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Abstract. A new algorithm, called boosted hybrid method, is proposed for the sim-
ulation of chemical reaction systems with scale-separation in time and disparity in
species population. For such stiff systems, the algorithm can automatically identify
scale-separation in time and slow down the fast reactions while maintaining a good
approximation to the original effective dynamics. This technique is called boosting.
As disparity in species population may still exist in the boosted system, we propose
a hybrid strategy based on coarse-graining methods, such as the tau-leaping method,
to accelerate the reactions among large population species. The combination of the
boosting strategy and the hybrid method allow for an efficient and adaptive simula-
tion of complex chemical reactions. The new method does not need a priori knowledge
of the system and can also be used for systems with hierarchical multiple time scales.
Numerical experiments illustrate the versatility and efficiency of the method.

AMS subject classifications: 65C05, 65C20
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1 Introduction

Advances in experimental and computational methods over the last decades have made
a quantitative, systematic understanding of cellular processes in molecular level possi-
ble [1–6]. For micro-scale biochemical systems, such as one single living cell, consider-

∗Corresponding author. Email addresses: huyc@pku.edu.cn (Y. Hu), assyr.abdulle@epfl.ch (A. Abdulle),
tieli@pku.edu.cn (T. Li)

http://www.global-sci.com/ 981 c©2012 Global-Science Press



982 Y. Hu, A. Abdulle and T. Li / Commun. Comput. Phys., 12 (2012), pp. 981-1005

able evidence indicates that stochasticity plays an important role, especially when low-
molecular-number reactant species are being considered [2, 3]. The usefulness of the tra-
ditional deterministic approach, based on reaction rate equations, is limited in such situ-
ation. In turn, many stochastic biochemical reaction networks have been built to take into
account the randomness in biological processes. Because of the disparity of time scales
and species population, the simulation of such systems is often challenging and the de-
velopment of new numerical techniques for multiscale chemical reactions has become an
active research field [4, 7, 8].

One fundamental method in simulating chemical reaction systems is Gillespie’s
Stochastic Simulating Algorithm (SSA) [9, 10]. It can generate statistically exact trajec-
tories of the system state by randomly sampling each reaction event. In principle, SSA
applies to any chemical reaction system, but the method become computationally costly
when reaction events occur very frequently in the system. This often happens because
of the co-existence of fast and slow dynamics in a system, or reactions involving species
with very large populations, or both.

On one hand, the co-existence of fast and slow dynamics in a system leads often
to severe step-size restriction for standard methods. Such systems are called stiff and
need a special numerical treatments. For stiff ordinary or stochastic differential equa-
tions, implicit methods or stabilized explicit methods (called Chebyshev methods) can
be efficient [11–13]. But fast variables in chemical reaction system often fluctuate quickly
around a “slow manifold”, and implicit or stabilized method usually fail to capture the
right stationary distribution of the fast variables [12, 14, 15]. Rao and Arkin [16] first
formalized the quasi-equilibrium approximation in chemical reaction system and imple-
mented it in SSA. Their idea was further extended by Cao et al. in developing the slow-
scale SSA [17]. Both methods require explicit form of the stationary distribution for the
fast variables which in general is difficult to get. To remove this restriction, E et al. de-
veloped the nested-SSA [18]. In this method, the averaged rates of the slow reactions are
sampled by inner SSA, as the micro-solver acting on fast reactions only, during a period
of time that is much larger than the fast time scale and at the same time much smaller
than the slow time scale. Then the average rates of the slow reactions will be used by
the outer SSA, as the macro-solver acting on slow reactions only, to march the system
forward.

On the other hand, reactions involving species with large population size fire very fre-
quently which also make the SSA computationally inefficient. To overcome this difficulty,
Haseltine and Rawlings proposed a hybrid method for solving chemical reaction sys-
tems with disparity in species population [8]. The main idea is to apply a coarse-graining
approximation (based on stochastic or ordinary differential equations) for species with
large population size and SSA for species with small population size. Many variants of
hybrid method have been proposed [6, 19–25]. Based on the system size, the τ-leaping
method [7], chemical Langevin equations or reaction rate equations [26] are often used as
the coarse solver.

Numerical algorithm that can handle both the multiple time scales and the disparity
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in species population is currently a challenging research direction. Cao et al. [27] demon-
strate that hybrid method can be combined with slow-scale SSA and implicit τ-leaping
to handle stiff separations. Samant et al. [28] designed a more general algorithm that can
identify scale-separation and partition the reactions on-the-fly. Another improvement in
this work is the generalization of the nested-SSA to nest-tau-leaping to handle fast reac-
tions involving large population species.

Compared with the nested-SSA by taking the heterogeneous multi-scale method
(HMM) approach [18] and slow-scale SSA based on taking the explicit quasi-equilibrium
approximation [17], another nice idea for multi-scale methods which is called boosting has
never been investigated in the chemical reaction literature [29]. The idea of boosting for
accelerating the multi-scale simulation is simply to rescale the scale separation parameter
λ≪1 to an artificial constant λ0 such that λ≪λ0≪1, which can speed up the simulation
of fast reactions and keep the computational accuracy at the same time. The idea can
be dated to Carr-Parrinello’s molecular dynamics and Chorin’s artificial compressibility
method in fluid mechanics [29].

In this paper we present a new general algorithm, called boosted hybrid method,
that can efficiently simulate complex chemical reaction systems with time-scale separa-
tion and disparity in species population. The algorithm combines the idea of boosting
and hybrid simulations. It collects the system state information on-the-fly and auto-
matically partition the reactions into fast and slow groups if certain criteria is satisfied.
Then the original system is approximated by a boosted system, in which the fast reactions
are “slowed-down” by a change of time-unit. The new system, which poses less scale-
separation in time, is simulated using a hybrid method.

The schematic overview of our method is shown in Fig. 1. The hybrid solver is built
in Block B, whose details will be given in Section 2. It is similar to that of Haseltine et al.’s
approach [8] but has several crucial improvements. Block C is the monitor block. It does
not directly update the system but only collects information. With the collected statistical
information over a short time window, the monitor will generate an approximate system
as a replacement of the original one. The main tool used in maintaining a reasonable ap-
proximation of the system is boosting [29, 30]. It relies on the following idea: in presence
of large time-scale separation, it is possible to slow down the fast reactions of a system
while maintaining a good approximation to the original effective dynamics. A boosted
system becomes less stiff without destroying the effective dynamics. It can then be solved
by a hybrid method, so that the reactions among species with large population size can be
efficiently simulated. Basically speaking, the time-scale separation is dealt with boosting,
and the disparity in the species population is taken care by hybrid method.

