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Abstract. A two-dimensional numerical scheme for the compressible Euler equations
is presented and applied here to the simulation of exemplary compressible vortical
flows. The proposed approach allows to perform computations on unstructured mov-
ing grids with adaptation, which is required to capture complex features of the flow-
field. Grid adaptation is driven by suitable error indicators based on the Mach number
and by element-quality constraints as well. At the new time level, the computational
grid is obtained by a suitable combination of grid smoothing, edge-swapping, grid
refinement and de-refinement. The grid modifications—including topology modifi-
cation due to edge-swapping or the insertion/deletion of a new grid node—are inter-
preted at the flow solver level as continuous (in time) deformations of suitably-defined
node-centered finite volumes. The solution over the new grid is obtained without ex-
plicitly resorting to interpolation techniques, since the definition of suitable interface
velocities allows one to determine the new solution by simple integration of the Arbi-
trary Lagrangian-Eulerian formulation of the flow equations. Numerical simulations
of the steady oblique-shock problem, of the steady transonic flow and of the start-up
unsteady flow around the NACA 0012 airfoil are presented to assess the scheme capa-
bilities to describe these flows accurately.

AMS subject classifications: 52B10, 65D18

Key words: Moving grid method, conservative interpolation.

1 Introduction

The accurate prediction of the trailing vortexes from airplane wings and helicopter blades
is of paramount importance for the determination of the aerodynamic characteristics of
the aircraft [18]. For example, in air traffic control, the persistence over the airport of
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start-up vortexes originating from lift strongly limits the availability of airstrips. In he-
licopters aerodynamics, the accurate evaluation of the unsteady dynamics of blade tip
vortexes is relevant to the prediction of the aerodynamic loads of the blade and of the so
called blade vortex interaction phenomenon, whose occurrence prevents the widespread
use of helicopters in urban environment [12]. In nature and in man-made machinery,
countless examples of fluid flows can be found for which the accurate evaluation of vor-
tex dynamics is fundamental, including the lift due to wing flapping in insect and bird
flight, thrust generated by tail flapping in fishes, unsteady wind loads caused by alternate
vortex separation on slender structures such as bridges or towers or the mutual influence
of wind turbine in wind farms.

From a numerical point of view, this kind of flows present peculiarities that make
them difficult or impossible to simulate accurately. Indeed, different geometrical scales
coexist in the flow field which strongly influence each other. For example, the wake
dynamics past the separation point in separated or recirculating flows determines in a
coupled manner the position of the separation line itself. Moreover, the discrete represen-
tation of slip lines, which requires high spatial accuracy, cannot be easily accomplished
by the use of high-order spatial discretization or so-called p-refinement. In compress-
ible flows, further difficulties are encountered due to possible occurrence of nonlinear
wave-fields including shocks. Indeed, stabilization techniques used to capture shock
wave fronts without spurious oscillations, such as for example Total Variation Diminish-
ing schemes [19, 21], usually produce inaccurate results if applied to linearly-degenerate
waves such as contact discontinuities or slip lines, thus making it necessary to locally
adapt the computational grid close to discontinuities to reduce the amount of numerical
viscosity.

A two-dimensional adaptive-grid numerical scheme for the compressible Euler equa-
tions is applied here to the evaluation of the start-up vortex and vortical wake from two-
dimensional airfoils [8, 9]. Grid adaptation is driven by suitable error indicators based
on the Mach number and by element-quality constraints as well. The error indicator is
computed by means of a node-pair finite element approach [17]. At the new time level,
the computational grid is obtained by a suitable combination of grid smoothing, edge-
swapping, grid refinement and coarsening. These modification to the grid are interpreted
at the flow solver level as continuous (in time) deformations of suitably-defined node-
centered finite volumes. Therefore, the solution over the new grid is obtained without
explicitly resorting to interpolation techniques, since the definition of suitable interface
velocities allows to determine the new solution by simple integration of the Arbitrary
Lagrangian-Eulerian formulation of the flow equations.

