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Abstract. Numerical methods of a 3D multiphysics, two-phase transport model of
proton exchange membrane fuel cell (PEMFC) is studied in this paper. Due to the
coexistence of multiphase regions, the standard finite element/finite volume method
may fail to obtain a convergent nonlinear iteration for a two-phase transport model
of PEMFC [49, 50]. By introducing Kirchhoff transformation technique and a com-
bined finite element-upwind finite volume approach, we efficiently achieve a fast con-
vergence and reasonable solutions for this multiphase, multiphysics PEMFC model.
Numerical implementation is done by using a novel automated finite element/finite
volume program generator (FEPG). By virtue of a high-level algorithm description lan-
guage (script), component programming and human intelligence technologies, FEPG
can quickly generate finite element/finite volume source code for PEMFC simulation.
Thus, one can focus on the efficient algorithm research without being distracted by
the tedious computer programming on finite element/finite volume methods. Nu-
merical success confirms that FEPG is an efficient tool for both algorithm research and
software development of a 3D, multiphysics PEMFC model with multicomponent and
multiphase mechanism.
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1 Introduction

Fuel cells have been called the key to abundant energy from secure and renewable sources,
e.g., fuel cells promise to replace the internal combustion engine in transportation due to
their higher energy efficiency and zero or ultralow emissions. Hydrogen proton exchange
membrane fuel cell (PEMFC) is presently considered as a potential type of fuel cells for
such application. Since PEMFC simultaneously involves electrochemical reactions, cur-
rent distribution, two-phase flow transport and heat transfer, an extensive mathematical
modeling of multiphysics system combining with the advanced numerical techniques
shall make a significant impact in gaining a fundamental understanding of the interact-
ing electrochemical and transport phenomena and providing a computer-aided tool for
design and optimization of future fuel cell engines.

Modeling and numerical simulation of hydrogen PEMFC have been attempted by a
number of groups with the common goal of better understanding and hence optimizing
fuel cell systems. Excellent reviews of hydrogen PEMFC research up to the mid-1990s
were presented in [15, 39]. Recently, a comprehensive review of fuel cell science and
technology was given in [60] which summarized the fundamental models for fuel cell
engineering including single-phase and multiphase models. Single-phase model is the
simplest approach in which the gas and liquid are considered as a single-fluid mixture
and thus share the same velocity field. This approach is suited for fuel cell simulations
under low humidity operation. The more rigorous approach to liquid water transport is
a true multiphase model in which the two phases travel at different velocities. However,
multiphase transport in fuel cells is always a challenge in fuel cell modeling. Multiphase
flow, which especially exists at high-humidity operations, originates from water produc-
tion by the oxygen reduction reaction, and the produced liquid water affects gaseous
reactant supply and electrochemical catalyst activity as well.

There are two types of multiphase model existing for PEMFC modeling: multifluid
approach and multiphase mixture (M2) formation [61]. In contrast to those drawbacks
of multifluid model [30]: a relatively large number of primary variables for each phase,
highly nonlinear equations, numerical complexity due to explicitly track the irregular
and moving interface between two phases, the M2 model is more suitable for two-phase
PEMFC modeling. One major advantage of the M2 model over the classical multifluid
model is that it eliminates the need for tracking phase interfaces, thus simplifying the nu-
merical complexity of two-phase flow and transport modeling. Moreover, the M2 model
is mathematically equivalent to multifluid models without invoking any additional ap-
proximations. Therefore, we adopt M2 formation as the two-phase transport model of
PEMFC in this paper.

Comparing to the relatively plentiful literature on modeling and experimental study
of fuel cells, there are less study contributing to the numerical method of two-phase trans-
port PEMFC model. in [67], the volume-of-fluid (VOF) method is employed for PEMFC
in conjunction with an interface reconstruction algorithm to track the dynamics of the
deforming water droplets. However, VOF technique particularly deals with the interface
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of liquid and gas and leaves the entire flow computation to commercial computational
fluid dynamics (CFD) package. Basically, the PEMFC model it deals with still belongs to
multifluid model. Recently, the lattice Boltzmann method (LBM) is used to simulate the
flow through an idealized PEMFC porous transport layer [11] and model the fluid flow
of reactive mixtures in randomly generated porous media by simulating the actual cou-
pling interaction among the species [6]. Whereas, LBM is based on a mesoscopic point
of view, very different from the way of handling macroscopic M2 continuum transport
model. Another uncommon numerical method for PEMFC modeling is moving least
squares method (MLS) studied in [56, 57]. The use of MLS is justified by the fact that it
is useful for approximating experimental data. Basically, this method approaches the nu-
merical model from the experimental phenomenology of the PEMFC. Thus, the accuracy
of MLS severely relies on the sufficiency of experimental data.