The paper is organized as follows. In Section 2 we discuss the criteria for partitioning
the reactions and present a improved hybrid method. The boosting strategy is introduced
in Section 3. Its combination with the boosting method is presented in Section 4. Various
numerical experiments are given in Section 5 illustrating the versatility and efficiency of
the method. Finally in Section 6 we summarize our findings and discuss unsolved issues
and future works.
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Figure 1: Schematic overview of the boosted hybrid method. It consists of two major components: the monitor
and the hybrid solver. The monitor collects information, including the average rates and system state change.
With this statistical information, it will decide if quasi-equilibrium is reached. If so, a boosted system will be
proposed to replace the original system to be simulated by the hybrid method.

2 Adaptive hybrid method

In this section we start by describing how to adaptively partition the reactions in a com-
plex chemical reaction systems. A hybrid method is then introduced which allows to use
different numerical strategies for chemical species with different population size.

2.1 Partition of the system

Consider a well stirred chemical reaction system consisting of N different species inter-
acting through M reaction channels. Let Xi(t) be the population number of the i-th specie
at time t, and the system state vector be X(t)=(X1(t),X2(t),··· ,XN(t))∈N

N . Each reac-
tion channel j has a propensity function, or reaction rate, aj(x),x∈N

N . The probability
that the j-th reaction fires during an infinitesimal time dt is aj(X(t))dt, independent of the
other reactions. If the j-th reaction fires, the system is updated as X(t)→X(t)+νj, where

νj =(ν1j,··· ,νNj)
T ∈N

N is the state-change vector corresponding to this reaction. Given
the initial state X(0) and the aforementioned evolutionary law, we can use Gillespie’s
SSA [9] to simulate trajectories of X(t) and study its statistical properties. But for sys-
tems with multiple well separated time-scales and disparity in species population, this
procedure often becomes too costly. The aim of this work is to provide a more efficient
simulation strategy for such systems.
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Figure 2: After partition, the reactions are divided into four non-overlapping groups. (I) Fast coarse-grainable
reactions, suitable for boosting and coarse-graining approximations. (II) Slow coarse-grainable reactions, suitable
for coarse-graining approximation. (III) Fast critical reactions, suitable for boosting approximation. (IV) Slow
critical reactions, suitable for SSA. To apply quasi-equilibrium approximation, we need time-scale separation
between fast and slow reactions, which is represented by the gray zone in the figure.

The first step is to partition the system. We divide the reactions into different groups
according to their property (see Fig. 2). Each group will then be treated with different
algorithms. As shown in Fig. 2, we partition all the reactions into four groups based on
the species population numbers and the reaction rates. Reactions with fast dynamics are
simply called fast reactions, the remaining reactions are called slow reactions. We also
distinguish reactions involving species with large population size, called coarse-grainable
reactions, from reactions involving species with small population size, called critical re-
actions. We give below the implementation details for realizing such a partition.

Adaptive selection of critical and non-critical reactions. Given the system state X , we
define the bottleneck specie number zj for each reaction j as,

zj(X)= min
i=1,···,N;νij 6=0

{

Xi

|νij |

}

.

Note that if reaction j fires once, at least one specie will be changed by a proportion of
1/zj. If zj is large, this will be just a small change to the system. For these reactions
coarse-graining approximation such as tau-leaping can apply. The idea of tau-leaping is
to assume the system state to be fixed for a small period of time so that many reactions
can be updated in one time. But if zj is small, the system will experience a significant
change, and exact method like the SSA need to be used. We choose a small value ǫ (say,
ǫ=0.1, the same ǫ will be used later in the tau-leaping method). If zj <1/ǫ, then reaction
j will be called as critical reaction, otherwise as coarse-grainable reaction.



986 Y. Hu, A. Abdulle and T. Li / Commun. Comput. Phys., 12 (2012), pp. 981-1005

Adaptive selection of fast and slow reactions. We further partition all the reactions as
being either fast or slow reactions. Define the characteristic rate for reaction j as

Aj(X)=
aj(X)

max{ǫzj(X),1} , (2.1)

where ǫ is a small positive parameter. Note that for critical reactions Aj(X)=aj(X), while
for coarse-grainable reactions Aj(X)< aj(X).

To apply quasi-equilibrium approximations, time-scale separation between the aver-
aged characteristic rates is required. Then we can partition all the reactions into four
non-overlapping groups as shown in Fig. 2.

2.2 Hybrid method

The hybrid method allows efficient simulation of chemical reaction systems with dispar-
ity in species population. It is also a major building block of the boosted hybrid method
relying on the use of boosting to handle the time-scale separation and a hybrid treatment
of the resulting reactions groups (II) and (IV). The idea is to use SSA for critical reactions
and at the same time use tau-leaping method for coarse-grainable reaction. The difficulty
is the coupling of time-steps between those used by tau-leaping and SSA. There are a
lot of works in this direction [6, 19–25]. The coupling strategy that we use here relies
on [8]. We however propose some improvements of the aforementioned work related to
an adaptive partitions of the reactions as explained below.

Remark 2.1. In [8], the authors use SSA combined with stochastic differential equation
integrator or ordinary differential equation integrator. Here we will discuss the hy-
bridization of SSA and tau-leaping but the framework also apply to other coarse-graining
solvers.

Consider a system with only slow reactions. The critical reactions (group (IV)) are
labeled as 1,··· ,q and the coarse-grainable reactions (group (II)) are labeled as q+1,··· ,M.
Define aΛ(X) as the sum of rates of all the critical reactions,

aΛ(X)≡
q

∑
j=1

aj(X).

