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Abstract. We present a three dimensional model of an open elastic tube immersed in
fluid to understand valveless pumping mechanism. A fluid-tube interaction problem
is simulated by the volume conserved immersed boundary method which prevents the
generation of spurious velocity field near the tube and local cluster of the tube surface.
In order to explain pumping phenomena without valves, average net flow is measured
by changing parameter values such as pumping frequency, compression duration, and
pumping amplitude. Some frequencies that make the system reach maximal or mini-
mal net flow are selected to study case by case. We also study the effectiveness of fluid
mixing using the Shannon entropy increase rate.
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1 Introduction

Any directional flow driven by pumping without valves in a fluid-structure mechanical
system is called valveless pumping (VP). In valveless pump systems, a unidirectional net
flow can be generated by applying the periodic force at an asymmetric location of the
elastic tube. The closed or open valveless pump systems have been intensively studied
for recent decades in computational [1, 3, 4, 8–11, 14, 18–21, 27–29] and experimental set-
tings [4–7, 12, 15–17, 26]. Liebau first presented the results from the initial studies on VP
research. In his experiments of VP, both closed and open valveless pump systems were
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proposed to explain the VP mechanisms [15–17]. Liebau’s closed valveless pump system
is composed of two different impedance materials whose elastic properties and radii of
tubes are different. In particular, the studies on a closed loop of tubing that consists of two
different types of homogeneous materials, soft and (almost) rigid materials, have been
comprehensively performed [9, 10, 19, 21, 28]. The macro- and micro-scale experiments
have been developed for biological and biomedical applications [7, 26]. There have been
also proposed computational models with different space dimensions: zero-dimensional
models (compartment models) [4,9,20], one-dimensional models [1,3,19,21,28,29], two-
dimensional [8,10,11,14] and three-dimensional models [8,18,27]. In Liebau’s open valve-
less pump system, he built a model that both ends of an open elastic tube are connected
to tanks as reservoirs [15–17] to generate unidirectional net flow. Recently, it has been
reported that an open elastic tube made of even a single type of homogeneous material
is enough to show VP phenomena [14]. In both open and closed valveless pump sys-
tems, the important features have been observed that the direction and the magnitude
of a net flow are determined by the driving and geometric parameters of the valveless
pump system. The pumping frequency is one of the critical parameters in determining
characteristics of VP.

In this work, we have developed a three-dimensional model of an open valveless tube
made of a single homogeneous material. This computational model is an extension of our
two-dimensional open valveless pump model presented in [14], in which we showed the
important features of VP although only one soft material was used: a unidirectional net
flow is observed and its direction is very sensitive to pumping frequency. We also inves-
tigated that the direction and the magnitude of a net flow can be explained, respectively,
by the sign and the amount of the work done over a cycle by a periodic force acting on the
elastic tube. Even though a two-dimensional open VP model contributed to revelation of
important phenomena of VP including the fluid dynamics and wall motions, there were
still spatial limitations on plane. Hence, we extend our two-dimensional model to the
three-dimensional model using the volume conserved immersed boundary (IB) method.
This method helps to prevent the generation of spurious velocity near the tube and local
cluster of the elastic tube boundary. As the earlier research on both the closed and open
VP systems reported, the similar features of the systems are observed in our model. In
order to demonstrate pumping phenomena, averaged net flow is measured by changing
parameter values such as frequency, compression duration, and amplitude of the driving
forcing. The case studies with maximal/minimal directional flows and almost zero flows
are presented. We also investigate the effectiveness of fluid mixing using the Shannon
entropy increase rate and observe that mixing by valveless pumping is very efficient at
high Reynolds number [2]. Some selected animations for the motion of fluid dynamics
inside and outside of the elastic open tube are presented in [13].

The benefits of valveless pumps are that they can generate significant flows with low
power requirements and are easy to manufacture. Especially, open tubes made of a ho-
mogeneous material can be easily constructed to generate net flow and fluid mixing at
specified pumping frequencies, although the quality of the material may be an issue in
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material science. VP systems can therefore be a great tool for the fluid-structure interac-
tion models in many biomedical and engineering applications. For instance, this open
VP model can be implemented on a coronary artery bypass graft (CABG) surgery [31].
According to the American Heart Association 427,000 coronary artery bypass graft surg-
eries were performed in the United States in 2004, making it one of the most commonly
performed major operations. CABG surgery creates new routes around narrowed or
blocked arteries, allowing sufficient blood flow to deliver oxygen and nutrients to the
heart muscle. This simple design of open valveless pump model could provide the effi-
cient pumping during CABG surgery.