Actually, most of numerical simulations done for the transport model of fuel cell in
numerous literatures [22–26, 33, 34, 46, 60, 62–65] are implemented by using commercial
CFD software, such as Fluent, CFD-ACE+ and Star-CD, in conjunction with custom writ-
ten user-defined subroutines. In these commercial CFD packages, the upwind finite vol-
ume method and the numerical algorithm of semi-implicit method for pressure linked
equations (SIMPLE) play the crucial role. Unusually, a finite element version of semi-
implicit projection scheme is presented in [35, 36] for a unsteady single-phase transport
PEMFC model, where the temperature and two-phase effects and charge transports are
neglected in the model. They claimed that this method generally requires much less
computer storage and CPU time than the conventional finite element methods, which,
however, are not justified in their paper.

It is well known that, the aforementioned commercial CFD packages possess a black-
box structure, no kernel code is displayed to the user except the restricted input and out-
put user-defined functions. Provided that their built-in numerical algorithms and com-
puter program present any numerical instability, e.g., an oscillating iteration or a singular
solution, few adjustment could be done by the user for the precomposed PDE model and
corresponding numerical method. It is even difficult to make any change to the built-
in numerical discretization and algorithms because of the unreachable kernel code. In
addition, the user interface for importing problem-dependent coefficients/parameters
through input panel and/or user defined functions (UDF) is also limited for some com-
plex partial differential equations (PDEs). These essential weaknesses of a black-box type
commercial software greatly degrade the power they can provide for a fuel cell simula-
tion. On the other hand, the numerical discretizations/algorithms of fuel cell model need
to be frequently updated for the promising fuel cell technology in order to catch up the
step of fuel cell’s experimental/modeling study and provide an efficient simulation tool
for it. For example, the M2 model bears a discontinuous and degenerate diffusivity in
water concentration equation, resulting in an oscillating nonlinear iteration if using the
standard finite volume method provided by commercial CFD packages [49, 50]. Such
instable computation could lead the entire nonlinear iteration up to tens of thousands
of steps or even nonconvergent iteration, making the whole computation inaccurate and
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even highly expensive in multidimensional case.

To attack such a nonlinear, discontinuous and degenerate water diffusivity arising
from M2 model, the numerical technique of Kirchhoff and its inverse transformation will
be a good candidate. It is well known that the Kirchhoff transformation has been widely
used for the nonlinear thermal diffusion problem with temperature dependent proper-
ties [9, 13, 31, 38, 41, 58], the global pressure formulation of two-phase subsurface flow
in porous media [10, 44], and the nonlinear, degenerate water flow equation (Richards’
equation) in variably saturated porous media [4,5,10,17,18,28,29,37,40,42,43,52–54,57].
By means of an appropriate integral transformation, it essentially converts the nonlin-
ear diffusion term into a linear one, making the linearization unnecessary in many cases,
and eliminate the degeneracy and discontinuity from the original problem. Thus, such
reformulation due to Kirchhoff transformation may make the entire nonlinear iteration
of PEMFC simulation efficient and robust.

Aiming at the numerical difficulties arising from multiphase PEMFC simulation,
Kirchhoff transformation technique was first introduced to a 2D simplified two-phase
transport PEMFC model in [49,50], where the nonlinear water equation bearing with dis-
continuous and degenerate diffusivity is reformulated to a semilinear Poisson equation
in terms of Kirchhoff transformation, and the nonlinear iteration is significantly sped up
for a 2D M2 model in the cathode of PEMFC by means of a well designed in-house finite
element code. Nevertheless, the PEMFC model therein is greatly simplified by consider-
ing mass, momentum and water species equations on the cathode side only.