The present paper is structured as follows. First, the grid alteration strategy is pre-
sented and the different error indicators are discussed. The edge-based ALE solver is
briefly recalled and the solution technique for adaptive moving grid is sketched. Numer-
ical results for the oblique-shock problem and for the NACA 0012 airfoil in steady and
unsteady flows are then reported and discussed. The paper ends with some final remarks
and considerations.
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Figure 1: Top: refinement pattern by node insertion in the center of mass of an existing element for a domain
(top-left) element and boundary (top-right) element. Bottom: Derefinement pattern by node deletion for a
domain (bottom-left) element and boundary (bottom-right) element.

2 Grid alteration strategy

The technique used to adapt the grid to the local feature of the flow field is described
in the present section. The goal of the grid alteration procedure is to locally modify the
grid spacing so that the numerical error is evenly distributed within the computational
domain, according to the principle of error equidistribution. As a consequence, nodes are
inserted in the regions where the error is greater than the average error over the whole
grid, or deleted where the error is smaller.

To evaluate the local numerical error a discrete error estimator E is required. In most
applications, error estimators are either functions of flow gradients or undivided differ-
ences [1, 6, 11, 14], or functions of the Hessian matrix H [2, 6, 7, 13, 25, 26] of a convenient
sensor variable s—such as for example the Mach number considered here—which is rep-
resentative of the flow features and whose choice depends on the physical problem. In
the present study, to cope with the presence of shock waves and smooth-flow regions,
the following nodal estimator is used [25]

Ei(s)=h2
i

√

ε2
i (s;τ)+ε2

i (s;η), with ε(s;ω)=
ωTH(s)ω

hωT∇s+ǫµ(s)
, (2.1)

where Ei(s) is the error estimation of the i-th cell, s is the adaptation sensor variable (local
Mach number in this work), hi is the radius of the circle circumscribing the i-th cell, ω is
a generic versor in R

2, τ and η are the tangent and normal versors to the local velocity
vector, ǫ is a constant chosen between 0 and 1 (0.12 here) and µ(s) is the average value
of s over the computational domain. The discrete Hessian matrix H(s) and the gradient
vector ∇s are computed using a linear finite-element approximation of Lagrangian type
within the node-pair representation [17, 23].

A grid element is marked for refinement if the error estimator is larger than ER =
µ(E(s))+kRσ(E(s)), with kR a constant (0.1 here) and σ(E(s)) standard deviation of the
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error estimator distribution. Conversely, the grid-coarsening threshold is set at ED =
kDµ(E(s)), with kD a constant (0.4 here), to force grid adaptation towards a greater uni-
formity in error distribution. Elements marked for refinement/derefinement are modi-
fied as in Fig. 1. Grid modifications amount to insert a new node in the center of mass
of all elements to be refined and to remove all nodes surrounded by elements to be dere-
fined. To improve the grid quality, Laplacian smoothing based on an elastic analogy is
performed after the refinement step. After the coarsening phase, edge-swapping and
grid smoothing are performed [20]. To limit the number of nodes/elements close to flow
discontinuities, a minimum value for the area of the triangles is used.

In unsteady flow fields, at each time level tn, after computing the solution on the grid
from the previous time step tn−1, the grid adaptation procedure is carried out. Then,
the solution is recalculated at the same time step tn using the new adapted grid. This
procedure is repeated until the error estimator is uniformly distributed at tn. Such an
iterative procedure clearly implies a large computational effort and it will be called in the
following Ad1.

A strategy to reduce the computational effort, with particular reference to unsteady
problems, is also implemented here. The idea is to compute the solution at tn using the
grid at tn−1, to perform an iterative adaptation procedure, and to recompute the solution
on the final grid only at the end of the grid adaptation routine, without intermediate com-
putations. To this purpose, an empirical error redistribution technique is used, in which
each new/modified element inherits the area-weighted value of the error estimator of its
parental element for grid refinement or neighboring elements for grid derefinement. A
complete convergence of the iterative procedure at time tn is achieved when the number
of refined and derefined element is below a pre-defined threshold. After the final solu-
tion at tn is computed on the adapted grid, the computation advances to the next time
level tn+1. Hereinafter, this latter strategy will be called Ad2.

