-Zhang
method [26], two algorithms that are implemented in PROFESS.

On the other hand, inexact Newton methods use approximate Hessian matrices in
determining search directions, with

Bk≈Hφ,k≡
δ2Lk

δφ(x)δφ(x′)
. (4.14)
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In TN (also known as the line search Newton-CG method) the search direction is found
by solving for an inexact solution of the linear equation

Hφ,k pk =−∇Lk (4.15)

using linear CG. When the convergence tolerance is reached or when the Hessian is found
to be non-positive definite, this inner CG loop is terminated. Even though an analytical
form of the Hessian Hφ,k is known in OFDFT, an iterative method is used to solve (4.15)

since the computation and storage of H−1
φ,k , not to mention its application to −∇Lk to

compute pk, would scale more than quadratically with system size. On the other hand,
the calculation of the projected Hessian, Hφ,k pk, at each iteration scales quasilinearly with
system size (like the energy and potential calculations), leaving the optimization scaling
dependent on the inner CG loop. The projected Hessian can be evaluated either directly
or as a finite difference of the potential, with little difference in computational efficiency.
In PROFESS, the projected Hessian is evaluated as a first-order finite difference of the
potential.

Because an inner CG loop is used to solve (4.15) for each TN iteration, the scaling of
the TN minimization itself (number of iterations needed due to system size) is essentially
the same as with CG minimization. For both, scaling is highly dependent on the nature of
the problem being studied. If suitable preconditioners were implemented, scaling could
be made independent of system size. Of course, finding a good preconditioner is al-
most as difficult as solving the initial optimization problem. Current preconditioners for
OFDFT, which work well in bulk, still often fail for simulation cells containing vacuum.
These preconditioners are discussed in Section 5.

Despite similarities in scaling with system size, TN converges quadratically once φ is
sufficiently close to the solution while CG can converge superlinearly. This is reflected
in the faster rate of convergence for TN relative to CG in benchmarks of Al simulation
cells. In Fig. 2, TN and CG electron density optimizations are benchmarked for a 4-atom
fcc unit cell representing bulk Al (3.97 Å × 3.97 Å × 3.97 Å) and a 1110-atom simulation
cell representing a stretched Al nanowire of 1 nm diameter surrounded by vacuum (19.00
Å × 20.00 Å × 234.45 Å). The norm of the potential (3.1) and the energy (relative to the
smallest energy computed using any method) are shown to converge faster for TN in
both cases, with significantly better performance observed with TN in the nanowire test.
To reduce the potential norm below 10−5 a.u. for the 4-atom cell on a single core of a
2.67 GHz Intel Nehalem processor, the CG optimization takes 0.17 s (960 FFTs), and TN
optimization takes 0.12 s (864 FFTs). To reduce the potential to below 10−5 a.u. for the
nanowire on one node (8 cores) of the same processor, CG takes 701.2 s (8896 FFTs) and
TN takes 310.8 s (4304 FFTs).

In the benchmarks above, the approximate Lagrange multiplier µ0 is updated at ev-
ery iteration for CG and at every inner CG loop iteration for TN. However, as mentioned
earlier, frequent updates to µ0 can sometimes cause problems with convergence. In Fig. 3,
an implementation of TN that updates µ0 at every inner CG iteration is compared to a
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Figure 2: Benchmarked performance of CG (gray) compared to TN (black) electron density optimization on an
Al fcc unit cell (left) and an Al nanowire of 1 nm diameter (right). The norms of the potentials are indicated
by solid lines and energies (relative to the minimum energy) are dotted lines.

faster one that updates µ0 only once per TN iteration. This benchmark, using the WGC99
KEDF with parameters ρ∗=0.21 Å−3 and γ=2.5, is performed on a simulation cell rep-
resenting a quasi-two-dimensional crack in Al bulk (7828 atoms in a 2.81 Å × 232.84 Å
× 224.13 Å cell) that does not exhibit any convergence instabilities. The fastest conver-
gence is still observed when µ0 is updated at every iteration in the inner CG loop for TN.
Although almost twice as slow, TN with less frequent updates to µ0 still converges both
faster and to a more optimized configuration than CG. On 32 cores, TN with frequent µ0

recalculations can optimize electron density below the potential cutoff of 10−5 a.u. in 508
s for TN (11696 FFTs). When µ0 is updated only once per TN iteration, time increases to
827 s (20769 FFTs), which is still an improvement from the 1194 s needed for CG (26512
FFTs).

When far from the saddle point of the Lagrange function, the minimization algorithm
becomes unstable if we update µ0 at each inner CG iteration. Therefore the schedule for
updating µ0 must be determined dynamically. A good balance of speed and stability can
be achieved if µ0 is updated only once each TN iteration when the potential is larger than
0.01 a.u., and if µ0 is updated at every inner CG loop when the potential norm drops
below 0.01 a.u.. However, benchmarks in this work are performed with µ0 updated at
every inner CG loop iteration regardless of the potential norm.