Therefore, in this paper we are dedicated in introducing Kirchhoff transformation
technique to a three-dimensional, multicomponent, two-phase, multiphysics PEMFC
model, furthermore, implementing the entire numerical simulation with a novel auto-
mated finite element/finite volume program generator (FEPG) [1, 21, 59, 66] in a flexible,
efficient and self-contained fashion. To this end, we introduce a high-level computer
programming language-algorithm description language, and its key role of generating
source code for finite element and finite volume methods. Together with component pro-
gramming and formula library techniques, FEPG can rapidly generate source code of
finite element/finite volume method for a multiphysics problem by writing and compil-
ing a script. In this script, in terms of the algorithm description language, one can use
familiar concepts/descriptions to specify the original PDEs’ weak forms, the involved fi-
nite element/finite volume formulae, and the algorithms of discretization/linearization
as a problem-dependent part for a PDE problem, and let FEPG system worry about the
problem-independent part of the remaining programs. With the help of FEPG, one can
focus on the efficient algorithm research for the numerical method of PEMFC model with-
out being distracted by the tedious computer programming on finite element/finite vol-
ume methods. Numerical accomplishments made in this paper will demonstrate that the
combination of the efficient numerical techniques and the powerful FEPG system pro-
vides a potent simulation tool for PEMFC modeling and simulations.

The rest of this paper is organized as follows. We introduce the 3D multicompo-
nent, two-phase, multiphysics PEMFC model in Section 2 and the efficient numerical
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techniques in Section 3. In Section 4, we demonstrate the FEPG script files for finite ele-
ment/finite volume method of PEMFC model. The numerical simulation using the gen-
erated source code from FEPG is carried out and the obtained solutions are elucidated in
Section 5.

2 A two-phase, multiphysics model of PEMFC

Let us address a steady state two-phase transport model of PEMFC which consists of the
conservations of momentum, mass, species, charges and energy, and defines in the gas
channels, gas diffusion (backing) layers (GDLs), catalyst layers (CLs), current collectors
at both anode and cathode and the membrane in between, as schematically shown in
Fig. 1. In the following subsection we will present the governing equations of this mul-
ticomponent, two-phase, multiphysics model for an entire PEMFC [48, 62], the principle
unknowns of which include the mixture velocity ~u, pressure p, species molar concentra-
tions CH2O,CH2,CO2 , proton potential Φe and electron potential Φs. The definitions of the
involved various physical coefficients and parameters can be referred to [32,48,60,62,63].

Figure 1: Schematic domain of a 3D PEMFC [62].

2.1 Governing equations

To concentrate on the most important multiphase feature, different from the one given
in [48], in this paper we treat the two-phase transport model of PEMFC as an isotropic,
isothermal one, and we neglect the water back diffusion effect through membrane in
order to focus on the main goal of this paper. A more complete PEMFC model can be
referred to [48, 62]. Thus, the governing equations of PEMFC are read as

Mass equation

∇·(ρ~u)=Sm. (2.1)
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Momentum equation

1

ε2
∇·(ρ~u~u)=−∇p+∇·(µ∇~u)+Sp. (2.2)

Note that (2.1) and (2.2) are defined everywhere in PEMFC except the membrane.

Water concentration equation
{

∇·(γc~uCH2O)=∇·
(
Γ(CH2O)∇CH2O

)
+GH2O+SH2O, porous media (a),

∇·(~uCH2O)=∇·(DH2O
g ∇CH2O), gas channels (b),

(2.3)

where the water diffusivity Γ(CH2O) in porous media is defined as

Γ(CH2O)=





( 1

MH2O
−

Csat

ρg

)
Γcapdiff, if CH2O ≥Csat or s>0,

f (ε)DH2O
g , if CH2O <Csat or s=0,

(2.4)

here Γcapdiff denotes the capillary diffusivity, given by

Γcapdiff =
MH2O

ρl−CsatMH2O

λlλg

ν
σcos(θc)(Kε)

1
2

dJ(s)

ds
, (2.5a)

DH2O
g =





1.1028×10−4

Pa

( T

353.15

)1.5
, anode,

3.89×10−5

Pc

( T

353.15

)1.5
, cathode,

(2.5b)

g(s)=(1−s)1.5, f (ε)=





ε
( ε−εp

1−εp

)0.521
, gas diffusion layers,

ε1.5, catalyst layers.