The mathematical model of the elastic open tube VP system and the volume con-
served IB method are presented in Section 2. In Section 3, the comprehensive numerical
results are discussed including the parametric and case studies. Shannon entropy in-
crease rate is also calculated for investigating the flow mixing. Summary and conclusion
are addressed in the final section.

2 Mathematical model

In this section, we state a mathematical formulation and a numerical scheme that de-
scribe the motion of valveless pumping in an open tube system based on the immersed
boundary method. Fig. 1 displays the initial configuration of a computational model. An
incompressible viscous fluid fills an entire box and an open elastic tube is embedded in
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Figure 1: Initial configuration of an open elastic tube immersed in a fluid box. The tube consists of elastic
springs that connect material points, each of which is connected to eight adjacent points. Both ends of the
tube are fixed in space. The pumping position is located at the second quarter of the elastic tube. L is the
length of the elastic tube.



W. Lee, S. Lim and E. Jung / Commun. Comput. Phys., 12 (2012), pp. 494-514 497

Table 1: Physical parameters.

Parameters Notation Values

Fluid density ρ 1g/cm3

Fluid viscosity µ 0.01g/cm ·sec

Computational domain Lx×Ly×Lx 4cm×4cm×32cm

Stiffness κt 2000dyne/cm3

Stretch stiffness κs 200g/sec2

Bending coefficient κb 26.5g·cm2/sec2

Pumping amplitude a 0.4∼0.8cm

Frequency f 0.05∼10Hz

Compression duration d 0.1∼1

Radius of tube R 0.8cm

Length of tube L 8cm

Table 2: Computational parameters.

Parameters Notation Values

Duration of simulation tmax 50sec

Number of ring boundary points M1 80

Number of bar boundary points M2 129

Meshwidth h=△x=△y=△z 0.125cm

Time step △t 0.001 sec

Fluid grid Nx×Ny×Nz 32×32×256

this box. Fluid motion is driven by the asymmetric periodic pumping applied on the
second quarter of the elastic tube. Both ends of the elastic tube are fixed in space. The
tube wall is composed of elastic springs that link one material point to the eight adjacent
material points.

The fluid is treated as Eulerian in which the fluid is defined on a fixed Cartesian coor-
dinate system and the immersed elastic boundary is treated as Lagrangian in which the
boundary is defined on a moving curvilinear coordinate system. Physical and computa-
tional parameters in CGS units are listed in Table 1 and 2.

2.1 Equations of motion

We first describe fluid equations. Let the fluid velocity be u(x,t), the fluid pressure be
p(x,t), and the fluid force density be f (x,t), where x = (x1,x2,x3) are fixed Cartesian
coordinates and t is time. Fluid equations are then given as follows:

ρ

(

∂u

∂t
+(u·∇)u

)

+∇p=µ∇2u+ f , (2.1)

∇·u=0, (2.2)
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where ρ and µ are the fluid density and viscosity, respectively. Eqs. (2.1) and (2.2) are
viscous incompressible Navier-Stokes equations in Eulerian form.

For structure equations, we let (r,s) be moving curvilinear coordinates. The boundary
force density F is given by

F(r,s,t)=κt(Z(r,s,t)−X(r,s,t))−
∂Ebend

∂X
−

∂Estretch

∂X
, (2.3)

which describes the motion of the elastic tube in Lagrangian form. Here, X(r,s,t) is the
position of the elastic tube at any time t, Z(r,s,t) is the target position that drives the
motion of the elastic tube, and κt is stiffness constant. The energy functions, Ebend and
Estretch, are the elastic energy from bending and stretching, respectively. These energy
potentials are described in detail as

Ebend[X ]=
1

2
κb

∫

∣

∣

∣

∣

∂2X

∂s2

∣

∣

∣

∣

2

drds, (2.4)

Estretch[X ]=
1

2
κs

∫

(
∣

∣

∣

∣

∂X

∂s

∣

∣

∣

∣

−1

)2

drds, (2.5)

where parameters κb and κs are bending and stiffness coefficients for the elastic boundary,
respectively. The variational derivative ∂E