From these benchmarks, we see that the CG and TN optimization routines are not size
independent, and more FFTs are required for convergence for larger simulations (in addi-
tion to the quasilinear scaling of the cost of each FFT with system size). Overall scaling is
therefore somewhat worse than quasilinear when the electron density is being optimized
to the ground state configuration. However, the convergence of the nanowire and the
cracked bulk is especially difficult due to the presence of vacuum. Large simulation cells
containing no vacuum would be expected to have a smaller size scaling effect.
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Figure 3: Convergence of potential (solid lines) and energy (dashed lines) for electron density optimization of
an edge crack in bulk fcc Al. The thicker black lines indicate TN where the Lagrange multiplier µ is updated
at every iteration of the inner CG loop. The thin black lines indicate TN when µ is only updated once per TN
iteration. Gray is CG optimization.

5 Preconditioners

5.1 Deriving Newton direction preconditioners

As mentioned in the previous section, the scaling of both CG and TN is primarily de-
termined by the number of iterations required for the convergence of CG loops. The
difference between the two is that the CG loop in TN solves a problem in the form of a
linear system of equations (specifically, determining p in Hφ p=−∇L) while the nonlin-
ear CG optimization solves a problem in the form of an energy minimization. Because
preconditioners are easier to determine in the first case and because TN convergence is
already more efficient than CG, we focus on preconditioning the CG loop in TN.

The speed at which a linear CG optimization converges depends on the distribution
of eigenvalues of matrix Hφ. The larger the range of eigenvalues, the longer it takes
to converge, and convergence is fastest if there are few eigenvalues or else eigenvalues
clustered at only a few values. Preconditioned linear CG performs a change of variables
to redistribute eigenvalues using a matrix C to form the new optimization problem [7]:

C−THφC−1p=C−T (−∇L). (5.1)

The change of basis that takes place in preconditioned CG requires minimal alterations
to the standard CG algorithm. The single change at each iteration is to add a step solving
for a preconditioned residual y from the residual r=Hφ p+∇L with

My= r, (5.2)

where M=CTC is symmetric positive definite. If M= Hφ is used, the solution is deter-
mined in a single iteration after preconditioning (although the inner loop to solve My=r
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may require multiple iterations), and if M= I (the identity matrix) the algorithm reverts
to standard CG. Optimally, M reflects the eigenvalue distribution of Hφ, and y= M−1r
should be computable with at most quasilinear scaling. To derive a good preconditioner
M that reproduces the ill-conditioned parts of Hφ, we first examine Hφ component by
component.

Recall that Hφ = δ2L/δφ(x)δφ(x′), where the Lagrange function is made up of the
electronic energy of the system and an electron conserving term:

L[φ]=E[φ]−µ

(

∫

Ω
φ2dx−Ne

)

=Ts [φ]+ J [φ]+Exc [φ]+Ei−e [φ]−µ

(

∫

Ω
φ2dx−Ne

)

. (5.3)

The second derivative of the ion-electron energy does not contribute to Hφ, since its first
derivative is constant with respect to the pseudo-wavefunction (we use local pseudopo-
tentials). We also neglect the exchange-correlation and Lagrange multiplier terms when
deriving preconditioners. The exchange-correlation term is smaller than the kinetic en-
ergy, and any derivative of the Lagrange multiplier term is also small when total electron
density is close to the constrained value. In addition, the nonlocal KEDF term is smaller
than TF and vW terms (2.2), so it may be less important when deriving a preconditioner.

In summary, the TF, vW, and Hartree energy density functionals are the primary con-
tributors to Hφ. The energies and the first and second functional derivatives relative to φ
for each of these terms are as follows.

The TF KEDF is local in real space:

ETF= cTF

∫

Ω
φ10/3(x)dx, (5.4)

VTF=
10

3
cTFφ7/3(x), (5.5)

HTF
φ =

70

9
cTFφ4/3(x)δ

(

x−x′
)

, (5.6)

where cTF is 0.3(3π)2/3.

The vW terms depend on the gradient of the pseudo-wavefunction φ, which is local
in reciprocal space. Since functional derivatives are taken relative to φ, simpler forms of
the potential and Hessian are obtained than if taking the derivatives relative to ρ:

EvW =
∫

Ω
φ(x)

(

−1

2
∇2

)

φ(x)dx, (5.7)

VvW =
δEvW [φ]

δφ(x)
=−∇2φ(x), (5.8)

HvW =−∇2δ
(

x−x′
)

. (5.9)
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Here, δ(x) is the delta distribution. In the past, the second functional derivative of the vW
energy has been moderately successful in preconditioning CG optimization in OFDFT for
simulation cells containing only bulk [10, 19].

The second derivatives of TF and vW can be discretized into Hessian matrices to form
kinetic energy preconditioners

MTF=HTF
φ =

70

9
cTFDφ4/3 , (5.10)

MvW =HvW =F−1Dq2F , (5.11)

where q is a vector containing the magnitudes of the reciprocal space coordinates, Dψ

indicates a diagonal matrix whose diagonal is the vector ψ, and F and F−1 indicate the
forward and reverse discrete Fourier transform matrices, which act on vectors with

F [ f (l)]=
1

N

N1−1

∑
l1=0

N2−1

∑
l2=0

N3−1

∑
l3=0

f (l)×e−2πi(l1m1/N1+l2m2/N2+l3m3/N3), (5.12)

F−1 [ f (m)]=
N1−1

∑
m1=0

N2−1

∑
m2=0

N3−1

∑
m3=0

f (m)×e2πi(l1m1/N1+l2m2/N2+l3m3/N3), (5.13)

where Ni is the total number of gridpoints in dimension i, N=N1 ·N2 ·N3, and l=(l1,l2,l3)
and m=(m1,m2,m3) are the real and reciprocal space indices, respectively.