3 Edge-based ALE solver for adaptive moving grids

The Euler equations in an Arbitrary Lagrangian Eulerian (ALE) framework [3,4] for com-
pressible two-dimensional flows read

d

dt

∫

C(t)
u+

∮

∂C(t)

[

f(u)−uv

]

·n=0, ∀C(t)⊆Ω(t), (3.1)

where u=(ρ,m,Et)T∈R
+×R

3 is the vector of the conservative variables density, momen-
tum vector and total energy per unit volume. The solution is sought for in the spatial
domain Ω(t)∈R

2 of boundary ∂Ω(t) and ∀t∈R
+. System (3.1) is made complete by spec-

ifying suitable initial and boundary conditions [5]. The flux function f=(fx,fy)T∈R
4×R

2

is defined as f(u)=(m, m⊗m/ρ+P(u) I2, [Et+P(u)]m/ρ)T where I2 is the 2×2 identity
matrix. The normal vector n = n(s,t) = (nx,ny)T is a function of the curvilinear coordi-
nate s along ∂C and of the time as well. In (3.1), the term uv= (ρv,m⊗v,Et

v)T, where
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Figure 2: Left: edge associated with the finite volume interface ∂Cik = ∂Ci∩∂Ck and metric vector ηik in two
spatial dimensions. The two shaded regions are the finite volumes Ci and Ck; dashed lines indicate the underlying
triangulation. Right: area swept by portion of the interface ∂Cik,e pertaining to element e, made of nodes i, j

and k, during the time interval [tn,tn+1].

v = v(s,t) is the local velocity of the interface ∂C(t), accounts for the flux contribution
due to the movement of the control volume C(t). The finite volume discrete counterpart
of the Euler equation (3.1) is obtained by selecting a finite number of non overlapping
volumes Ci(t)⊂ Ω(t), such that

⋃

iCi(t)≡Ω(t). In the node-centered approach consid-
ered here, each finite volume Ci surrounds a single node i of the triangulation of Ω, as
shown in Fig. 2. Over each finite volume equation (3.1) reads

d[Viui]

dt
=−

∮

∂Ci

[

f(u)−uv

]

·n, ∀i∈K, (3.2)

where Vi is the volume of the i-th cell and K is the set of all nodes of the triangulation.
The unknown u is approximated over Ci by its average value ui = ui(t). The right hand
side of (3.2) is split into domain and boundary contributions as follows

∮

∂Ci

[

f(u)−uv

]

·n= ∑
k∈Ki, 6=

∫

∂Cik

[

f(u)−uv

]

·n+
∫

∂Ci∩∂Ω

[

f(u)−uv

]

·n, (3.3)

where Ki, 6=={k∈K :k 6= i|∂Ci∩∂Ck 6=∅} is the set of the indexes k of the finite volumes Ck

sharing a portion of their boundary with Ci, Ci excluded, (i.e. the node to node connec-
tivity) and ∂Cik = ∂Ci∩∂Ck is the cell interface between the volumes Ci and Ck (see Fig. 2).
Each interface ∂Cik is associated to the corresponding edge i-k connecting nodes i and k
of the triangulation of Ω. A suitable approximate integrated numerical flux Φ∈R

4, rep-
resenting the exchange across the cell interface ∂Ci∩∂Ck, is introduced [10]. Considering
a centered approximation of the unknown and of the flux function at the cell interfaces,
the domain contributions read

∫

∂Cik

[f(u)−uv

]

·n≃
f(ui)+f(uk)

2
·ηik−

ui+uk

2
νik =−Φ(ui,uk,νik,η̂ik,ηik).
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The integrated normal vector ηik and the integrated normal interface velocity νik are de-
fined as

ηik(t)=
∫

∂Cik

n and νik(t)=
∫

∂Cik

v·n=
dVi,ik

dt
, (3.4)

where Vi,ik is the volume portion pertaining to cell i swept by the interface i-k, see Fig. 2(b).
In (3.4), ηik is expressed in terms of its magnitude ηik times the unit vector η̂ik = ηik/ηik.
By assuming a constant interface flux also for boundary contributions, since u= ui over
the boundary portion ∂Ci∩Ω, the boundary integrals in (3.3) simplifies to

∫

∂Ci∩∂Ω

[

f(u)−uv

]

·n≃ f(ui)·ξi−ui νi =−Φ
∂(ui,νi, ξ̂i,ξi), (3.5)

where

ξ i(t)=
∫

∂Ci∩∂Ω
n and νi(t)=

∫

∂Ci∩∂Ω
v·n=

dVi,∂

dt
, (3.6)

with Vi,∂ volume swept by the portion of Ci that belongs to the boundary ∂Ω of the com-
putational domain. The vector ξi is rewritten in terms of its magnitude ξi and unit vector
ξ̂i =ξi/ξi.