The waiting time for the next critical reaction to fire is a random variable τ with proba-
bility density function

p(τ)= aΛ(X(t+τ))exp

(

−
∫ t+τ

t
aΛ(X(s))ds

)

. (2.2)

In order to generate such a random variable, one can first generate a standard uniformly
distributed random variable u and then solve

∫ t0+τ

t0

q

∑
j=1

aj(X(s))ds+lnu1=0. (2.3)
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During (t0,t0+τ) the coarse-grainable reactions may change the system state X(t). But
under the leaping condition [31]

|Xj(t0+tleap)−Xj(t0)|≤ǫXj, j=q+1,··· ,M, (2.4)

we can find tleap>0 so that before time t0+tleap the system-change caused by the coarse-
grainable reactions can be neglected. Assuming the system state remains unchanged to
be X(t0), Eq. (2.3) predicts dt1 =−lnu1/aΛ(X(t0)). If we have dt1 < tleap, the leaping
condition is not violated and we choose a critical reaction to fire at time t0+dt1. We
also use this dt1 as the leaping step-size to update the coarse-grainable reactions in the
tau-leaping method. If, however, we have dt1 > tleap, then we need to update the coarse-
grainable reactions at the time t0+dt1. So we update the coarse-grainable reactions using
the tau-leaping method with step-size tleap and define dt1= tleap instead. Then we update
the time to t′0≡ t0+dt1. Since no critical reaction has fired, we update Eq. (2.3) as

∫ t0+τ

t′0

q

∑
j=1

aj(X(s))ds=−lnu1−
q

∑
j=1

aj(X(t0))dt1 >0.

Now we let t0← t′0 and repeat the above procedures to get dti (i = 2,···) in each step.
As the left-hand-side of the above equation will decrease each time, eventually a critical
reaction will fire and Eq. (2.3) can be solved. Thus the final τ=∑i dti. Then, using SSA,
the critical reaction that will fire can be randomly chosen by finding a l that satisfies

l−1

∑
j=1

aj(X(t0+τ))<u2aΛ(X(t0+τ))≤
l

∑
j=1

aj(X(t0+τ)), (2.5)

where u2 is a random variable uniformly distributed in [0,1].

Remark 2.2. Note that after several steps of the numerical method for the coarse-
grainable reactions, the classification of the critical and non-critical reactions may no
longer be valid. In this case, we have to partition the system again.

Remark 2.3. Eqs. (2.2) and (2.3) are the same as Eqs. (17) and (20a) in [8]. But the way of
solving them is different here. Instead of using “no-reaction”, which does not change the
system state but only makes critical reactions to happen at a more frequent basis in order
to scale stochastic time step, we search for the next zero-crossing time point for Eq. (2.3)
under the constrain of the leaping condition. The no-reaction approach is easy to use and
still applicable here, but it may result in computational overhead because more critical
reactions (including the no-reactions) need to be handled. Lastly, we point out that our
approach is similar with the work in [20], but the later is based on the first reaction variant
of Gillespie’s SSA method. Generally speaking, there is no significant difference between
the applied principles.
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Finally we discuss how to generate tleap. There already exist a couple of procedures
to select a reasonable tleap that meets the leaping condition Eq. (2.4), such as those in
[7, 31, 32]. They can be used directly in our hybrid method. Here we propose another
step-size selection strategy, which is simpler to be implemented in our algorithm. We let

tleap= min
j=q+1,···,M

1

Aj(X)
,

where Aj(X) is the characteristic rate of the reaction j as given in Eq. (2.1). Note that
within a time-step 1/Aj(X), reaction j fires on average aj(X)/Aj(X)=ǫzj(X) times, and
cause a change of ǫzj(X)νj≤ǫXi (i=1,··· ,N), which is consistent with the leaping condi-
tion (2.4).

The hybrid method is given in Algorithm 1. Note that we need to do a new partition
(step 3 below) each time after we update the system state because the critical reaction set
may have changed.

Algorithm 1. Hybrid method.
Initialization: Let t=0, give X(0), and set ǫ=0.1, γ=0.

1. If γ≥ 0, generate a standard uniform random variables u1 and let γ = logu1 < 0. Otherwise
continue.

2. Compute the rates aj(X(t)), j=1,··· ,M.

3. For each reaction j, compute its bottleneck specie number as zj(X(t)) =minνij 6=0{Xi/|νij|},
j=1,··· ,M. If ǫzj(X(t))≤1, label it as critical reaction, otherwise as coarse-grainable reaction
and compute its characteristic rate Aj(X(t))= aj(X(t))/ǫzj(X(t)).

4. Choose the leaping step-size tleap=1/max(Aj(X(t))), for all coarse-grainable reaction j. Com-

pute τ=−γ/aΛ(X(t)).

5. If tleap>τ, fire one critical reaction using SSA as in Eq. (2.5). Apply tau-leaping with step-size
τ for all coarse-grainable reactions. Update time t= t+τ. Otherwise, apply tau-leaping with
step-size tleap for all coarse-grainable reactions, and do not fire critical reactions.

6. Update time t← t+tleap and γ←γ+aΛ(X(t))tleap. Repeat from step 1.

3 Boosting method for chemical reaction systems

In chemical reaction systems, it is very common to have large time-scale separations. A
widely used strategy is quasi-equilibrium approximation. There exist a number of ways
of implementing this idea in chemical reaction systems, such as slow-scale SSA, nested
SSA. Here we consider another approach called boosting, first introduced by Vanden-
Eijnden [29]. This approach, as we will see, has the advantage of allowing for an easy
implementation. The idea of boosting has been originally proposed in dynamical systems
with scale-separation in time, such as stiff ODEs and SDEs. We will see here that it is also
a good strategy for stochastic systems arising in chemical reactions.
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A simple example. First let us consider a simple chemical reaction system

S1
c1−⇀↽−
c2

S2,

S1
c3−⇀↽−
c4

S3.

Suppose c1=200,c2=100≫ c3 = c4=0.5, and initially X(0)=(1,0,0). One can think of S1,
S2 and S3 as being different forms of a protein. This protein will switch between state S1

and S2 at a very fast rate, and it can also switch between state S1 and S3 at a much slower
rate. Suppose that we are interested in the slow variable S3. In fact the rate of the third
reaction S1→ S3 only depends on the amount of time that the protein stays at state S1,
which is determined by the ratio of c1 and c2. The idea of boosting for this example is to
slow down the fast reaction while maintaining correct behavior of the slow dynamics. We
can simply dividing c1 and c2 both by 10, so that the protein still oscillate faster between
S1 and S2. But the system is less stiff since we have decreased the scale separation and it
is easier to solve with a standard solver.

3.1 Boosted-SSA

Consider a chemical reaction system with only critical reactions. The slow reactions in
group (III) are labeled as 1,2,··· ,q, and the fast reactions in group (IV) are labeled as
q+1,q+2,··· ,M. Scale separation between fast and slow reactions requires

min(aq+1,··· ,aM)≫max(a1,··· ,aq).