For the Hartree energy, the second functional derivative is more complicated than
either HTF

φ or HvW , and is a sum of a term local in real space with one local in reciprocal
space:

J=
1

2

∫

Ω

∫

Ω

φ2(x)φ2(x)

|x−x′| dxdx′ , (5.14)

V J =φ(x)
∫

Ω

φ2(x′)
|x−x′ |dx′, (5.15)

H J
φ=δ

(

x−x′
)

∫

Ω

φ2(x′′)
|x−x′′|dx′′+

2φ(x)φ(x′)
|x−x′| =H J1

φ +H J2
φ . (5.16)

We show in benchmarks that the Hartree term alone is a bad preconditioner. However,
the second term of the Hartree second functional derivative can be combined with kinetic
energy-based Hessians. The discretized Hartree Hessian suggests a preconditioner of the
form

M J2=H J2
φ =8πDφF−1Dq−2FDφ. (5.17)

All the individual preconditioners proposed above can be easily inverted. The applica-
tion of the inverse partial Hessian to some vector remains at most quasilinear scaling
(Table 1), since the Fourier transform applied to any vector p scales quasilinearly with
the size of p through the use of FFTs, and the computation of the diagonal matrices scales
linearly.
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We can derive more preconditioners if we assume that electron density is close to a
homogenous electron gas (e.g., Al bulk). In this case, the pseudo-wavefunction is nearly
constant, with φ≈√

ρ0, where ρ0 is the average electron density. A Hartree preconditioner
for bulk then can be reduced from (5.17) to

M J0=8πD√
ρ0
F−1Dq−2FD√

ρ0
=8πρ0F−1Dq−2F . (5.18)

Because this expression is solely diagonal in reciprocal space, it can be combined with
the vW Hessian (5.11) to form another preconditioner,

MvW+J0=F−1
(

Dq2+8πρ0Dq−2

)

F . (5.19)

Similarly, a TF-like term associated with a uniform electron gas can be added to the vW
preconditioner, giving two preconditioners

MTF0vW =F−1

(

Dq2+
70cTFρ2/3

0

9
I

)

F , (5.20)

MTF0vW+J0=F−1

(

Dq2+
70cTFρ2/3

0

9
I+8πρ0Dq−2

)

F . (5.21)

The application of the inverse of these preconditioners to any vector is also quasilinear
scaling since they are local in reciprocal space.

In addition to Hessian-based preconditioners, another family of preconditioners can
be derived from Lindhard linear response. As mentioned above, numerous KEDFs have
been derived to reproduce the following linear response:

δ2TS [ρ]

δρ(x)δρ(x′)

∣

∣

∣

∣

ρ0

=F−1

(

− 1

χLind(q)

)

, (5.22)

where

χLind=− kF

π2

(

1

2
+

1−η2

4η
ln

∣

∣

∣

∣

1+η

1−η

∣

∣

∣

∣

)

(5.23)

and kF=(3π2ρ0)1/3 and η=q/2kF . Since (5.22) is the second derivative relative to electron
density ρ instead of the pseudo-wavefunction φ, the chain rule is used to derive a total
kinetic energy functional preconditioner of the form

ML=
δ2TS [ρ]

δφ(x)δφ(x′)
≈ δρ(x)

δφ(x)

δ2TS [ρ]

δρ(x)δρ(x′)

∣

∣

∣

∣

ρ0

δρ(x′)
δφ(x′)

, (5.24)

which, after substituting (5.22), is discretized as

ML=4DφF−1D−1/χLind(q)
FDφ. (5.25)
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Table 1: List of analytical preconditioners tested in benchmarks.

Preconditioner Discretized Preconditioner Inverse Preconditioner

TF (5.10) 9
70cTF

Dφ−4/3

vW (5.11) F−1Dq−2F
vW+J0 (5.19) F−1D

(q2+(8πρ0)/q2)
−1F

TF0vW (5.20) F−1
(

D
(q2+(70cTFρ2/3

0 )/9)
−1

)

F

TF0vW+J0 (5.21) F−1
(

D
(q2+(70cTFρ2/3

0 )/9+(8πρ0)/q2)
−1

)

F

L (5.25) 1
4 Dφ−1F−1D−χLind(q)

FDφ−1

L+J (5.26) 1
4 Dφ−1F−1D

(−1/χLind(q)+2π/q2)
−1FDφ−1

L0 (5.27) 1
4ρ0

F−1D−χLind(q)
F

L0+J0 (5.28) 1
4ρ0

F−1D
(−1/χLind(q)+2π/q2)

−1F

This is similar to the second term of the Hartree Hessian, and as a result, the sums of
the Lindhard and Hartree matrices can also be inverted for use in preconditioners. Three
additional preconditioners based on Lindhard linear response are

ML+J =4DφF−1
(

D−1/χLind(q)
+2πDq−2

)

FDφ, (5.26)

ML0=4ρ0F−1D−1/χLind(q)
F , (5.27)

ML0+J0=4ρ0F−1
(

D−1/χLind(q)
+2πDq−2

)

F . (5.28)

A summary of the preconditioners proposed in this section is included in Table 1. All
preconditioners other than the TF preconditioner require an additional two FFTs per CG
iteration. From their derivation, any of these preconditioners could be useful when a
simulation uses a Lindhard-response-based KEDF.