∂X of the energy functional E[·] is defined as
follows:

lim
ǫ→0

d

dǫ
E[X+ǫY ]=

∫

−
∂E

∂X
(r,s,t)·Y(r,s,t)drds, (2.6)

where ǫY is the amount of perturbation of the configuration X . Hence, we can obtain
bending and stretching force densities in the following way:

Fbend=−
∂Ebend

∂X
=−κb

∂4X

∂s4
, (2.7)

Fstretch=−
∂Estretch

∂X
=

∂

∂s
(Tτ), (2.8)

where

T =κs

(
∣

∣

∣

∣

∂X

∂s

∣

∣

∣

∣

−1

)

, (2.9)

τ=
∂X

∂s

/
∣

∣

∣

∣

∂X

∂s

∣

∣

∣

∣

. (2.10)

Here, T is the tension derived from Hooke’s law and τ is the unit tangent vector along
the linear spring. Finally, equations that describe the interaction between the fluid and
the elastic boundary are as follows:

f (x,t)=
∫

F(r,s,t)δ(x−X(r,s,t))drds, (2.11)

∂X(r,s,t)

∂t
=U(r,s,t)=

∫

u(x,t)δ(x−X(r,s,t))dx, (2.12)
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where U(r,s,t) is the interpolated velocity of the elastic tube. Both equations involve
a three-dimensional Dirac δ-function. Eq. (2.11) describes the relationship between the
fluid force density f (x,t) and the boundary force density F(r,s,t). Eq. (2.12) is the no-slip
condition for a viscous fluid applied at the tube surface, which constrains the immersed
boundary to move at the local fluid velocity. Each of the interaction equations takes the
form of an integral transformation in which the kernel is δ(x−X(r,s,t)).

To apply a periodic force on the elastic tube the boundary points are tethered to target
points whose positions are prescribed in time and space. The elastic tube consists of
two parts, pumping and non-pumping. The target position of the non-pumping part
remains as the initial position during whole simulation. However, the target position of
the pumping part of the tube changes by way of cosine function with one period in space
and time as follows:

A(r,s,t)=







a

4
cos

(

2πt

dP

)

cos

(

2π(z0(r,s)−0.375Lz)

0.25Lz

)

, if 0≤mod(t,P)≤dP,

0, if dP≤mod(t,P)≤P,

(2.13)

where a is the pumping amplitude, z0 is the component of the position of the tube in
z-direction at t= 0, and P denotes the period; i.e., f = 1

P is the frequency of oscillations.
dP is the duration of compression, where 0 ≤ d ≤ 1, and the function A(r,s,t) remains
zero for the time (P−dP) of the period. Lα is the length of the computational domain
[0,Lx]×[0,Ly]×[0,Lz] in each direction, where α = x,y,z. The three components of the
time-dependent target position are described by

Zx(r,s,t)=(R−A(r,s,t))cosθ+0.5Lx , (2.14)

Zy(r,s,t)=(R−A(r,s,t))sinθ+0.5Ly , (2.15)

Zz(r,s,t)= z0(r,s), (2.16)

where 0≤ θ<2π and R is the radius of the tube. Note that the pumping force is applied
only on the second quarter of the elastic tube.

2.2 Numerical method

In order to solve Eqs. (2.1)-(2.3) and Eqs. (2.11)-(2.12) numerically, we begin with a de-
scription of the numerical procedure for the typical IB method. The volume conserved IB
method will be presented later on.

Let the tube wall be discretized by material points indicated by (k1,k2), where k1 and
k2 represent point indices in longitudinal and circular directions, respectively. Then we
calculate the boundary force density Fn

k1,k2
at each material point Xk1,k2

at time level n.
Given configuration Xn,

Fn
k1,k2

=κt(Z
n
k1 ,k2

−Xn
k1,k2

)−BFn
k1,k2

+SFn
k1,k2

, (2.17)
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where BF and SF represent bending and stretching force densities, respectively. The
bending force exists in two directions, longitudinal and circular. The stretching force ex-
ists in four directions, longitudinal, circular, left- and right-handed helical. We will show
how to evaluate bending and stretching force densities in the longitudinal direction. The
same procedure will be applied for springs in different directions.