(2.5c)

Hence, f (ε) = 1 in gas channels where ε = 1. γc denotes an advection correction factor,
defined as

γc =





ρ

CH2O

( λl

MH2O
+

λg

ρg
Csat

)
, for water,

ρλg

ρg(1−s)
, for other species,

(2.6)

and γc = 1 in gas channels where s = 0. The gravity-induced source term due to the
capillary action, GH2O, is read as

GH2O =−∇·
[( 1

MH2O
−

Csat

ρg

)λlλg

ν
K(ρl−ρg)~g

]
. (2.7)

Here the liquid saturation, s, and 1−s denotes the fraction of the open pore space occu-
pied by the liquid and gas phases, respectively, defined as

s=
CH2O−Csat

CH2O
l −Csat

, where CH2O
l =

ρl

MH2O
. (2.8)
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Note that (2.3) does not include water transport in membrane because water back diffu-
sion effect in membrane is neglected in this paper.

Hydrogen concentration equation





∇·
(
γc~uCH2

)
=∇·

(
DH2,eff

g ∇CH2
)
+GH2

+SH2

+∇·
(CH2

ρg
Γcapdiff∇CH2O

)
, anode porous media (a),

∇·
(
~uCH2

)
=∇·

(
DH2

g ∇CH2
)
, anode channel (b),

(2.9)

where

GH2
=∇·

[CH2

ρg

λlλg

ν
K(ρl−ρg)~g

]
, (2.10a)

DH2
g =

1.1028×10−4

Pa

( T

353.15

)1.5
, (2.10b)

Dk,eff
g = Dk

g f (ε)g(s) (k= H2,O2). (2.10c)

Oxygen concentration equation





∇·(γc~uCO2)=∇·
(

DO2,eff
g ∇CO2

)
+GO2

+SO2

+∇·
(CO2

ρg
Γcapdiff∇CH2O

)
, cathode porous media (a),

∇·
(
~uCO2

)
=∇·

(
DO2

g ∇CO2
)
, cathode channel (b),

(2.11)

where

GO2
=∇·

[CO2

ρg

λlλg

ν
K(ρl−ρg)~g

]
, DO2

g =
3.2348×10−5

Pc

( T

353.15

)1.5
. (2.12)

Proton potential equation

∇·(κeff∇Φe)+SΦe =0, (2.13)

which is defined in membrane electrode assembly (MEA), the combination of membrane
and catalyst layers, where κeff

CL = ε1.5
mcκ

eff
mem.

Electron potential equation

∇·
[
σeff∇Φs

]
+SΦs =0, (2.14)

which is defined everywhere in PEMFC except the gas channels.
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Source terms In the right hand sides of (2.1)-(2.14), Si (i = m,p,H2O,H2,O2, Φe, Φs) rep-
resents the source term of each governing equation, defined as

Sm =





−MH2
ja
2F

−MH2O∇·
( nd

F
~ie

)
, anode CL,

MO2
jc

4F
−MH2O

[ jc
2F

+∇·
( nd

F
~ie

)]
, cathode CL,

(2.15a)

Sp =−
µ

K
~u, porous media, (2.15b)

SH2O =





−∇·
(nd

F
~ie

)
, anode CL,

−
jc

2F
−∇·

(nd

F
~ie

)
, cathode CL,

(2.15c)

SH2
=−

ja
2F

, anode CL, (2.15d)

SO2
=

jc
4F

, cathode CL, (2.15e)

SΦe =

{
ja, anode CL,

jc, cathode CL,
SΦs =

{
−ja, anode CL,

−jc, cathode CL,
(2.15f)

where, the volumetric transfer current density of the reaction, j (A/m3), given by the
modified Butler-Volmer equation in the anode and cathode, respectively, as

ja = ai0,a

( CH2

CH2,ref

) 1
2
(αa+αc

RT
Fη

)
, (2.16a)

jc =−ai0,c exp
[
−16456

( 1

T
−

1

353.15

)] CO2

CO2,ref
exp

(
−

αcF

RT
η
)

. (2.16b)

The above kinetics expressions are derived from the general Butler-Volmer equation
based on the facts that the anode exhibits fast electrokinetics and hence a low surface
overpotential to justify a linear kinetic rate equation, namely, the Butler-Volmer equation
is linearized on the anode side. Whereas, the cathode has relatively slow kinetics to be
adequately described by the Tafel equation. The surface overpotential, η, is defined as