5.2 Preconditioners for bulk samples

We test the preconditioners derived in Section 5.1 in comparison to several ”precondi-
tioners” that solve for the preconditioned residual y = M−1r (5.2) using an additional
CG loop. These numerical CG preconditioners (which add another nested CG loop to
the pre-existing CG loop of TN) have the forms TFvW, WGC, J (Hartree), TFvW+J, and
WGC+J, and are computed iteratively since they contain terms that are local in both real
and reciprocal space and cannot be easily inverted analytically. The CG preconditioners
are iterated until the residual is sufficiently small (less than 10% of the initial residual),
the residual stops changing (less than 10% change in subsequent iterations), or the pre-
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Table 2: Benchmark for electron density optimization for equilibrium bulk fcc Al modeled using a 4-atom unit
cell. The numbers of CG iterations, line search (LS) iterations, and FFTs for an electron density optimization
within OFDFT are compared for the WGC99 and HC KEDFs for a variety of analytical (above the line) and
numerical CG (below the line) preconditioners. The * indicates that the CG preconditioner is never positive
definite. The unpreconditioned values are shown in boldface.

WGC99 HC
Preconditioner #CG #LS #FFTs #CG #LS #FFTs
L0+J0 7 6 222 8 7 3237
L0 8 6 240 8 7 3237
vW 8 7 256 8 7 3237
vW+J0 8 8 272 8 7 3237
TF0vW 10 8 308 10 9 4117
TF0vW+J0 11 8 326 10 7 3679
L+J 20 9 504 20 9 6359
L 22 9 540 26 10 7904
None 57 11 1088 54 10 13648

TF 63 10 1168 63 10 15637

WGC+J (CG) 15 8 1456 * * -
WGC (CG) 12 10 1402 * * -
TFvW+J (CG) 18 10 760 18 10 6264
TFvW (CG) 15 8 494 17 10 5933
J (CG) 884 99 38134 875 99 234636

conditioner M is no longer positive definite. We focus on the results of the iterative pre-
conditioners and ignore the cost of their additional iterations; these preconditioners are
used to check whether analytical preconditioners with a similar form are worth pursuing
in future research.

One of the simplest cases for the study of preconditioners is the same 4-atom fcc cell
of bulk Al benchmarked in Section 4, with optimization stopping when the norm of the
potential is less than 10−6 a.u.. Simulations using the WGC99 KEDF are compared with
those using the HC KEDF (Table 2) [13]. For this setup, the TFvW and TFvW+J CG-
based preconditioners accelerate convergence for bulk Al with both KEDFs. However,
the CG-based J preconditioner does not accelerate convergence for either the WGC99 or
HC KEDF. Also, differing results are obtained with the WGC preconditioner depending
on whether the WGC99 or HC KEDF is used. This indicates a WGC preconditioner may
be too specialized to be used as an all-purpose preconditioner for KEDFs derived using
Lindhard response. We do not test the J or WGC preconditioner in further benchmarks.

All analytical preconditioners that contain a Lindhard-based term or a vW term ac-
celerate convergence. The L0, L0+J0, vW, vW+J0, TF0vW, and TF0vW+J0 perform the
best, cutting the total number of FFTs to less than 30% of the non-preconditioned value
when using either the WGC99 or HC KEDF. This is better than the performance of the
CG-based preconditioners, in terms of both CG loop iterations and line search steps. The
L and L+J preconditioners also improve optimization time from the non-preconditioned
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Table 3: Preconditioner performance for a 1848-atom cell of bulk Al with an fcc-like structure. The first
set of results corresponds to a simulation cell where the displacement of an atom in any given dimension is
Gaussian with standard deviation σ of 0.1 Å, and the second has standard deviation 0.25 Å. The numbers of
CG iterations, line search (LS) iterations, and FFTs for an electron density optimization are shown, compared
to the unpreconditioned case (values in boldface).

σ=0.1 σ=0.25
Preconditioner #CG #LS #FFTs #CG #LS #FFTs
L0+J0 12 8 344 16 9 432
vW+J0 15 8 398 19 8 470
TF0vW+J0 18 9 468 22 9 540
L+J 25 9 594 47 11 1022
None 77 12 1424 95 17 1792

TF 85 12 1552 113 15 2048
L0 84 12 1704 95 12 1902
L 84 12 1704 142 15 2796
TF0vW 92 12 1848 94 12 1884
vW 723 54 13878 963 58 18262

TFvW (CG) 81 13 2520 91 11 2830
TFvW+J (CG) 17 10 764 23 12 1024

system, but less dramatically; 46% of the original FFTs are needed for WGC99 and 47%
for HC. The TF preconditioner is unsuccessful and slows optimization convergence.