In the actual computations, the centered approximation of the flux function at the cell
interfaces is replaced by a Total Variation Diminishing (TVD) numerical flux [10, 21]. To
this purpose, the second order centered approximation is replaced by the first order Roe
flux near flow discontinuities [16]. The switch is controlled by the limiter proposed by
van Leer [21]. The above high-resolution version of the scheme requires the definition
of an extended edge data structure that includes also the extension nodes i⋆ and k⋆, that
are needed in the evaluation of the limiter function. As done in [24], the extension nodes
belong to the two edges best aligned with i-k.

By complementing the discrete form of the Euler equation for a general, namely, not
centered approximation of the numerical fluxes, with the definitions (3.4) and (3.6), one
finally obtains the following system of Ndof+Nik+Ni,∂ ODEs



































d

dt
[Viui]= ∑

k∈Ki, 6=

Φ(ui,uk,νik,η̂ik,ηik)+Φ
∂(ui,νi, ξ̂i,ξi),

dVi,ik

dt
=νik ,

dVi,∂

dt
=νi ,

∀i∈K,

∀k∈Ki, 6= ,
(3.7)

of Ndof=NK×4 conservation laws equations, with NK=dim(K) the total number of grid
points, and Nik+Ni,∂ consistency conditions, with Nik and Ni,∂ number of grid edges and
of boundary nodes, respectively. The ODE system above is solved using a Backward Dif-
ferences Formulæ (BDF) scheme of order either one or two, as reported in the numerical
results section. The nonlinear system (3.7) for the fluid variables u at time level n+1 is
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Figure 3: Interpretation of the edge swapping as continuous finite volume deformation. Left: evaluation of the
normal interface velocity (area of the shaded region) for edge i-k that is deleted due to edge-swapping from

edge i-k at time tn into edge j-k at time tn+1. Right: evaluation of the normal interface velocity for edge j-k
that is created due to edge-swapping.

solved here by means of a modified Newton method, in which the Jacobian of the inte-
grated flux function is approximated by that of the first-order scheme, and by resorting to
a dual time-stepping technique [22], to improve the conditioning number of the Jacobian
matrix.

As discussed in [8, 9], all grid adaptation techniques can be interpreted as the effect
of a continuous modification in time of suitably defined finite volume. An example is
given in Fig. 3, in which the geometrical interpretation of edge swapping in the ALE
framework is sketched. In Fig. 3, at time tn+1, ηik = 0, so the Eulerian numerical flux is
zero, but νik = ∆Vn+1

i,ik 6= 0 and the ALE contribution is non-zero. All grid modification
due to node insertion, node deletion or element swapping are automatically taken into
account by the ALE framework; the reader is referred to [8, 9] for a detailed description
of the ALE interpretation of grid adaptation.

4 Numerical results

Numerical experiments are carried out to test the accuracy of the proposed solution pro-
cedure. The computational efficiency of the two adaptation strategies named Ad1 and
Ad2 discussed in Section 2 is first evaluated against the standard oblique-shock test case
in Section 4.1. In Section 4.2, steady flow simulations around the NACA 0012 airfoil are
performed to assess the solver capabilities at capturing relevant flow features of transonic
flows, including shock waves, shear lines and regions of smooth flows. Start-up vortex
formation and evolution around the NACA 0012 is investigated and reported in Section
4.3.

4.1 Oblique shock problem

The standard oblique-shock test problem is performed to compare the efficiency of the
two proposed adaptation strategies. In the problem under scrutiny, the steady state is a
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Level 0

Level 20

Level 2

Figure 4: Grid and Mach number in the flow field for the oblique-shock problem for Ad1. From top to bottom:
original grid (1 532 nodes, 2 900 elements), intermediate grid at the 2-th adaptation level (2 735 nodes, 5 340
elements), final grid at the 20-th adaptation level (10 557 nodes, 20 994 elements).

Level 0

Level 2

Level 11

Figure 5: Grid and Mach number in the flow field for the oblique-shock problem for Ad2. From top to bottom:
original grid (1 532 nodes, 2 900 elements), intermediate grid at the 2-th adaptation level (3 787 nodes, 7 460
elements), final grid at the 11-th adaptation level (11 500 nodes, 22 916 elements).

parallel supersonic flow with an oblique shock (−25.60◦) that is reflected at y=0.5 along
the lower solid boundary.