η =Φs−Φe−Uo. (2.17)

Uo is the thermodynamic equilibrium potential of the reaction, read as

Uo =

{
0, in anode,

1.23−0.9×10−3(T−298.15), in cathode.
(2.18)

In this paper we take a uniform temperature Tcell = 80◦C for the above isothermal

PEMFC model. The electro-osmotic drag coefficient, nd, takes a constant value as well.~ie

represents the protonic current flux, given by~ie =−κeff∇Φe.
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Due to the definition of Darcy’s force Sp in (2.15a) and the small permeability (K ∼
10−12) in porous media, (2.1) and (2.2) form a modified Navier-Stokes equation to approx-
imate the gas flow state through both channels and porous media without introducing an
interfacial boundary conditions on the interface of channel and GDL, i.e., a unified equa-
tion in a single domain using a location-dependent parameter K in source term: infinity
in channels and small permeability in porous media.

Two-phase mixture relations The two-phase mixture parameters that are involved in
the above governing equations are listed in Table 1 [61].

Table 1: Two-phase relations.

Density ρ=ρls+ρg(1−s)
Molar Concentration C=Cls+Cg(1−s)
Velocity ρ~u=ρl~ul +ρg~ug

Kinematic viscosity ν=
( krl

νl
+

krg

νg

)−1
, νl =

µl
ρl

, νg =
µg

ρg

Effective viscosity µ=ρν=(ρl ·s+ρg ·(1−s))
( krl

νl
+

krg

νg

)−1

Diffusivity ρDk =ρlsDk
l +ρg(1−s)Dk

g

Advection γ=ρ(λlc
k
l /ρl +λgck

g/ρg)/C

Mobilities λl =
krl
νl

ν,λg =
krg

νg
ν,λl +λg =1

Relative permeabilities krl = s3,krg =(1−s)3

2.2 Computational domain and boundary conditions

As shown in Fig. 2, the domain of a 3D PEMFC with single channel to be simulated is di-
vided into nine subregions in through-plane direction, i.e., along x axis: the anode bipolar
plate (current collector) (ABP), anode channel (AGC), anode backing layer (ABL), anode
catalyst layer (ACL), membrane (MEM), cathode catalyst layer (CCL), cathode backing
layer (CBL), cathode channel (CGC) and cathode bipolar plate (CBP). The domain dimen-
sions and operating parameters of PEMFC are listed in Table 2. The boundary conditions
of the governing equations (2.1)-(2.14) are described as follows [48].

Inlet boundaries The inlet velocity ~uin in a gas channel is expressed by the respective
stoichiometric flow ratio, i.e., ξa or ξc, defined at a reference current density, Iref, as

~uin,a =
Iref A

2FCH2
in Ain,a

ξa, ~uin,c =
Iref A

4FCO2
in Ain,c

ξc. (2.19)

Species molar concentrations at the inlet are specified as Ck =Ck
in (k=H2O,H2,O2), which

can be determined by the ideal gas law, partial pressure and relative humidity (RH) [48].

Outlet boundaries Fully developed or no-flux conditions are applied to flow, species
concentrations and charge potentials at the outlet, given as

(pI−µ∇~u)·~n=0,
∂Ck

∂n
=0,

∂Φe

∂n
=0,

∂Φs

∂n
=0. (2.20)
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Table 2: Physical parameters and properties.

Parameters/properties Symbol Value Unit
Modeling domain dimensions

ABP thickness δABP 5×10−4 m
AGC thickness δAGC 10−3 m
ABL thickness δABL 3×10−4 m
ACL thickness δACL 10−5 m
MEM thickness δMEM 5×10−5 m
CCL thickness δCCL 10−5 m
CBL thickness δCBL 3×10−4 m
CGC thickness δCGC 10−3 m
CBP thickness δCBP 5×10−4 m
Cell length lcell 2.5×10−2 m
Cell width wcell 2×10−3 m
Channel width wchannel 10−3 m
Operating parameters