If we simulate this system with SSA, fast reactions will fire frequently and involve a high
computational cost. But it is only the slow dynamics that we want to capture. If we
restrict our attention to slow reactions, the waiting time for the next slow reaction in the
system, τ, has the probability density function

p(τ)=
q

∑
j=1

aj(X(τ))exp

(

−
∫ τ

0

q

∑
j=1

aj(X(s))ds

)

. (3.1)

The above equation is exact, but X(t) contains the information of the fast reactions which
we do not want to resolve. If the fast reactions quickly drive X(t) into quasi-equilibrium,
then we can approximate the effective rate of slow reaction j bj as

bj≡
1

τ

∫ τ

0
aj(X(s))ds≈ 1

h

∫ h

0
aj(X(s))ds, j=1,··· ,q. (3.2)

Here h a parameter chosen so that it is large in microscopic sense, meaning quasi-
equilibrium is well established for X(t), and small in macroscopic sense, meaning h is
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far less than the waiting time of the next slow reaction τ. Assume h=κτ, where κ≪1. In
(3.2) we make the transformation

bj≈
1

h

∫ h

0
aj(X(s))ds=

1

τ

∫ τ

0
aj(X(κs))ds, (3.3)

for j=1,··· ,q. The above equation implies that we can approximate the effective rate bj by
”slowing down“ the fast reactions by a factor of κ, which can be done simply by setting
the rate constants as c′j = κcj, j= 1,··· ,q to form a modified system. The boosted-SSA as

given by Algorithm 2 is nothing but to solve a modified system with SSA.

Algorithm 2. Boosted-SSA.

1. Divide all reactions into slow and fast reactions.

2. Choose parameter κ≪1 (we will discuss how to choose κ in Section 4). Modify the system by
rescalling the rate constants of all the fast reactions as c′j =κcj.

3. Simulate the modified system using SSA.

3.2 Comparison with slow-scale SSA and nested SSA

The slow-scale SSA [17] and nested SSA [18] are also based on quasi-equilibrium approx-
imation of the fast reactions in the system. In the slow-scale SSA, the system state is
divided into fast and slow variables as X=(Z,Y). Conditioned on the current state of the
slow variable Y = y, it calculates the conditional probability distribution function of the
fast variables p(z|y), analytically or approximately. Then it computes the effective rate
bj(y) of the slow reaction j by using

bj(y)=∑
z

aj(y,z)p(z|y). (3.4)

This amount to integrate out the fast variable z in the system, which leads to a reduced
system with state Y and slow reactions with rates bj(y). Then Gillespie’s SSA is applied
to the reduced slow-scale system and Y gets updated. The slow-scale SSA is very efficient
if one can obtain the conditional distribution p(z|y). However, for complex system there
is no systematic way to do so.

The nested SSA does not require an explicit form of p(z|y), not even the partition
of slow and fast variables. It only partitions the reactions into slow and fast reactions,
which is relatively easier. It then uses an inner-SSA subroutine to simulate only the fast
reactions for a small amount of time h to compute the effective rate of slow reactions j as

bj =
1

h

∫ h

0
aj(X(s))ds.

The above equation is exactly (3.2). With the effective rates, an outer-SSA subroutine is
called to simulate one single event among the slow reactions and update the system state
and the time.
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The nested SSA and boosted SSA share similar theoretical basis: both need to partition
the reactions, and share the same quasi-equilibration time h. The major difference is in the
implementation: in the former, the fast and slow reactions are simulated separately and
only the slow reactions get updated, but in the latter, the fast reactions are first slowed
down, then all the reactions are updated together. Boosting is easier to implement, es-
pecially for multiscale systems with a hierarchy of time scales. In such a situation, if
using nested-SSA, we need to identify and order the hierarchy of time scales and imple-
ment successively a hierarchy of fast solvers for the different scales involved with the
averaged rates for one level coming from the quasi-equilibrium of the fast reaction at the
previous level. In the boosting framework, one does not need any additional subroutine
to handle the time scale separations, we just boost the reaction rates of the fast dynamics,
and use some single scale hybrid solver in hand to perform the time integration.

3.3 Boosted tau-leaping

Boosting can also be used in coarse-grainable reactions, so to get the boosted tau-leaping.
Because in tau-leaping the step-size τ is deterministic, the conventional procedure of
boosting that is used in solving stiff ODEs and SDEs can be applied here. The following
algorithm can be obtained by following [30].

Algorithm 3. Seamless tau-leaping with fixed step-size.

1. Divide all reactions into slow and fast reactions.

2. Select the step-size δt for the fast reactions and ∆t for the slow reactions. Choose a parameter K,
which is the estimated number of steps that the fast reactions require to reach quasi-equilibrium.
Because of the time-scale separation between fast and slow reactions, we have Kδt≪τ. Repeat
the following procedure K times:

(a) Integrate the fast reactions with step-size δt using tau-leaping.

(b) Integrate the slow reactions with step-size ∆t′=∆t/K using tau-leaping.

3. Repeat from step 1.

While the above scheme works for tau-leaping, we do not know how to generalize it
into SSA because of the randomness of the step-size. The boosted tau-leaping algorithm
is as follows:

Algorithm 4. Boosted tau-leaping with modified rates.

1. Choose κ=Kδt/∆t and modify the rate constants of the fast reactions as c′=κc.

2. Integrate the whole system with step-size ∆t/K.

In fact, Algorithms 3 and 4 are theoretically equivalent, but the latter is more flexible,
and more importantly, it works for both SSA and tau-leaping.
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4 Boosted hybrid method

In this section we introduce the boosted hybrid method as an adaptive solver for mul-
tiscale chemical reaction system. As Fig. 1 shows, it has two major components. The
monitor will maintain an approximating system. It will monitor the system state dur-
ing the simulation to see if there exists quasi-equilibrium for fast reactions and decide
whether it is possible to boost the system to reduce stiffness. The approximating system
is simulated using the hybrid method.

4.1 The monitor

We use the hybrid method to simulate the chemical system for a time of length ∆t, which
is called a monitoring window. Information such as reaction rates and system state
is collected during the monitoring window, with which the monitor can identify time-
scale separation between fast and slow reactions, and if so, check if quasi-equilibrium is
reached for the fast reactions. Based on these judgments, the method is able to maintain
a reasonable approximation of the original system.