From these results, it appears that TF and J individually do not account for the ill-
conditioned nature of the Hessian. This is as expected, since the valence electron density
of bulk Al (and most systems for which OFDFT is most accurate) is close to a uniform
electron gas. Therefore, ρ and φ are fairly smooth, and functionals and energy densities
that are locally dependent on those variables similarly do not vary much. On the other
hand, energy densities that depend on ∇φ have larger variations that are more important
to represent in preconditioners. However, the L and L+J preconditioners, which have
an additional 1/φ real space dependence through the use of the chain rule, may over-
exaggerate these fluctuations. All of the most successful analytical preconditioners are
local in reciprocal space and have no dependence on φ.

Now we examine a more complicated bulk system. The previous Al4 cell is repro-
duced with 6 cells in the x-direction, 7 in the y-direction, and 11 in the z-direction, re-
sulting in a cell containing 1848 atoms. In one benchmark, atoms are moved from their
equilibrium positions by a random Gaussian displacement with standard deviation 0.1 Å
in each dimension. In the second large bulk benchmark, atoms are displaced with stan-
dard deviation 0.25 Å. The same convergence criterion (potential’s norm less than 10−6

a.u.) is used. The effect of preconditioning the CG loop of TN optimization for these
systems is summarized in Table 3.

Here, only the preconditioners that have both a kinetic energy and a Hartree com-
ponent are faster than the non-preconditioned optimization, with L0+J0 needing only
24% of the original number of FFTs for optimization. The TF, TF0vW, L0, and L pre-
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Figure 4: Preconditioners obtained by inverting kinetic energy and Hartree energy Hessian matrices in reciprocal
space. The L0 and TF0+vW preconditioners with ρ0 =0.2839 a.u. (mean electron density for all bulk Al tests
for preconditioner benchmarks) are plotted with the vW preconditioner on the upper figure. The lower figure
plots preconditioners with both kinetic and Hartree (J0) terms.

conditioners are slightly worse than the non-preconditioned system. The vW precon-
ditioner eventually converges, but requires more than nine times as many FFTs as the
non-preconditioned system. The CG-based preconditioners follow a similar trend as the
analytical preconditioners. The TFvW preconditioner produces similar performance to
the unpreconditioned system, and TFvW+J improves performance, although not as much
as with analytical preconditioners.

The success of a combined kinetic energy and Hartree energy Hessian preconditioner
can be explained after comparing the preconditioners that are evaluated purely in recip-
rocal space (Fig. 4). The deficiencies of the vW, TF0vW, L0, or L preconditioners alone
only become apparent for larger simulation cells, where the reciprocal space grid be-
comes denser and behavior at small q becomes increasingly important. Without the J0
term, either the preconditioner increases to some positive finite value for small q, as is
the case for the TF0vW and L0 preconditioners, or it approaches infinity, as is the case
for the vW preconditioner. When a Hartree term is included, J0 dominates at small q and
the kinetic energy term dominates at large q. This best reproduces the ill-conditioned
parts of the second derivative of the total Lagrange function for bulk simulation cells.
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The L+J preconditioner (5.26) behaves similarly to the L0+J0 preconditioner (5.28) since
the fluctuations of the pseudo-wavefunction φ are relatively small.

From these benchmarks, it appears that the L0+J0, vW+J0, and TF0vW+J0 precon-
ditioners represent a big improvement over the vW preconditioner for simulation cells
with bulk, with L0+J0 a little better than vW+J0, which in turn is slightly better than
TF0vW+J0. For all the preconditioners tested, optimization scaling still has a system-size
dependence.

5.3 Preconditioners for simulation cells containing vacuum

We now study whether any of the preconditioners suggested in Table 1 are successful for
improving optimization for simulation cells containing regions with low electron density
(”vacuum”). Vacuum regions are present in any simulation cells that model finite or
semi-infinite systems such as surfaces, molecules, nanowires, or nanoclusters. For such
cells, the electron density can no longer be assumed to be constant throughout the cell,
and local changes in reciprocal space may no longer reproduce the most ill-conditioned
parts of the Hessian.

But before presenting benchmark results, we first discuss a problem with TN opti-
mization caused by vacuum. If a pseudo-wavefunction has regions where φ≈0, the Hes-
sian matrix Hφ is not only more ill-conditioned – it may no longer be positive definite.
If Hφ is detected to not be positive definite during the inner CG loop (for calculating the
Newton direction), the CG optimization cannot continue and terminates with a less ac-
curate descent direction. Since the inaccurate descent direction is used in the subsequent
line search, convergence can stall once the value of φ in the vacuum regions becomes too
low. Tests of various Al simulation cells indicate the associated Hφ may no longer be
positive definite when there are points x with φ(x)<10−7 a.u..