Starting from a grid made of 1 532 nodes and 2 900 elements, convergence on both grid
and solution is achieved using the two proposed strategies (Ad1 and Ad2). A minimum
element area of 10−6 is imposed; the variable used to compute the error estimator is the
local Mach number. For both strategies, the relative difference of the area-averaged mean
error µw of two successive adaptation cycles is below 2%, namely

(

µi+1
w −µi

w)
)

/µ1
w<0.02.
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Figure 6: Comparison between analytical and numerical solution at y= 0.4 for the oblique-shock problem for
different adaptation steps and strategies.

The computational times are 170m 01s using Ad1 and 53m 28s using Ad2 on a single
core of an Intel Xeon QuadCore 3.166GHz. The number of adaptation cycles required
to reach convergence is 20 and 11 for Ad1 and Ad2, respectively. Therefore, the cost of
each adaptation step for the Ad1 technique is twice as that of the Ad2, possibly because
a better initial guess is computed for the latter thus reducing the time required to reach
steady state. Figs. 4 and 5 show the evolution of the grid and of the solution in terms
of Mach number at different adaptation levels (initial, intermediate and final) for Ad1

and Ad2, respectively. Figs. 6(a) and 6(b) show the numerical solutions at y=0.4 against
the exact one. The Ad2 technique shows better results after two second adaptation steps
already, moreover it requires roughly half of the computational time. Figs. 7 and 8 show
the error and number of points at each time steps for both Ad1 and Ad2, respectively.
In both cases the algebraical error µ increases due to the redistribution of elements from
low error regions (constant solution regions) to high error regions (shock waves). On the
contrary the mean error scaled on areas µw decreases till the threshold of minimum area
is reached and then remains quite constant.

4.2 Steady transonic flow around the NACA0012 airfoil

The case of the compressible inviscid flow developing past a NACA 0012 airfoil at 5◦ in-
cidence and Mach = 0.7 is discussed. This transonic flow is characterized by the presence
of a shock wave located at about 45% of the chord and by a slip (entropy) line detaching
from the trailing edge. Fig. 9 shows the Mach number obtained after 15 cycles of Ad1

steps, i.e. refinement, smoothing, derefinement, edge-swapping and smoothing cycle.
The variable adopted to evaluate the error is the local Mach number. After each adap-
tation step, the steady state is computed to update the error estimator. The proposed
adaptation procedure is capable of capturing both the shock wave and the shear line.
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Figure 7: Adaptation technique Ad1. Left: algebraic mean µ(E(s)), area-averaged mean µw(E(s)) and the
standard deviation σ(E(s)) as a function of the adaptation step for the steady-state oblique-shock problem.
Right: number of grid elements and of not refineable elements as a function of the adaptation step.
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Figure 8: Adaptation technique Ad2. Left: algebraic mean µ(E(s)), area-averaged mean µw(E(s)) and standard
deviation σ(E(s)) as a function of the adaptation step for the steady-state oblique-shock problem. Right:
number of grid elements and of not refineable elements as a function of the adaptation step.

Fig. 10 shows the pressure coefficient over the airfoil after 0, 2 and 15 adaptation steps.
Fig. 11(a) shows the algebraic mean µ(E(s)) = ∑i∈KEi(s)/NK, the area-averaged mean
µw(E(s)) = ∑i∈K(ViEi(s))/∑i∈KVi and the standard deviation σ(E(s)) as a function of
the adaptation step. Fig. 11(b) shows the number of grid elements at each adaptation
step and the number of elements that cannot be refined, namely, whose areas are equal
or below the limiting value of 10−7. During the first iterations, both µ and σ decrease,
due to the insertion of additional nodes close to the airfoil. When the fifth adaptation
cycle is reached these quantities increase because new nodes are inserted close to flow
discontinuities (i.e. large error regions) and simultaneously elements are removed from
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Level 0