Anode reference current density a0iref
0,a 1.0×109 A/m3

Cathode reference current density a0iref
0,c 2.0×104 A/m3

Anode/cathode pressures P 1.0/1.0 atm
Stoichiometry at 0.2A/cm2 ξa/ξc 3.0/3.0
Ambient temperature T0 353.15 K
Relative humidity at anode/cathode RH 100/100%
Porosity of GDLs/CLs ε 0.6/0.4
Percolation threshold εp 0.11
Dynamic viscosity of liquid water µl 3.56×10−4 kg/m s
Dynamic viscosity of anode gas µa 1.101×10−5 kg/m s
Dynamic viscosity of cathode gas µc 1.881×10−5 kg/m s
Kinematic liquid water viscosity νl 3.533×10−7 m2/s
Kinematic water vapor viscosity νg 3.59×10−5 m2/s
Surface tension σ 0.0625 N/m
Contact angle θc 110◦

Permeability K 8.69×10−12 m2

Protonic conductivity of MEM κeff
mem 10 S/m

Volume fraction of membrane in CLs εmc 0.26

Electronic conductivity in GDL σeff
GDL 1250 S/m

Electronic conductivity in BPs σeff
BP 2×104 S/m

Water molecular weight MH2O 0.018015 kg/mol
Hydrogen molecular weight MH2 0.00201594 kg/mol
Oxygen molecular weight MO2 0.031999 kg/mol
Water Vapor density ρg 0.882 kg/m3

Liquid water density ρl 971.8 kg/m3

Electro-osmosis coefficient nd 2.5 H2O/H+

Faraday constant F 96487 A s/mol
Universal gas constant R 8.314 J/mol/K
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Figure 2: Computational domain and mesh of a single-channel PEMFC.

Walls No-slip and impermeable velocity and no-flux conditions are applied as

~u=0,
∂p

∂n
=0,

∂Ck

∂n
=0 and

∂Φe

∂n
=0. (2.21)

The boundary conditions for electronic phase potential, Φs, at the outer surfaces of
bipolar plate can be expressed as





Φs =0, ABP,

∂Φs

∂n
=−

Iref A

σeff Ac,wall
, CBP,

∂Φs

∂n
=0, otherwise,

(2.22)

where Ac,wall is the area of the cathode outer surface.

3 Numerical methods

Similar to the numerical simulations for a 2D simplified two-phase model in the cathode
of PEMFC [49, 50], the standard finite element or finite volume discretizations can result
in an oscillating or even nonconvergent nonlinear iteration for the governing equations
of PEMFC (2.1)-(2.14), as shown in the right of Fig. 5. Abundant numerical experiments
demonstrate that such instable iteration is primarily due to the discontinuous and de-
generate water diffusivity function Γ(CH2O) arising from the coexistence of single- and
two-phase regions, which can be fairly understood in Fig. 3. Here, Csat =16.11mol/m3 is
the critical point at which the discontinuity and degeneracy of Γ(CH2O) concur and the
gaseous water begin to condense to liquid water when Tcell =80◦C.

In [49,50], an efficient numerical technique, Kirchhoff transformation, plays a key role
in overcoming the discontinuous and degenerate water diffusivity and accelerating non-
linear iteration for a 2D simplified two-phase model defined in the cathode of PEMFC. In
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Figure 3: Water diffusivity Γ(CH2O) at 80◦C.

this section, we will appropriately apply the same numerical technique to a more sophis-
ticated 3D two-phase, multiphysics model for an entire PEMFC, and derive a systematic
numerical methodology for dealing with two-phase transport equation arising in PEMFC
modeling.

We define a new variable W in porous media in terms of Kirchhoff transformation as
follows

W(CH2O)=
∫ CH2O

0
Γ(ω)dω, (3.1)

where the integrant function Γ is water diffusivity defined in (2.4). Hence W is a function
of water concentration CH2O. Considering Γ is a single-variable function with respect to
CH2O if CH2O ≥ Csat or s > 0 or constant if CH2O < Csat or s = 0, due to the fundamental
theorem of calculus, the differentiation on both sides of (3.1) leads to

∇W =Γ(CH2O)∇CH2O. (3.2)

Furthermore,

△W =∇·(Γ(CH2O)∇CH2O), in porous media.

Notice however that for the water concentration equation (2.3) in a single-phase re-
gion no matter whether the region is porous media or gas channels, i.e., if CH2O <Csat or

s=0, the diffusivity Γ(CH2O)= f (ε)DH2O
g becomes constant, where f (ε)=1 in gas channels.