Bending and stretching force densities at each material point are evaluated by

BFn
k1,k2

=κb

Xn
k1+2,k2

−4Xn
k1+1,k2

+6Xn
k1,k2

−4Xn
k1−1,k2

+Xn
k1−2,k2

(∆s)4
, (2.18)

SFn
k1,k2

=(T+τ+−T−τ−)/∆s, (2.19)

where

T+=κs

(∣

∣

∣

∣

Xn
k1+1,k2

−Xn
k1,k2

∆s

∣

∣

∣

∣

−1

)

, (2.20)

τ+=

(

Xn
k1+1,k2

−Xn
k1,k2

∆s

)/∣

∣

∣

∣

Xn
k1+1,k2

−Xn
k1,k2

∆s

∣

∣

∣

∣

, (2.21)

T−=κs

(∣

∣

∣

∣

Xn
k1,k2

−Xn
k1−1,k2

∆s

∣

∣

∣

∣

−1

)

, (2.22)

τ−=

(

Xn
k1,k2

−Xn
k1−1,k2

∆s

)/
∣

∣

∣

∣

Xn
k1,k2

−Xn
k1−1,k2

∆s

∣

∣

∣

∣

. (2.23)

Once we know the boundary force density, a smoothed version of the Dirac-delta func-
tion is employed to spread this boundary force to the fluid grid,

f n
i,j,k = ∑

k1,k2

Fn
k1,k2

δ3
h

(

xi,j,k−Xn
k1,k2

)

∆r∆s, (2.24)

where xi,j,k=(ih, jh,kh) is a Cartesian grid, h is meshwidth, and (i, j,k) is an integer-valued

vector, where 1≤i≤Nx, 1≤ j≤Ny, 1≤k≤Nz. A smoothed approximation, δ3
h, to the three-

dimensional Dirac delta function is a product of three one-dimensional delta functions,

δ3
h(x)=

1

h3
φ
( x1

h

)

φ
( x2

h

)

φ
( x3

h

)

, (2.25)

where the function φ is defined by

φ(r)=































3−2|r|+
√

1+4|r|−4r2

8
, if |r|≤1,

5−2|r|−
√

−7+12|r|−4r2

8
, if 1≤|r|≤2,

0, if 2≤|r|.

(2.26)
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With f n known, consider the following discretized Navier-Stokes equations:

ρ

(

un+1−un

∆t
+un ·D±un

)

+D0pn+1=µ ∑
k=1,2,3

D+
k D−

k un+1+ f n, (2.27)

D0 ·un+1=0, (2.28)

where D+, D−, and D0 represent forward, backward, and centered difference operators,
defined in the standard way on a regular Cartesian grid of spacing h, respectively. There-
fore, D0 is the central difference approximation to gradient ∇, and ∑k=1,2,3 D+

k D−
k is a

difference operator that approximates the Laplace operator ∆. The upwind scheme is
used for D±u explicitly. Among the difference operators the central difference operator
D0 will be modified below to improve volume conservation of the method. Now we
solve the Discrete Navier-Stokes equations using Fast Fourier Transform (FFT) to update
fluid velocity and fluid pressure. The local averaged fluid velocity allows us to update
the position of the configuration in the following way:

Xn+1
k1,k2

=Xn
k1,k2

+∆t∑
i,j,k

un+1
i,j,k δ3

h(xi,j,k−Xn
k1,k2

)h3. (2.29)

This completes the numerical procedure of the method.
The typical IB method described above can handle easily the interaction between the

fluid and the elastic boundary. However, it loses volume particularly for a closed bound-
ary because the fluid leaks through the wall when the boundary does not maintain its in-
tended shape. To reduce this volume loss, we employed the volume conserved IB method
introduced by [25]. In [25], a new difference operator was constructed to replace the cen-
tral difference operator D0 described in Eqs. (2.27)-(2.28). This new difference operator
D=(D1,D2,D3) is tuned to the regularized delta function, δh, and is defined as follows:

(D ·u)(x)=
1

h3

∫

B(x)
(∇·U)dX , (2.30)

where x=(x1,x2,x3) and B(x) is a cubic box of side h, i.e.,

B(x)=
(

x1−
h

2
, x1+

h

2

)

×
(

x2−
h

2
, x2+

h

2

)

×
(

x3−
h

2
, x3+

h

2

)