We say that time-scale separation between the fast reactions group Ω and its comple-
mentary, the slow reactions group, Ωc, exist if

min
j∈Ω

Aj>10q×max
j∈Ωc

Aj>ω, (4.1)

where Aj is the characteristic rates in Eq. (2.1). There are two parameters in the above
formula, q and ω. The parameter q represents the degree of scale separation, for example,
q = 2 corresponds to a 100 times scale difference between fast and slow reactions. The
parameter ω indicates the time-scale we are interested in. In other words, we only apply
boosting to reactions whose rates are greater than ω. It may vary from system to system,
based on the particular dynamics we want to learn. Note that in out algorithm we use
the averaged characteristic rates in Eq. (4.1). This is because for some fast reactions their
rates may vary rapidly. For simplicity, in the rest of the paper we still denote the averaged
rates as Aj.

Time-scale separation between the fast reactions Ω and slow reactions Ωc does not
guarantee quasi-equilibrium. We claim quasi-equilibrium for reactions in Ω is reached
if, during the last monitoring window, the total flux due to reactions in Ω is much larger
than the net-change of the system state (a similar idea as used in [27]). More specifically,
in a monitoring window, we compute the total flux as

X f lux=∑
j

rj|νj|, j∈Ω,

where rj is the total number that reaction j fired, and record Xmin
i and Xmax

i , the minimum
and the maximum state reached during the monitoring window, respectively. We then
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compute the so-called redundancy coefficient defined by,

ζ= min
i=1,···,N

max(X
f lux
i ,1)

max(Xmax
i −Xmin

i ,1)
. (4.2)

We take max(X
f lux
i ,1) and max(Xmax

i −Xmin
i ,1) to avoid having vanishing terms. We will

assume that the fast reactions have reached their quasi-equilibrium if ζ≥ 10, and not if
ζ<10.

In the algorithm, we keep a vector called boosting vector κ=(κ1,··· ,κM). The approx-
imating system has rate constant c′j = cjκj. If κ= 1, we just have the original system. If

some κj <1, it means that in the boosted system reaction j has been slowed down. Now
we introduce two parameters ζcrit,1, ζcrit,2 related to critical values of ζ. Above the value
ζcrit,2 the reactions will be considered fast enough to be slowed down. We implement the
following strategy:

• If ζ< ζcrit,1 we reset the approximating system to the original one by setting κ=1.

• If ζ> ζcrit,2 we boost the system by let κj =0.75κj , j∈Ω.

• If ζcrit,1≤ ζ≤ ζcrit,2, we just hold κ unchanged.

The parameters ζcrit,1, ζcrit,2 are chosen in an empirical way and different values leads to
different performance of the algorithm. Clearly more investigation is needed to set these
values, which is left as a future work. In the numerical experiments we set ζcrit,1 = 10,
ζcrit,2=30.

Note that the boosting is done gradually based on the current system state. When
boosting is turned on, we only multiply κj by 0.75 for the fast reactions. Keep in mind
the rates of all the fast reactions should be multiplied by the same constant other wise
the effective dynamics will be altered. At the next monitoring window, we may keep
reducing some κj, hold the current κ unchanged, or even reset κ=1. The above adaptive
process can thus automatically handle systems with multiple scale separations hierarchi-
cally. For example, if a system consists of three groups of reactions with disparate rates,
the algorithm will first slow down the fastest reactions. Then, it will consider the two
fastest group of reactions as long as quasi-equilibrium approximation is valid.

The length of the monitoring window should be large enough to let the fast reactions
reach equilibrium, but not too large, otherwise both the efficiency and the accuracy of the
system may be compromised. We choose ∆t to be 100 times the minimum characteristic
rate among all the fast reactions:

∆t=100/min
j∈Ω

Aj.
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4.2 The overall algorithm

A. Initialization Set the initial molecule number xi = xi(0) (i= 1,··· ,N), the boosting coefficient

κj=1 (j=1,··· ,M), the initial time t=0, γ=0, the leaping parameter ǫ=0.1, the initial window length

∆t=0.2, and the fast reaction set Ω to empty set. Choose q=2 and a slow scale ω for the system.

Invoke hybrid solver Subroutine B.

B. Hybrid Solver (κj, ∆t, Ω as input)

1. Let tmonitor= t+∆t.

2. If γ≥0, generate a uniformly distributed random variables u1 and let γ= logu1<0.

3. Compute propensity functions aj and do the boosting aj =κjaj (j=1,··· ,M).

4. For each reaction j, compute its bottleneck-specie number zj(X) = minνij 6=0{Xi/|νij|}, j =

1,··· ,M. If ǫzj(X)≤ 1, label it as critical reaction, otherwise coarse-grainable reaction with
coarse-grained reaction rate Aj(X(t))= aj(X(t))/ǫzj(X(t)).

5. Choose step-size: first choose the leaping step-size tleap=1/max(Aj(X(t))), where j runs over
all coarse-grainable reactions. Then compute the waiting time for the next critical reaction
τ =γ/aΛ using aΛ =∑aj, where j runs over all critical reactions. The step-size is chosen as
dt=min(tleap,τ).

6. Apply τ-leaping with step-size dt for all coarse-grainable reactions. Let γ=γ+aΛdt, update
time t= t+dt. If tleap>τ, simulate one reaction events among the critical reactions using SSA.

7. Invoke Subroutine D if exit conditions are met, otherwise collect information:

Xmax=max(X(t),Xmax),

Xmin=min(X(t),Xmin),

X f lux=X f lux+∑
j

rj|νj|, j∈Ω.

8. If t> tmonitor, invoke Subroutine C. Otherwise go back to Step 2.

C. Monitor

1. Compute the redundancy coefficient

ζ=min
i

max(X
f lux
i ,1)

max(Xmax
i −Xmin

i ,1)
.