Level 15

Figure 9: Grid and Mach contour for NACA 0012 at Mach = 0.7. First row: original grid (3 179 nodes, 6 030
elements) and isolines (25 levels from 0.08 to 1.5). Second row: 15-th adaptation level (26 499 nodes, 52 568
elements) and isolines (25 levels from 0.08 to 1.5).
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Figure 10: NACA 0012 at Mach 0.7. Pressure coefficient over the airfoil for the initial grid and for adapted
grids (first and last adaptation steps).

low error regions. As new grids are produced, the number of elements that cannot be
refined increases. From the tenth to last adaptation step, no new nodes are added and
only mesh coarsening occurs.
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Figure 11: Left: algebraic mean µ(E(s)), area-averaged mean µw(E(s)) and standard deviation σ(E(s)) as a
function of the adaptation step for the steady-state NACA 0012 simulations. Right: number of grid elements
and of not refineable elements as a function of the adaptation step.

4.3 Start-up vortex from the NACA 0012 airfoil

The solution technique is now applied to the computation of the two-dimensional un-
steady flow past the NACA 0012 airfoil impulsively set into motion. Similarly to the
previous case, the presence of a sharp trailing edge guarantees that the Kutta condition
is fulfilled and the Euler equations can be used to correctly represent the space-time evo-
lution of the start-up vortex in the computational domain.

As a consequence of lift generation over the airfoil, a trailing-edge vortex is produced.
This vortex is named start-up vortex and its dynamics strongly influence the time history
of the force coefficient over the airfoil. Since a clockwise circulation Γa(t) around the air-
foil is generated, the starting vortex is associated to a counterclockwise circulation Γv(t).
As the distance between the airfoil and the start-up vortex increases due to their relative
motion, the influence of the latter on the aerodynamic coefficients vanishes. Eventually,
the steady-state value of the lift coefficient CL(t) is attained and Γv(∞)=−Γa(∞).

The influence of the start-up vortex dynamics on the airfoil is very difficult to investi-
gate numerically. Since both the flow field around the airfoil and the start-up vortex need
to be captured accurately at the same time, since the circulation around the airfoil and the
intensity of the start-up vortex balances instantaneously, due to the Kelvin’s circulation
theorem. It is therefore mandatory to adapt the computational grid in an unsteady fash-
ion to follow the vortex dynamics and, at the same time, accurately compute the flow
field close to the airfoil.

In the numerical tests, the airfoil reference is used. The free stream velocity is there-
fore a step function that starts at zero and reaches its asymptotic value V∞ at the time t>0.
In the computations, the time variable t is made dimensionless by the free-stream velocity
V∞ divided by the airfoil chord c. The considered dimensionless time interval is t∈ [0,5].
Tests were performed for a free-stream Mach number M∞=0.7 and for α=10◦ incidence.
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Figure 12: Impulsively-started NACA 0012. Mach = 0.7, α=10◦: lift coefficient time history for the reference
grid against solution over the initial coarse grid for different values of the time step using the one-step BDF1
(top) and the two-step BDF2 (bottom) schemes (c). In (b) and (d) an enlarged view of the time interval across
the minimum CL is shown.

Simulations on both adapted and fixed grid were carried out. The fixed grid used to com-
pute the reference solution is made of 29 367 nodes and 58 094 elements. The adaptation
process starts from an initial grid made of 4 989 nodes and 9 627 elements. The adapted-
grid computations were carried out for two different thresholds for the minimum area
of the elements, namely, 3×10−5 and 3×10−4. The variable adopted to evaluate the er-
ror is the local Mach number. Time integration over the reference grid were performed
using the BDF1 scheme with ∆t=0.0164. To assess time convergence, both the one-step
BDF1 and two-step BDF2 time integration schemes were used over the initial grid for
∆t = ∆t0 = 0.0103, ∆t = 2∆t0, ∆t = 4∆t0. Results for the lift coefficient CL are reported
in Fig. 12 and demonstrate time convergence to the reference solution for the smallest
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t = 0.453

t = 1.234

t = 4.966

(a) Adapted grid

(b) Reference grid

Figure 13: Impulsively-started NACA 0012 for Mach = 0.7, α= 10◦: close-up of the computational grids at
three different time levels (a) and reference grid (b).

time step for both the BDF1 and BDF2 schemes. For BDF2, the solution is almost indis-
tinguishable from the reference also for ∆t= 2∆t0 . Therefore, the simulations were run
using the Ad2 adaptation procedure with ∆t=∆t0=0.0103 and the BDF1 time integration
scheme.