. (2.31)

U is the interpolated velocity field of the configuration X that is continuous and has
continuous first derivatives because of the properties of δh. Thus, D ·u at the grid point x
is the average of ∇·U over the box B(x) centered on x. Each component of the operator
can be rewritten as

(D1ψ)(x1,x2,x3)= ∑
(x′1,x′2,x′3)

ψ(x′1,x′2,x′3)γ(x1−x′1)ω(x2−x′2)ω(x3−x′3), (2.32)

(D2ψ)(x1,x2,x3)= ∑
(x′1,x′2,x′3)

ψ(x′1,x′2,x′3)ω(x1−x′1)γ(x2−x′2)ω(x3−x′3), (2.33)

(D3ψ)(x1,x2,x3)= ∑
(x′1,x′2,x′3)

ψ(x′1,x′2,x′3)ω(x1−x′1)ω(x2−x′2)γ(x3−x′3), (2.34)
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where

γ(x)=δh(x+X)
∣

∣

∣

X=h/2
X=−h/2 , (2.35)

ω(x)=
∫ h/2

−h/2
δh(x+X)dX. (2.36)

Here, γ plays a role as a coefficient of a difference operator and ω plays a role as a coef-
ficient of an averaging operator. We can then use these operators for the discrete diver-
gence and the discrete gradient as follows:

D ·u=D1u+D2v+D3w, (2.37)

Dψ(x)=((D1ψ)(x),(D2ψ)(x),(D3ψ)(x)). (2.38)

The new operator makes the interpolated velocity field nearly divergence-free. For de-
tailed description of the volume conserved IB method, the reader is referred to [25].

To validate the volume conserved IB method, we considered a simple closed curve (a
circle) in two-dimensional space as an elastic boundary immersed in a fluid. The size of
the computational domain was 2cm in each direction and the number of grid points in
each direction was 128. The elastic force from the boundary configuration was generated
by

F(s,t)=κc

(

∂2X(s,t)

∂s2

)

, (2.39)

where κc=50g·cm/sec2 was selected for stiffness constant. In this simulation, the param-
eter values for ρ and µ were used as the same as in Table 1 and total simulation time was
2sec.

Fig. 2 shows the comparison of the typical IB method with the volume conserved IB
method. The left panel shows the boundary configurations at t=2sec and the right panel
shows rates of change in volume during simulated time. As seen in Fig. 2, the circle
shrinks when the typical IB method was used and hence volume losses about 32%. On the
other hand, when the volume conserved IB method was used the boundary configuration
remains indistinguishable from the initial state and the volume is well-maintained.

In addition to the two-dimensional experiments for comparison of two methods de-
scribed above, we considered a three-dimensional open tube immersed in a cuboid as
introduced in Section 2 and compared the shape of the tube wall and the velocity fields
near the tube of the typical IB method with those of the volume conserved IB method.
Fig. 3 shows the velocity vector fields on the plane z= 16cm (see Fig. 1) at a given time
t= 0.1sec when the tube wall contracts. The left and right panels illustrate the velocity
vector fields computed from the typical IB method and the volume conserved IB method,
respectively. In each panel, the outer circle represents the elastic boundary and the inner
circle represents the target position where the elastic boundary follows. It is clear that
the velocity vectors from the volume conserved IB method point toward the center in a
regular way unlike the typical IB method.
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Figure 2: Comparison of the typical IB method with the volume conserved IB method. Left: boundary config-
urations at t=2sec. Right: rates of change in volume during simulated time.
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Figure 3: Velocity vector fields on the plane z=16cm at t=0.1sec, the time when the tube wall contracts. Left:
velocity field computed from the typical IB method. Right: velocity field computed from the volume conserved
IB method. The outer circle represents the elastic open tube and the inner circle represents the target position
of the tube.

Fig. 4 displays pumping part of tubes at time t=50sec computed from the typical IB
method (left panel) and the volume conserved IB method (right panel). In the typical IB
method when pumping force is applied periodically, the discrepancy between the pump-
ing part and the non-pumping part is accumulated as simulation time lasts longer. But
the volume conserved IB method helps the elastic boundary follow the target position
as designated. We can conclude the volume conserved IB method is a more appropriate
method for our simulation.
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Figure 4: Boundary structures are displayed at t= 50sec. Left: structure from the typical IB method. Right:
structure from the volume conserved IB method.