2. If there exists a non empty set Ωnew such that

min
j∈Ωnew

Aj >10q× max
j∈Ωc

new

Aj >ω, (4.3)

then there exists a scale separation in reaction rates between Ωnew and Ωc
new and we define

∆tnew=100/ max
j∈Ωc

new

Aj.
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Table 1: Rules that decide whether to apply boosting or not in the boosted hybrid method. The symbol “
√
”,

“×”, or “—” indicates whether a specific condition is satisfied, not satisfied, or does not matter. “s.s.” is short
for scale separation. “ζ” is the redundancy coefficient given by Eq. (4.2). “∆t and ∆tnew” is the time length
of the previous and next monitor window, respectively. “Ω and Ωnew” is the fast reactions set in the previous
and next monitor window, respectively. Under different conditions, we will take different “actions”, with the
method of choosing the new window length ∆t, the boosting coefficient κ and the fast reaction table Ω for the
next monitor window. Some rational of doing this is given in the appendix.

s.s. ζ ∆tnew<5∆t Ωnew=Ω action

× <10 — — κj =1, j=1,··· ,M, keep the old ∆t and Ω

× ≥10 — — keep the old κj , ∆t and Ω
√

— × — keep the old κj for this and the next monitoring

windows, use the old ∆t, use Ωnew√
—

√ × keep the old κj , use Ωnew and ∆tnew
√

>30
√ √

κj =0.75κj , j∈Ω, use Ωnew and ∆tnew
√

[10,30]
√ √

keep the old κj , use Ωnew and ∆tnew
√

<10
√ √

κj =1, j=1,··· ,M, use Ωnew and ∆tnew

If there exists κj <1 and min
κj<1

(Aj)<5max
κj=1

(Aj) κj =1, j=1,··· ,M, use Ωnew and ∆tnew

3. Set the window length ∆t, the boosting coefficient κ and the fast reaction set Ω according to
the rules given by Table 1. Invoke Subroutine B.

D. Exit

5 Numerical examples

In this section we test the efficiency and the versatility of our method on five numerical
examples. We will see that for the first three examples, our method is efficient and can
handle numerically the chemical systems in robust and adaptive way. For the last two
examples, the method shows limited applicability. The comparison of our method with
other algorithms will be discussed in a future work.

5.1 System 1

This system is a toy model to test the method. It has five species and seven reactions.

1,2 : S1+L1
c1−⇀↽−
c2

S2+L2,

3,4 : S1
c3−⇀↽−
c4

S3,

5 : L1
c5−→0,

6,7 : L1
c6−⇀↽−
c7

L2.
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Figure 3: Numerical results for System 1. (a) A trajectory of S3 obtained by the boosted hybrid method (when
S3=0 the reactions 1 and 2 are fast); (b) Histogram of L1 sampled from SSA (circle, solid line) and the boosted

hybrid method (star, dashed line) at final time, with sample size 106; (c) Evolution of κ1 and κ2 in the boosted
hybrid method (the two are identical in the figure), the other components of κ are all equal to 1; (d) Histogram

of S3 sampled from SSA and the boosted hybrid method at final time, with sample size 106.

The initial condition is L1=L2=1000, S1=1, S2=S3=0. The rate constants are c1=10,
c2=10, c3=1, c4=0.2, c5=0.05, c6=1,c7=1. The system is simulated in time [0,100].

Fig. 3 shows the numerical results of the boosted hybrid method on System 1. When
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Figure 4: One sampled trajectory of κ for the modified system 1. κ1 (solid line) and κ6 (dashed line) coincide
with κ2 and κ7. The other entries of κ equal to 1 all the time (log scale for the y axis).
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S3=0, κ1 and κ2 are less than 1. This means that the algorithm identifies quasi-equilibrium
of the fast reactions 1 and 2, and applies boosting to them. More interestingly, as L1,2

decrease, this time-scale separation gets weaker and the algorithm automatically adjusts
the boosting coefficients κ. Eventually, the fast reactions 1 and 2 are no longer fast enough
to support any boosting. When this happens, κ1 and κ2 are equal to 1 (even though
S3=0), which demonstrates the adaptivity of the algorithm. Concerning the accuracy of
the method, we can see from the histograms of L1 and S3 that the results of the boosted
hybrid method approximate those of the SSA very well.

Next, we make some modifications to the system 1 by letting c3=0.2, c4=0.1, c6=1000,
c7 = 1000, and simulate the modified system in the time interval [0,400]. The remaining
parameters are unchanged. The modified system contains hierarchical scale separation
in time, namely, reactions 6, 7 are “very fast”, reactions 1, 2 are “fast”, and the remaining
ones are “slow”. One trajectory of the boosting coefficient κ is given in Fig. 4. The algo-
rithm first recognizes reactions 6 and 7 as fast group and boosts the system by reducing
κ6 and κ7. After the first round of boosting, reactions 6, 7, 1, 2 are treated as fast group
and the system can be further boosted. Note also that when t is close to 150, L1 drops
below 10, and reactions 6, 7 become critical and must be simulated using SSA. κ is set to
1 here when some reaction change from coarse-grainable to critical type. However, criti-
cal reactions 6 and 7 are still fast enough for new boosting and κ6 and κ7 decrease again.
We can see from this example that the new algorithm is capable of treating system with
hierarchical time scales whose hierarchy can change over time.

5.2 System 2

This system is adapted from [28] and was originally proposed in [33], in which it was
used to model stochastic gene regulation. It has four reactant species θ0,θ1,M,D and seven
reactions.

1,2 : 2M
c1−⇀↽−
c2

D,

3,4 : θ0+D
c3−⇀↽−
c4

θ1,

5 : θ0
c5−→ θ0+M,

6 : θ1
c6−→ θ1+M,

7 : M
c7−→∅.

Initially we have θ0 = 1,θ1 = 0,M = 500,D = 100. The rate constants are c1 = 10,c2 =
10000,c3 = 0.02,c4 = 1.5,c5 = 50,c6 = 1000,c7 = 1. Fig. 5 shows a trajectory of M and κ1 in
time interval [2000,4000]. In this system, M appears to be have a bistable pattern. When
M is relatively large, reactions 1, 2 are very fast, and hence κ1 and κ2 are very small. When
M is small, reactions 1and 2 are not as fast as before, but still fast enough to be boosted
(with a larger κ). Also note that M and D sometimes get very unstable, for example
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Figure 5: Numerical results for System 2. (a) A typical trajectory of M obtained by the boosted hybrid method;

(b) Histograms of M at time t=10 obtained by using 105 samples with the boosted hybrid method (star, dashed
line) and SSA (circle, solid line), respectively. (c) A typical trajectory of κ1 in the boosted hybrid method. κ2
is identical with κ1 and others are equal to 1; (d) Histograms of M over time [1000,200000] obtained by using
the boosted hybrid method (star, dashed line) and SSA (circle, solid line), respectively.

around t=3340, at this time the approximating system is reset to the original system by
the algorithm. This is exactly what we need, because such transition period are usually
very important and interesting and quasi-equilibrium approximation is not valid there.

In order to compare the accuracy of the boosted hybrid method with SSA, we first
obtain ensemble histograms for specie M using 105 samples at time t=10 ( (b) in Fig. 5).
We also simulate a trajectory up-to time 200, 000 and draw a sample of specie M at each
integer value of time starting from t = 1000, from which we get the time histograms ( (d)
in Fig. 5). It shows the result of the boosted hybrid method matches with SSA quite well.