Hφ is more likely to remain positive definite if the electron density is prevented from
dropping too low. As a result, minor numerical artifacts in vacuum can counterintuitively
help convergence. We showed in Section 2 that if φ is not constrained to be non-negative,
the vW KEDF expressed as (2.5) can be computed without numerical artifacts. The corre-
sponding potential (first functional derivative of (2.5)), which is used in determining the
Newton direction, can also be calculated without artifacts when discretized as

δEvW

δφ
=−∇2φ=F−1Dq2Fφ. (5.29)

If we would like to prevent electron density from becoming extremely low, the chain rule
can be used to calculate the same potential, reintroducing numerical artifacts:

δEvW

δφ
=F−1Dq2F |φ|· d|φ|

dφ
. (5.30)

We will refer to the first expression (5.29) as the direct computation of the vW potential,
and the second expression (5.30) – where the functional derivative is taken relative to
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Figure 5: Potential (δL/δφ) calculated for a 4-atom periodic cell of an Al nanowire (color online). The left
panel displays the values of the pseudo-wavefunction on a slice perpendicular to the nanowire axis. The middle
panel shows the potential calculated for that pseudo-wavefunction along the same slice using F−1Dq2Fφ,

and the right panel plots the potential for the same pseudo-wavefunction and the same slice, calculated using
F−1Dq2Fφ·d|φ|/dφ.

|φ| =√
ρ and the sign of φ is added later – as the chain rule computation of the vW

potential.
In Fig. 5, we show how the total potential differs when the vW term is calculated

with the two methods above. While the area of interest near the atomic cores remains
quite similar, small differences are observed where φ≈0. A smooth potential is produced
when the Laplacian of φ is computed directly, and singularities appear when using the
chain rule computation. The added noise for the chain rule computation means that the
Newton direction chosen in vacuum regions is less accurate, and φ does not decrease as
dramatically as when optimizing using the direct calculation of the vW potential. Since
the magnitude of φ is larger, the Hessian matrix used during the CG loop is less likely
to become non-positive definite and cause the CG loop to terminate early. However, φ
is still sufficiently small in vacuum so that it has a minimal effect on the total energy.
The overall result is that an optimization of a cell containing large regions of vacuum is
then better able to proceed when there are minor numerical artifacts in vacuum, so opti-
mizations using chain rule vW calculations generally converge faster than optimizations
using direct vW calculation. Chain rule vW calculations were used in the benchmarks in
Section 4.2.

The appearance of non-positive definite Hφ when φ is small adds to the difficulties
in deriving preconditioners for simulation cells containing vacuum. If Hφ is not positive
definite, optimization may converge slowly regardless of the preconditioner used. If
the chain rule calculation is used to combat the non-positive definite problem, numerical
artifacts will appear that cannot be treated with the analytical preconditioners. Therefore,
we expect preconditioners to be of limited use for systems containing vacuum, especially
when using the chain rule vW computation. Nevertheless, we test the preconditioners
from the previous two sections to assess their effectiveness with such systems. The two
methods of calculating the vW potential are compared, and the relative performance of
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Table 4: 4-atom periodic cell Al nanowire preconditioner tests with the WGC99 KEDF. The numbers of CG
iterations, line search (LS) iterations, and FFTs for an electron density optimization within OFDFT are compared
for direct and chain rule computation of the vW term. The unpreconditioned values are shown in boldface. ”No
conv.” denotes that optimizations did not reach a minimum.

Direct Chain rule
Preconditioner #CG #LS #FFTs #CG #LS #FFTs
L0 24 11 608 50 11 1076
TF0vW 26 13 676 47 13 1054
None 209 26 3760 121 15 2176

L0+J0 315 63 6678 383 50 7694
vW+J0 391 64 8062 292 41 5912
TF0vW+J0 No conv. No conv. No conv. 360 50 7280

TFvW (CG) 126 18 3444 140 15 3854
TFvW+J (CG) 20 19 1704 26 19 2212

Table 5: 4-atom periodic cell Al nanowire preconditioner tests with the HC KEDF. The numbers of CG iterations,
line search (LS) iterations, and FFTs for an electron density optimization within OFDFT are compared for direct
and chain rule computation of the vW term. The unpreconditioned values are shown in boldface. ”No conv.”
denotes that optimizations did not reach a minimum.

Direct Chain rule
Preconditioner #CG #LS #FFTs #CG #LS #FFTs
L0 26 17 34333 103 19 101340
None 139 18 130255 124 16 108932

TF0vW 195 36 206483 64 17 65739
vW+J0 No conv. No conv. No conv. 282 39 238239
TF0vW+J0 No conv. No conv. No conv. 305 47 247074
L0+J0 No conv. No conv. No conv. 632 68 477428

TFvW (CG) 239 27 237354 103 16 103413
TFvW+J (CG) 56 26 73694 21 20 35319

each method, along with the effect of preconditioners, is benchmarked.

We begin by testing a small 4-atom periodic cell of an Al nanowire in an fcc-like
configuration separated by its closest images by 10 Å vacuum (simulation cell size 13.97
Å × 13.97 Å × 3.97 Å). Benchmarks are terminated when the energy is converged to
10−5 eV or the potential’s norm is converged to 10−6 a.u.. Results are listed in Table 4
(WGC99 KEDF with vacuum damping [23]) and Table 5 (HC KEDF [13]). Benchmarks
for the preconditioners with an explicit dependence on φ (TF, vW, L, and L+J) do not
converge for either KEDF, so they are not included in the tables or in other benchmarks
of simulation cells containing vacuum.