For convergence study we calculated velocity vector fields on three different grid
sizes of m, 2m, and 4m, where 2m = 32×32×256. The convergence ratios for velocity
u=(u,v,w) in the L2-norm are

||um−u2m||2
||u2m−u4m||2

=
||vm−v2m||2
||v2m−v4m||2

=1.8503,
||wm−w2m||2
||w2m−w4m||2

=1.7988. (2.40)

All of these ratios are close to 2, which indicates that the numerical scheme is first-order
accurate.

3 Results and discussion

In this section, we present the numerical results using the volume conserved IB method.
Recall that our computational model is an open elastic tube whose ends are fixed in space
and this tube is immersed in a viscous fluid. Average net flow is measured and compared
depending on pumping frequency, pumping amplitude, and compression duration. In
particular, we investigate three special cases where the average net flow reaches either
maximum, minimum, or almost zero values. We also investigate the mixing efficiency of
the open valveless pumping model.

After the model reaches the steady state, the average net flow fave is measured over a
circular cross-sectional region inside the tube as follows:

fave =
1

tc

∫ tc

0

∫

Γ
w(x,t)dAdt, (3.1)

where w(x,t) is the longitudinal component of a vector field (u,v,w), tc is the current
time, Γ is the circular cross section, and A is the area element. So the average flow can
be any real number in which the positive value corresponds to the flow in the positive
direction of z-axis, called a positive flow. Similarly, the negative value of net flow is called
a negative flow. The magnitude of net flow will show how much fluid flow is generated
by periodic forcing.
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Figure 5: The space- and time-averaged flows measured at five different locations of the tube as functions of
frequency are displayed when the compression duration is d=0.5, the pumping amplitude is a=0.64cm, and the
simulated time is 50sec.

Fig. 5 displays the space- and time-averaged flows measured at five different locations
as functions of frequency. In these simulations, compression duration is d=0.5, pumping
amplitude is a= 0.64cm, and simulated time is 50sec. The number of selected pumping
frequencies is 140 different values ranging from 0.05Hz to 10Hz. To see whether the
average net flow changes with different locations we choose 5 different cross sections of
the tube, equally spaced, including both ends of the tube. Fig. 5 demonstrates that the net
flow is well maintained in each cross section. Maximum positive flow appears at f =4Hz
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Figure 6: The space- and time-averaged flows as functions of frequency and compression duration are displayed
when pumping amplitude is a=0.64cm.
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Figure 7: The space- and time-averaged flows as functions of pumping amplitude are displayed when compression
duration is d=0.5.

and minimum negative flow appears at f =2.45Hz. As observed, the pumping frequency
plays an important role in determining flow direction and magnitude.

Fig. 6 displays the space- and time-averaged flows as functions of frequency and com-
pression duration. From now on, we will provide average net flow measured at the right
end cross section of the tube. Ten different values for compression duration are chosen
from 0.1 to 1 with an increment of 0.1 and other parameters such as frequency, pumping
amplitude, and simulated time are the same as shown in Fig. 5. We observe that the av-
erage net flows are also influenced by the compression duration. The average net flow
varies from −2.2446cm3/sec to 2.2355cm3/sec.

Fig. 7 displays the space- and time-averaged flows as functions of pumping ampli-
tude. Pumping amplitude is fixed as a = 0.32cm, 0.48cm, and 0.64cm and compression
duration is fixed as d = 0.5. It is found that the turning point which changes the flow
direction either from a positive flow to a negative flow or vice versa remains the same as
pumping amplitude varies. That is, the sign of average net flow is independent of pump-
ing amplitude with all other parameter values held fixed. However, the magnitude of
net flow increases as the pumping amplitude increases.

We consider six particular cases when the compression duration is fixed as d = 0.5
and the pumping amplitude is fixed as a = 0.64cm from Fig. 6. The selected cases are
two positive flows with local maxima ( f = 1.2Hz, 4Hz), two almost zero net flows ( f =
3.25Hz, 6.4Hz), and two negative flows with local minima ( f =2.45Hz, 7.1Hz). Pumping
frequencies and average net flows corresponding to the six cases are listed in Table 3.