To test efficiency, we let c1 = 10k, c2 = 10000k, with k= 0.001,0.01,0.1,1 to see the per-
formance of the boosted hybrid method for varying time-scale separation (the larger the
k is, the larger the time-scale separation will be in this system). The time taken for each
simulation of one trajectory during [0,20000] using SSA and boosted hybrid method, re-
spectively, is listed in Table 2. SSA becomes dramatically slow as k increases, but the
boosted hybrid method is still fast because of its adaptivity.
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Table 2: Simulation time using SSA and boosted hybrid for system 2 with different k. As k increases, the system
becomes more stiff.

k SSA boosted hybrid
0.001 22s 5s
0.01 147s 30s
0.1 1435s 35s
1 19559s 44s

5.3 System 3

This model is adapted from [27]. There are seven species and ten reactions.

1 : D∗→D+M+R,

2 : M→M+P,

3 : M→0,

4 : P→0,

5 : D+R→D∗,
6 : D∗→D+R,

7 : P+P→P2,

8 : P2→P+P,

9 : D+P2→Q,

10 : Q→D+P2.

Here D and D∗ represents the activated and deactivated states of a DNA molecule, re-
spectively. M is the mRNA, R is the RNA, P is a protein, and P2 a protein dimmer. Initially
we have D∗=1, R=30, the other specie populations are all zeros. The rate constants are
c1 = 0.0078, c2 = 0.043, c3 = 0.0039, c4 = 0.0007, c5 = 0.38, c6 = 3, c7 = 0.5, c8 = 5, c9 = 0.12,
c10=9. The simulation time is [0,50000]. In [27], reactions 5, 6, 9, 10 are approximated by
slow-scale SSA. Reactions 7, 8 are first solved by explicit τ-leaping then implicit τ-leaping
when the system becomes more stiff.

For this system, we choose different scale-separation threshold q= 1,2 (see Eq.(4.1)).
q=1 means there must be at least one order of magnitude scale-separation between the
fast and slow reaction rates to try boosting, and q = 2 means two orders of magnitude
scale-separation. So q=1 is a more aggressive boosting strategy. Fig. 6 (a) and (b) show
a typical trajectory of κ using different q. (c) and (d) show the histograms sampled from
105 trajectories simulated by using SSA and the boosted hybrid method to t=50000. We
can see by choosing more aggressive boosting strategy, q=1, κ is smaller and hence the
algorithm is faster (about 0.7 second for one trajectory for q= 1, 16.2 seconds for q= 2).
But doing so also increases numerical errors as shown in (d).

We also modified other parameters in the algorithm, such as ǫ that controls the coarse-
grained time-step. We change ǫ from 0.1 to 0.05. So now critical reaction is more frequent
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Figure 6: Numerical results for system 3. (a) A typical trajectory of κ in the boosted hybrid method for q=2.
In this case, there are always two elements of κ are identical; (b) A typical trajectory of κ in the boosted hybrid
method for q= 1; (c) Histograms of P2 obtained by using the boosted hybrid method (circle, solid line) and

SSA (star, dashed line) at t=50000, q=2, sample size 105; (d) Histograms of P2 obtained by using the boosted

hybrid method (circle, solid line) and SSA (star, dashed line) at t=50000, q=1, sample size 105.
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Figure 7: Numerical results for system 4. (a) A typical trajectory of κ. The entries of κ not shown in the
picture are equal to one; (b) Boosted average coarse-grain rates κj Aj (log scale in the y-axis). It shows that,
after boosting, the rates still spread over a large interval without obvious scale-separation.
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and the leaping step-size is smaller. The algorithm will be much slower but no apprecia-
ble improvement in accuracy is observed for this system (results are not shown).

5.4 System 4

This system describes the heat shock response of the E. Coli bacteria [34, 35]. It consists
of 28 species and 61 reactions as given in the Appendix B.

The initial amount of species are s1 = s2 = s3 = s4 = 0, s5 = 1, s6 = 4645670, s7 = 1324,
s8=80, s9=16, s10=3413, s11=29, s12=584, s13=1, s14=22, s15=0, s16=171440, s17=9150,
s18=2280, s19=6, s20=596, s21=0, s22=13, s23=3, s24=3, s25=7, s26=0, s27=260, s28=0.

The numerical results are shown in Fig. 7. During the simulation, six components of
κ are less than 1, but they are not very small (see Fig. 7 (a)). This means that the effect
of boosting is limited. Moreover, even after boosting, Fig. 7 (b) shows that the rates Aj

still occupy quite a large scope, which means the system is still very stiff. Since here
the scale separation is not large enough we can not boost the system further. For this
system, the boosted hybrid method is even slower than SSA because of the widely and
“continuously” distributed reaction rates.

5.5 System 5

Another limitation of the new method (and most of the current simulation method) is
illustrated by the following simple example,

1 : ∅→A,

2 : A+E→EA,

3 : EA→B+E,

4 : B→∅.

A is a transcription factor, E is DNA, EA is the protein-DNA binding complex, and B is
protein. Usually the species A and B have large populations and specie E is only one in
molecular number. Assume the rate constant of reactions 2 and 3 are much faster than
reactions 1 and 4. The overall effect is that A is constantly converted into B. In this system,
reactions 1 and 4 are suitable for coarse-grained approximation while reactions 2 and 3
are critical. Moreover, the number of E will quickly reach to a stationary distribution.
However, we can not apply boosting here because no partial equilibrium holds for the
fast reactions 2 and 3 as there is a non-zero flux from A to B.

A possible approximation to simulate the above system fast may be done by com-
bining the two fast critical reactions into one slow coarse-grained reactions. This gives a
modified system

1 : ∅→A,

2 : A→B, or ∅→B,

3 : B→∅.
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Note that the reaction 2 in the above system does not exist in the original system. This
amounts to modify the reaction network itself, rather then treating different reactions
differently. One should be very careful when using the above approximation because the
model itself has been changed. Some progress for handling this kind of problems are
reported in [36] but they remain, in general, difficult to simulate due to the difficulty of
dealing with these systems in a systematic way.