Fig. 13 shows the adapted grids for the simulation with the minimum element area
equal to 3×10−5 at three different dimensionless time levels. These correspond to the
minimum of the lift coefficient (t= 0.453, 9 213 nodes and 18 196 elements), a condition
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t = 4.966

(a) Adapted grid

CPt = 0.453Mach

t = 1.234

t = 4.966

(b) Reference grid

Figure 14: Impulsively-started NACA 0012 for Mach = 0.7, α=10◦: contour line of the Mach number and of
the pressure coefficient CP at different time levels. Adapted grids (a) and reference grid (b) solutions.

where the influence of the start-up vortex begins to be negligible (t = 1.234, grid: 8 360
nodes and 16 494 elements) and the final configuration (t=4.966, grid: 16 986 nodes and
33 733 elements), respectively. Fig. 14 shows the Mach number and the pressure coef-
ficient CP in the flow field at the three time levels. The CP(t) profile over the airfoil is
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Figure 15: Impulsively-started NACA 0012. Mach = 0.7, α=10◦: pressure coefficient over the airfoil at different
time level for adapted grids.

depicted in Fig. 15 for the three considered states. The airfoil lift coefficient is plotted in
Fig. 16 as a function of the dimensionless time.

A shock wave is formed on the top of the airfoils and terminate a supersonic region.
The shock wave evolution is nicely captured by the adapted grid scheme, whereas in the
reference dense grid computations the shock is smeared far from the airfoil. The start-up
vortex is generated at t=0; its evolution is well captured by the adaptive scheme, which is
also capable of refining the grid close to the slip line from the trailing edge. With reference
to Fig. 13, in adapted grid simulations a large number of nodes is added to capture the
pressure wave in front of the airfoil which is clearly visible at time t=1.234); this accounts
for the higher computational time. The propagation of this disturbance does not affect
significantly the overall value of the lift coefficient, which is used here for comparisons.
The above can be appreciated in Fig. 17, where the total number of grid nodes at each
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Figure 16: Impulsively-started NACA 0012. Mach = 0.7, α=10◦: lift coefficient time history for the reference
grid against adapted grids with minimum reference length of 3×10−5.
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Figure 17: Mach = 0.7, α=10◦: number of grid elements and of not refineable elements as a function of the
adaptation step for element size limit of 10−4 (left) and 10−5 (right).

adaptation step is shown. In the finer grid case, a large number of nodes is inserted dur-
ing adaptation cycles between 100 and 200 to capture the pressure wave dynamics. The
CPU time required to run each simulation is 9 hours, 19 minutes and 51 s for the reference
simulations, which corresponds to an average of 110s for time step (305 time steps total),
3 hours, 21 minutes and 29 s (25 s × 486) for the adapted-grid simulation with minimum
element area of 3×10−4 and 14 hours, 18 minutes and 44 s (106 s × 486) for a minimum
area of 3×10−5 on a single core of an Intel Xeon QuadCore 3.166GHz. The adoption of
the adaptation procedure is found not to influence the (average) computational effort per
time step.

5 Conclusions

A finite-volume ALE solver for two-dimensional compressible flows over unstructured
grid was used to compute vortical flows around airfoils. The numerical scheme imple-
ments a novel grid alteration procedure, which includes edge-swapping, node insertion
and node deletion, to modify the local grid spacing to minimize the numerical error. The
solution at the new time level is obtained without resorting to interpolation between the
diverse grids, thanks to an original interpretation of the grid alteration process within the
ALE framework. This methodology has also been used in other works in which simula-
tions with large displacements of bodies were involved in [8, 9, 15].

Numerical simulations of compressible transonic and supersonic flow fields were pre-
sented to assess the suitability of the proposed approach to the numerical simulations of
unsteady vortical flows of compressible fluids, with specific reference to the unsteady
case of a start-up vortex from an impulsively started airfoil. The numerical results con-
firm the correctness of the proposed methodology and are comparable to fixed-grid re-
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sults over finer grids. The present adaptation procedure can be formally extended to
three-dimensional flows with no modification. Current research activities are devoted to
the evaluation of the interface velocities resulting from edge-swapping, node insertion
and deletion in three-dimensional grids made of tetrahedral elements.
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