Fig. 8 displays six flow patterns and each panel shows the last 5 cycles after the steady-
state is reached. The top row shows two positive flows, the middle row shows two almost
zero flows, and the bottom row shows two negative flows. It is shown that for lower
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Table 3: Pumping frequency and average net flow.

Status Frequency Average net flow

Positive flow f =1.2Hz 1.0886cm3/sec

Positive flow f =4Hz 1.9867cm3/sec

Almost zero flow f =3.25Hz 0.0505cm3/sec

Almost zero flow f =6.4Hz 0.0765cm3/sec

Negative flow f =2.45Hz −1.6662cm3/sec

Negative flow f =7.1Hz −0.7076cm3/sec
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Figure 8: Flow patterns at six different pumping frequencies after the steady-state is reached. Each panel shows
the last 5 cycles. The top row shows two positive flows ( f = 1.2Hz, 4Hz), the middle row shows two almost
zero net flows ( f =3.25Hz, 6.4Hz), and the bottom row shows two negative flows ( f =2.45Hz, 7.1Hz).

frequencies, more oscillations occur during one cycle, see three panels on the left. This
is because the backflow generated during the release of compression lasts longer due to
low frequency.

Fig. 9 displays a series of snapshots showing the motion of the fluid and tube at five
different times t=0sec,5sec,10sec,15sec and 20sec. This is the case where the system gener-
ates a positive flow at f =4Hz. Fluid markers are initially spread out uniformly inside the
tube. As soon as the pumping force is applied at the asymmetric location the tube wall
compresses toward the axis of the tube and thus the fluid pumps out of the tube. When
the pumping is released the tube wall returns to the initial position which makes the fluid
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move inward. Since the amount of the fluid moving outward in positive z-direction dur-
ing compression is larger than that of the fluid moving inward during release, the overall
flow rate takes the positive value. Note that the fluid domain is periodic so that fluid
markers leaving the domain on the right side of the tube will reappear on the left side of
the fluid domain.

Similarly, Fig. 10 shows the motion of the fluid and tube when the pumping frequency
is given at f = 2.45Hz, in which the system generates a negative flow. The situation is
opposite to the case in Fig. 9 because the fluid now flows in the negative z-direction.

In order to measure the mixing performance due to periodic pumping the fluid do-
main is subdivided into m=4×4×32 equal cubes. Each cube in right half of the fluid do-
main in longitudinal direction contains initially 27 particles distributed uniformly inside
the cube and this makes the total number of particles in the fluid domain ntotal=27×m/2.
We introduce the Shannon entropy increase rate, κ, which measures the loss of informa-
tion in the system with respect to the initial information [2]. The value of κ is evaluated
by

κ=
S−S0

Smax−S0
, (3.2)

where S0 is the entropy of the initial state, Smax = log(m), and the mixing entropy S is
given by

S=
−1

ntotal

m

∑
i=1

ni log
ni

ntotal
, (3.3)

where ni is the number of particles in cube i counted at given time. Note that Smax de-
pends only on the total number of cubes while each cube on the whole domain has the
same number of particles so that S0 is different from Smax.

Fig. 11 displays the time evolution of the entropy increase rate for a range of pumping
frequencies. Near t=0 the entropy increase rate remains zero because the particles stay
in the same cube although they are moving back and forth inside the cube. As time goes
on, the entropy rate increases in general.

Fig. 12 displays the time evolution of the entropy increase rate as fluid viscosity varies.
In these simulations, we fix the pumping frequency as f = 2.45Hz. The change in fluid
viscosity values will lead to the change in the Reynolds number in such a way that the
lower the fluid viscosity is, the larger the Reynolds number is. For fluid viscosity µ≤0.01,
the entropy rate increases significantly in time, which means the fluid is well mixed in
the end. However, for µ≥1, the entropy rate does not change much in time, which means
the mixing performance is poor. This is because the tube wall in high viscous fluid does
not follow well its target position as intended due to viscous drag, and hence the fluid
motion is reduced. This becomes clear in Fig. 13.