In stark contrast with the bulk benchmarks, preconditioners that include both a ki-
netic and a J0 term slow the overall convergence, with some of these calculations not con-
verging to the true minimum. Benchmarks for the L0+J0, vW+J0, and TF0vW+J0 precon-
ditioners are not reported for other systems containing vacuum. Only the L0 and TF0vW
preconditioners converge for both the WGC99 and the HC KEDF. The L0 preconditioner
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is more successful overall, since it offers an improvement over the non-preconditioned
optimization for both KEDFs and for both direct and chain rule vW computations. The
TF0vW preconditioner is faster than L0 when using the chain rule vW calculation, but
slower than an unpreconditioned optimization with the direct vW calculation. As with
simulation cells containing only bulk, the preconditioning ability of L0 and TF0vW is
likely due to their being almost constant at small q; they act only as large q precondition-
ers. On the other hand, the failure of the vW preconditioner and any preconditioners
with a J0 term indicates that neither vW nor J0 accurately represents small q values for
cells in vacuum.

Like the full Hessian matrix, the CG-based preconditioners also have a tendency to
become non-positive definite in the presence of low electron density. This becomes a
problem for the TFvW preconditioner. Since it is not positive definite when solving for
the preconditioned residual in (5.2), the TFvW (CG) benchmarks do not accurately rep-
resent a true TFvW preconditioner. On the other hand, the TFvW+J (CG) preconditioner
does not encounter this issue for the 4-atom nanowire simulation cell. If the cost of the
preconditioner is not considered, the TFvW+J preconditioner is more effective than the
analytical preconditioners in all cases except with the HC KEDF and direct calculation of
vW.

The results above show that, while better preconditioners may still be derived, L0
speeds up optimization of small simulation cells containing vacuum with two KEDFs
derived from Lindhard linear response, and that optimizations are faster with the TF0vW
preconditioner when vW is computed using the chain rule. The results using the WGC99
KEDF are consistent with the results from bulk preconditioning tests, where the L0 and
TF0vW preconditioners also improve convergence for the smaller simulation cells.

Although the L0 and TF0vW preconditioners do not similarly enhance convergence
for large cells of bulk material, we test larger simulation cells containing a nanowire or a
crack using the vacuum-modulated WGC99 KEDF to see whether improvements due to
large q preconditioning are sufficient to improve optimization performance for simula-
tion cells with vacuum. The same 1110-atom nanowire is used here as in the benchmarks
in Section 4.2. The 7828-atom crack also uses the same energy functionals and parame-
ters as the crack benchmarked in Section 4.2, but the cell is 2.81 Å × 232.55 Å × 222.80 Å,
and has a plane-wave kinetic energy cutoff of 1000 eV (instead of the 600 eV used in all
other benchmarks). As with the 4-atom nanowires, benchmarks are terminated when the
energy is converged to 10−5 eV or the potential’s norm is converged to 10−6 a.u..

Without a preconditioner, the chain rule calculation requires fewer FFTs than the di-
rect calculation of the vW terms for the nanowire. However, the fastest computation
occurs for a L0 preconditioned optimization when computing the vW terms directly. L0
and TF0vW are faster than non-preconditioned optimization for both direct and chain-
rule vW computations. Like with the thinner 4-atom periodic cubic cell Al nanowire, the
L0 preconditioner is best suited for the direct vW computation, and the TF0vW precon-
ditioner is better for the chain rule vW computation.

The iterative CG preconditioners all have convergence problems associated with the
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Table 6: [111] Al nanowire with 1 nm diameter. See previous tables for description of columns.

Direct Chain rule
Preconditioner #CG #LS #FFTs #CG #LS #FFTs
L0 371 41 7334 419 101 9158
TF0vW 379 80 8102 380 42 7512
None 1564 120 26944 618 59 10832

TFvW (CG) No conv. No conv. No conv. 508 49 10676
TFvW+J (CG) 895 87 45868 186 60 10232

Table 7: Al edge crack under tensile loading. See previous tables for description of columns. The * indicates
that the CG preconditioner is never positive definite.

Direct Chain rule
Preconditioner #CG #LS #FFTs #CG #LS #FFTs
None 874 71 15120 879 66 15120

L0 930 68 17828 1119 70 21262
TF0vW 1128 85 21664 1071 70 20398

TFvW (CG) * * - * * -
TFvW+J (CG) 677 206 88848 262 122 27180

Hessian becoming non-positive definite. However, TFvW and TFvW+J are still able to
improve on the unpreconditioned optimization when using the chain rule vW computa-
tion. The performance is sped up, even when the cost of the iterative preconditioning is
taken into account.

For the edge crack, no difficulties are observed when using the direct computation,
which converges faster than the chain rule computation. However, the analytical pre-
conditioners do not aid convergence for either method of vW calculation. This is as ex-
pected, due to the increased importance of small q for large cells. While the nanowire
also had a large dimension along one axis, preconditioners could still be used due to the
nanowire’s periodic atomic structure along the longest axis. The crack is not periodic in
its longer real-space directions. The TFvW (CG) preconditioner is found to always be
non-positive definite, regardless of the vW calculation method. The TFvW+J (CG) pre-
conditioner, while occasionally having the same problem, is generally able to produce
a preconditioned residual. It appears that a preconditioner with the form of TFvW+J
would be effective, but an easily-inverted analytical form is unknown and the iterative
implementation is too expensive to be useful.