6 Discussion

We proposed a new numerical method to simulate chemical reaction systems with time-
scale separation and disparity in population species. The method relies on boosting,
which is a strategy to decrease the stiffness of a system in presence of time-scale sep-
aration. After stiffness reduction, the system may still exhibit disparity in species and
we suggest the use of a hybrid method for its simulation in which certain reactions are
coarse-grained. We showed that both stiffness reduction and coarse-graining approxima-
tion can be adapted in an automatic way in time. This adaptivity is suitable in practice.
We notice that works remain to be done to optimize some parameters of the algorithm.
Even so, by combining boosting and hybrid methods it is possible to save substantial
computational cost for many complex systems, when compared to SSA. This has been
illustrated numerically for various chemical systems. We showed how the main source
of error in the algorithm, the error from boosting and the error from coarse-graining, can
be controlled by tuning the scale separation threshold at which the boosting is turned on
or by tuning the parameter threshold to set the number of reactions chosen for coarse-
graining.

The new algorithm has many advantages. First, for chemical systems with multiple
time scales, it can hierarchically slow down (boost) the system which can then be numer-
ically integrated by a single-scale solver. It avoids the use of multiscale solver such as the
slow-scale SSA or nested SSA solver which makes its coding easier for complex systems.
Second, it does not need an a priori knowledge of the features of the chemical system
(such as reaction rates and population size). Third, it allows for a systematic control of
the main sources of the numerical errors coming from the boosting in time and the coarse
graining procedure for species with large population size. Numerical experiments show
good performance for the long-time simulation of systems with multiple scales in time
and population size.

We found two situations in which the boosted hybrid method is not very efficient.
First, when the reaction rates are spread over a large interval without obvious scale sepa-
ration, boosting strategy is difficult to be applied. In this situation we do not know of any
other method capable of handling efficiently this kind of system. We note that thanks to
the adaptivity in the boosted hybrid method, the algorithm remains robust (i.e. gives a
reasonable approximation of the original system) even though not it is not efficient when
compared to SSA. The second situation, illustrated in Section 5.5, is concerned with a
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system where an efficient simulation requires to change the original model. This remains
a challenging and interesting task for future work. Refinement and further applications
of the boosted hybrid method is also currently under investigation.
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7 Appendix

7.1 Some implementation details

We collect here a few details for a practical implementation of the boosted hybrid algo-
rithm.

1. Initially, we just let the fast reaction set Ω to be empty, and pick up a small window
length for monitoring, for example, ∆t=0.2.

2. After boosting, since the fast reaction rates tend to decrease, the new fast reactions
set Ωnew may become empty. We do not reset κ to 1 here, but keep using the old Ω

coming from the last step. But as soon as ζ<10 (see Section 4.2), we rest κ to 1.

3. If min
κj<1

(Aj)<5max
κj=1

(Aj) we reset κ to 1. This guarantees enough time-scale separa-

tion between boosted reactions and non-boosted reactions.

4. Some care has to be taken whether or not to accept the new set a fast reaction Ωnew.
In our implementation, when ∆tnew given by the algorithm has changed by mag-
nitude from the old ∆t, we will keep the current partition for the system and do
another monitoring step with time-step ∆tnew to see if Ωnew have reached quasi-
equilibrium state.

7.2 List of chemical reactions for system 4

There are totally 28 species and 61 reactions for system 4 as given below.

S1+S2
c1 =2.54−−−−−⇀↽−−−−−

c2=1
S3; S1+S4

c3 =0.254−−−−−⇀↽−−−−−
c4=1

S5; S1+S6
c5 =0.0254−−−−−−⇀↽−−−−−−

c6=10
S7;

S4+S14
c7 =254−−−−−⇀↽−−−−−
c8=10000

S15; S14+S16
c9 =0.000254−−−−−−−⇀↽−−−−−−−

c10=0.01
S17; S3+S6

c11 =0.000254−−−−−−−⇀↽−−−−−−−
c12=1

S8;

S5+S6
c13 =0.000254−−−−−−−⇀↽−−−−−−−

c14=1
S9; S3+S10

c15 =2.54−−−−−⇀↽−−−−−
c16=1

S12; S5+S11
c17 =2540−−−−−⇀↽−−−−−
c18=1000

S13;
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S15+S18
c19 =0.0254−−−−−−⇀↽−−−−−−

c20=1
S19; ∅

c21∗s13=6.62∗s13−−−−−−−−−−⇀↽−−−−−−−−−−
c22=0.5

S22
†; ∅

c23∗s22=20∗s22−−−−−−−−−⇀↽−−−−−−−−−
c24=0.03

S14;

S17
c25 =0.03−−−−−→S16; S15

c26 =0.03−−−−−→S4; S19
c27 =0.03−−−−−→S4+S18;

S28
c28 =0.03−−−−−→S4+S27; ∅

c29∗s13=1.67∗s13−−−−−−−−−−⇀↽−−−−−−−−−−
c30=0.5

S23; ∅
c31∗s23=20∗s23−−−−−−−−−⇀↽−−−−−−−−−

c32=0.03
S18;

S19
c33 =0.03−−−−−→S15; ∅

c34∗s12=0.00625∗s12−−−−−−−−−−−⇀↽−−−−−−−−−−−
c35=0.5

S25; ∅
c36∗s25=7∗s25−−−−−−−−⇀↽−−−−−−−−

c37=0.03
S4;

S19
c38 =3−−−−→S14+S18; S21

c39 =0.7−−−−→S20; S28
c40 =0.5−−−−→S14+S27;

∅
c41∗s13=1∗s13−−−−−−−−⇀↽−−−−−−−−

c42=0.5
S24; ∅

c43∗s24=20∗s24−−−−−−−−−⇀↽−−−−−−−−−
c44=0.03

S20; S21
c45 =0.03−−−−−→S4;

S4+S20
c46 =2.54−−−−−⇀↽−−−−−
c47=10000

S21; ∅
c48∗s13=0.43333∗s13−−−−−−−−−−−⇀↽−−−−−−−−−−−

c49=0.5
S26; ∅

c50∗s26=20∗s26−−−−−−−−−⇀↽−−−−−−−−−
c51=0.03

S27;

S28
c52 =0.03−−−−−→S15; S15+S27

c53 =2.54−−−−−⇀↽−−−−−
c54=10000

S28; S5
c55 =0.03−−−−−→S1;

S13
c56 =0.03−−−−−→S1+S11; S9

c57 =0.03−−−−−→S7; S15
c58 =0.03−−−−−→S14;

S19
c59 =0.03−−−−−→S14+S18; S20

c60 =0.03−−−−−→S14+S27; S21
c61 =0.03−−−−−→S20.
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