Thus the corresponding Kirchhoff transformation turns to

W(CH2O)=
∫ CH2O

0
f (ε)DH2O

g dω = f (ε)DH2O
g CH2O, (3.3)

showing that the new variable W becomes a linear function of CH2O in single-phase re-
gion, or inversely,

CH2O =( f (ε)DH2O
g )−1W, in single-phase region. (3.4)
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Therefore, water concentration equation (2.3) can be reformulated as follows in terms
of Kirchhoff transformation (3.1)





−△W =−∇·(γc~uCH2O)+GH2O+SH2O, in porous media (a),

−△W =−∇·
(
~u(DH2O

g )−1W
)
, in gas channels (b),

W = DH2O
g CH2O

in , at the inlet (c),

∂W

∂n
=0, elsewhere on the boundary (d).

(3.5)

We observe that only a linear Laplacian term with respect to unknown W stays on
the left hand side of the new water equation (3.5), while the original discontinuous and
degenerate water diffusivity Γ is absorbed into the Kirchhoff transformation (3.1). Thus,
there is only one nonlinearity remaining on the right hand side of (3.5a) where the con-
vection term contains CH2O(W), an implicit function of W via the inverse Kirchhoff trans-
formation.

Apparently, (3.5) significantly reduces the nonlinearity of original water equation (2.3)
to a semilinear problem and makes fast convergence possible for the corresponding non-
linear iteration. Picard’s linearization method is sufficient to obtain a fast convergence for
this semilinear equation, in which CH2O is updated from W by inverse Kirchhoff trans-
formation at each iteration step. In contrast to (3.5a), (3.5b) is just a linear convection-
diffusion equation in gas channels. Due to the large velocity ~u therein, the convection
term of (3.5b) is actually dominant. Therefore, we cannot treat this dominant convection
term as an additional source term. Instead, we reformulate it to an explicit convection
form with respect to W via linear Kirchhoff transformation (3.4) in (3.5b). To avoid nu-
merical instability arising from this dominant convection term, we may adopt upwind
scheme to stabilize the numerical computation and produce a smooth solution.

Thus, in view of the weak nonlinearity in (3.5), we can expect a fast convergence for
W, and further for CH2O, provided that an accurate and efficient method can be designed
to implement the inverse Kirchhoff transformation of (3.1), and a upwind scheme can be
applied to finite element discretization without loss of the existing advantages of finite
element method.

There exists no explicit expression for the inverse function of Kirchhoff transforma-
tion (3.1). It is actually nontrivial to compute the inverse Kirchhoff transformation di-
rectly. The simple Look-Up Table (LUT) method has been criticized in [49, 50] due to its
expensive computation in finding W. Considering W(CH2O) is a strictly increasing con-
tinuous function of CH2O, Newton’s method turns out to be an efficient approach to carry
out the inverse Kirchhoff transformation. One can rewrite the Kirchhoff transformation
as follows

W =Ws +Wd(CH2O), (3.6)

where

Ws =
∫ Csat

0
f (ε)DH2O

g dω = f (ε)DH2O
g Csat, Wd(CH2O)=

∫ CH2O

Csat

Γ(ω)dω.
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Hence, if CH2O≤Csat or W≤Ws, then W is just a simple linear function of CH2O by (3.3),
and (3.4) is sufficient to get the desired CH2O. The nontrivial case is when CH2O > Csat or
W >Ws in which Γ(ω) is actually a third degree polynomial of ω. Note that the definite
integral of Γ(ω) can be explicitly evaluated, and (Wd(CH2O))′=Γ(CH2O) by fundamental
theorem of calculus, thus the inverse Kirchhoff transformation is able to be dealt with by
applying Newton’s method to (3.6) for any given W >Ws, read as

CH2O
k+1 =CH2O

k +
W−Ws−Wd(CH2O

k )

F(CH2O
k )

, k=0,1,2,··· . (3.7)

This scheme shall converge provably in very few steps with a proper initial guess CH2O
0 ,

based on the local quadratic convergence theory of Newton’s method.
To combine the advantages of both upwind scheme and finite element method and

conquer the dominant convection in the framework of finite element approach, we em-
ploy a combined finite element-upwind finite volume method [14, 47, 51], together with
Newton’s linearization scheme, to discretize the governing equations of PEMFC (2.1),
(2.2), (3.5), (2.9)-(2.14), where the water concentration equation (2.3) is replaced by (3.5),
and the source terms (2.15c) and (2.15f) are linearized by Newton’s method. To save the
entire computational cost and reduce the workload of the linear algebraic solver later on,
we adopt a Gauss-Seidel type decoupling approach to decouple the multiphysics PEMFC
problem in the following sequence.