For systems containing vacuum, optimization with and without preconditioners can
be difficult. Even if the Hessian itself remains positive definite, preconditioners have
to account for large variations in φ in real space. The two preconditioners observed to
have moderate success do not have any explicit φ dependence, and their success is lim-
ited to small simulation cells. When the vW term is calculated directly, the L0 precondi-
tioner works better, and when the vW term is calculated using the chain rule, the TF0vW
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preconditioner is preferred. They both represent an improvement over the vW precondi-
tioner, which does not allow any convergence in the presence of vacuum even for smaller
cells. However, neither one helps in the key objective of preconditioning – improving the
optimization speed for large simulation cells.

6 Conclusions

In this work, we present the optimization setup and algorithms used with OFDFT, and
specifically implemented in PROFESS. Beginning with an introduction to the optimiza-
tion problem defined by OFDFT, we discuss the performance of CG and TN optimiza-
tion and derive preconditioners that are successful in bulk and accelerate convergence
for small cells in vacuum.

Optimization schemes in OFDFT are used to determine the three-dimensional elec-
tron density distribution that minimizes the total energy. Following an established frame-
work, we use a Lagrange function to conserve the total number of electrons, and a pseudo-
wavefunction φ (with φ2 = ρ) as the optimization variable to keep electron density non-
negative [2,8,19]. We emphasize that any φ calculated using CG and TN is differentiable
and does not need to be constrained to be positive; it can take any real value.

In addition, the approximation µ0 used to estimate the Lagrange multiplier is dis-
cussed. Since minimizing the approximate Lagrange function is much faster than a full
saddle point optimization, the Lagrange multiplier is expressed as a function of E and
δE/δφ. Unfortunately, this approximation makes the optimization less stable. The choice
for how often µ0 is updated also affects stability and speed, where fewer updates allow
a more stable optimization, and more updates will allow the optimization to converge
faster (assuming that the optimization is sufficiently stable).

For better stability, a line search that conserves total electron number is used [8], and
a modified set of Wolfe conditions are derived to accommodate the curved inexact line
search. Together with a CG or TN direction search, every iteration of the optimization
algorithm conserves the total number of electrons in the system.

Benchmarks show that TN optimization converges faster than CG for simulation cells
containing Al atoms. However, the costs of optimization for CG and TN scale similarly,
since both algorithms rely on CG loops. Either the entire minimization is performed with
nonlinear CG, or else an inexact Newton direction is calculated using linear CG, so the
optimization scaling for CG and TN depend more on the complexity of the system than
simply system size. In TN, for example, the distribution of eigenvalues of the Hessian
matrix associated with a pseudo-wavefunction φ determines the convergence properties
of the inner CG loop.

The CG loop within TN can be preconditioned to speed up optimization. We derive
several prospective preconditioners based on the second derivative of energy functionals
and the Lindhard linear response. All the analytical preconditioners have implementa-
tions that run with quasilinear scaling, since each one is a sequence of computations local
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in real or reciprocal space, interspersed with FFTs.

For bulk samples, some of the new preconditioners improve on the vW precondi-
tioner, which was shown to be successful in small bulk simulation cells [10]. While the
vW preconditioner fails for larger cells, preconditioners that have both a Hartree and ki-
netic term speed up convergence for the larger bulk cells examined in this work. The
fastest preconditioners – vW+J0, TF0vW+J0, and L0+J0 – have no dependence on φ and
are fully diagonal in reciprocal space. Their large q values reflect the kinetic energy Hes-
sian, and their small q values reflect the Hartree Hessian. While these three precondition-
ers have similar performance, the L0+J0 appears to be the best preconditioner for bulk
samples, reducing the number of FFTs needed during optimization of bulk samples by
∼76−80% in the systems of bulk Al studied.

Unfortunately, the same level of success is not obtained for preconditioners in the
presence of vacuum. The J0 preconditioner, essential for preconditioning the small q val-
ues in bulk, is no longer is effective since there is a large difference in the electron density
for vacuum and the region close to the ions. As a result, kinetic + J0 preconditioners fail.
For small simulation cells, the L0 and TF0vW preconditioners can improve convergence
by preconditioning large q values. However, when small q values begin to become more
important (larger cells), neither preconditioner improves convergence. Still, this minimal
success is an improvement on the vW preconditioner. If L0 and TF0vW preconditioners
are used in large simulation cells with vacuum, optimization can still converge. If the vW
preconditioner were used, optimization would fail completely.

For future work in speeding up optimization of electron density in the presence of
vacuum, two challenges not present in bulk systems must be taken into account. First,
the Hessian easily becomes non-positive definite if φ has large regions of vacuum. If a
Hessian is not positive definite, TN cannot compute the Newton direction and conver-
gence slows. This problem should be addressed in some way beyond the trick of adding
numerical noise to artificially prevent electron densities from dropping too low in vac-
uum. In addition to problems with the positive definite nature of the Hessian matrices,
any preconditioners proposed for simulation cells containing vacuum must contend with
the large fluctuations of φ in real space. The fluctuations are difficult to represent in re-
ciprocal space, and suggest that appropriate vacuum preconditioners should have a real-
space φ dependence. However, the best preconditioners presented here are diagonal in
reciprocal space. A preconditioner successful for vacuum will need terms local in both
real and reciprocal space, and there is no guarantee that such a preconditioner can be
easily and cheaply inverted.
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