Fig. 13 shows the performance of the fluid mixing with two different fluid viscosity
values when the pumping frequency is fixed as f = 2.45Hz. Top panel shows the initial
setting of fluid markers and the immersed elastic boundary. Red dots are fluid markers
spread in space where 0cm≤ z≤ 16cm, and blue dots are fluid markers spread in space
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Figure 9: A positive flow at f=4Hz. Snapshots are taken at five different times showing the motion of fluid-tube
interaction over 20sec. Fluid markers are initially spread inside the open tube. The current position of fluid
markers is represented by the head of a trajectory and the trajectory traces the fluid markers at previous time.
Note that the fluid domain is periodic so that fluid markers leaving the domain on the right side of the tube
will reappear on the left side of the fluid domain.



510 W. Lee, S. Lim and E. Jung / Commun. Comput. Phys., 12 (2012), pp. 494-514

0
1
2
3
4 0

4

8

12

16

20

24

28

32

0

1

2

3

4

Time=10 sec

0
1

2
3

4 0

4

8

12

16

20

24

28

32

0

1

2

3

4

Time=0 sec

0
1

2
3

4 0

4

8

12

16

20

24

28

32

0

1

2

3

4

Time=20 sec

0
1

2
3

4 0

4

8

12

16

20

24

28

32

0

1

2

3

4

Time=5 sec

0
1

2
3

4 0

4

8

12

16

20

24

28

32

0

1

2

3

4

Time=15 sec

Figure 10: A negative flow at f = 2.45Hz. Snapshots are taken at five different times showing the motion of
fluid-tube interaction over 20sec. Fluid markers are initially spread inside the open tube. The current position
of fluid markers is represented by the head of a trajectory and the trajectory traces the fluid markers at previous
time. Note that the fluid domain is periodic so that fluid markers leaving the domain on the left side of the
tube will reappear on the right side of the fluid domain.
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Figure 11: Time evolution of the entropy increase rate for a range of pumping frequencies.
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Figure 12: Time evolution of the entropy increase rate with various fluid viscosity. The pumping frequency is
fixed as f =2.45Hz.

where 16cm≤z≤32cm. Second panel shows mixing state at t=50sec when fluid viscosity
is µ = 0.0001g/cm·sec. This is the case where the fluid is mixing efficiently, see Fig. 12
for the entropy rate. Bottom panel shows mixing state at t= 50sec when fluid viscosity
is µ = 10g/cm·sec. This is the case where the fluid stays near the initial position, see
Fig. 12 for the entropy rate. As expected, the pumping part of the tube in high viscous
fluid compresses less and releases less because of viscous resistance so that fluid markers
around the tube do not move much. This gives the same effect that the small pumping
amplitude produces inactive fluid motion, see Fig. 7.
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Figure 13: The mixing performance at f = 2.45Hz with two different viscosities. Top panel shows the initial
setting of fluid markers and elastic boundary. Red dots are fluid markers spread in space where 0cm≤z≤16cm,
and blue dots are fluid markers spread in space where 16cm≤ z≤ 32cm. Second panel shows mixing state at
t=50sec given that fluid viscosity is µ=0.0001g/cm·sec. Bottom panel shows mixing state at t=50sec given
that fluid viscosity is µ=10g/cm·sec.

4 Summary and conclusion

In this paper, we have presented simulations of three-dimensional valveless pumping
in an open system. We compared the typical IB method with the volume conserved IB
method in three aspects: volume conservation of a circle in two-dimensional space, the
velocity vector field near a tube surface in three-dimensional space, and the structure of
the pumping part of the tube. Volume loss through a leaky boundary is a weak point of
the typical IB method, in particular, for the problems of which the volume conservation is
important. A new difference operator D introduced in the volume conserved IB method
helps to prevent the generation of spurious velocities near the structure and helps to
maintain the tension between linear springs near the pumping part of the tube where the
force is applied, which result in keeping the same volume during simulation.

We showed that a variety of parameters such as pumping frequency, compression
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duration, and pumping amplitude affect the direction of net flow and its magnitude.
We also showed that for a fixed pumping frequency and compression duration different
values of the pumping amplitude do not change the direction of net flow but change only
the flow magnitude.

In order to investigate the mixing performance we introduced the Shannon entropy
increase rate. It is observed that VP systems tend to get high entropy increase rate when
the magnitude of average net flow is large. Fluid mixing by periodic pumping is very
efficient at the high Reynolds number but it is of no effect at the low Reynolds number.
This implies that at the low Reynolds number different approaches other than valveless
pumping are necessary to increase mixing performance. Potential candidates are using
beating cilia or rotating flagella.
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