We first define a piecewise linear finite element space Sh on the hexahedral trian-

gulation of domain shown in Fig. 2. Provided (Φn
e,h, Φn

s,h, ~un
h , pn

h , CH2O,n
h , CH2,n

h , CO2,n
h )

is given, find (Φn+1
e,h , Φn+1

s,h , ~un+1
h , pn+1

h , Wn+1
h , CH2,n+1

h , CO2,n+1
h ) ∈ Sh such that for any

(Φ̃e, Φ̃s, ~̃u, p̃, W̃, C̃H2 , C̃O2)∈Sh, the following discretizations of seven governing equa-
tions hold (n=0,1,2,···):

1. FEM discretization of proton potential equation

(
κeff∇Φn+1

e,h ,∇Φ̃e

)
−

(∂Sn
Φe,h

∂Φe,h
Φn+1

e,h ,Φ̃e

)
=

(
Sn

Φe,h
,Φ̃e

)
−

(∂Sn
Φe,h

∂Φe,h
Φn

e,h,Φ̃e

)
. (3.8)

2. FEM discretization of electron potential equation

(
σeff

s ∇Φn+1
s,h ,∇Φ̃s

)
−

(∂Sn
Φs,h

∂Φs,h
Φn+1

s,h ,Φ̃s

)
=

(
Sn

Φs,h
,Φ̃s

)
−

(∂Sn
Φs,h

∂Φs,h
Φn

s,h,Φ̃s

)
, (3.9)

where we use the updated Φn+1
e,h from (3.8) to compute Sn

Φs,h
via (2.15f) and (2.16).

3. FEM-Upwind FVM discretization of momentum and continuity equations




(
µn∇~un+1

h ,∇~̃u
)
−

(
pn+1

h ,∇·~̃u
)
−

(
Sn+1

p,h ,~̃u
)
+δ(h2)

(
∇pn+1

h ,∇ p̃
)

+
N

∑
i=1

~̃ui ∑
j∈Λi

1

ε2

∫

Γij

(
ρn

h~u
n
h ·~n

)
ds

(
rij~u

n+1
h,i +(1−rij)~u

n+1
h,j

)
=0, (a),

(
∇·~un+1

h , p̃
)
=

( Sn
m,h

ρn
h

, p̃
)
−

(∇ρn
h

ρn
h

·~un
h , p̃

)
, (b),

(3.10)
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Figure 4: A portion of control volume Ωi surrounded by dotted faces and cell faces in one cell Λi of 3D dual
mesh.

where Sn+1
p,h =−µn~un+1

h /K holds in gas diffusion and catalyst layers only, Sn
m,h is computed

using Φn+1
e,h ,Φn+1

s,h ,CH2O,n
h ,CH2,n

h and CO2,n
h . Since we employ Q1Q1 conforming finite ele-

ment to linearly approximate both velocity and pressure in (3.10), a pressure-stabilizing
term, −δ(h2)△ph, must be added to the momentum equation (2.2) in order to ensure
such Q1Q1 mixed finite element is stable [8, 16, 55]. Correspondingly, the weak form
term, δ(h2)(∇ph,∇ p̃), is added to (3.10a) as well. The upwind finite volume discretiza-
tion term in (3.10a) is derived from the upwind scheme in finite volume approach for the
divergent form of convection term in [47, 51], where Fij =

∫
Γij

(
ρn

h~u
n
h ·~n

)
ds is the numerical

flux and is used to determine the upwind parameter rij via the following fully upwind
scheme

rij =





1, if Fij >0,

0, if Fij <0,

0.5, if Fij =0.

(3.11)

The notations arising in the upwind-finite volume term in (3.10a) are shown in Fig. 4.

4. FEM-Upwind FVM discretization of water transport





(
∇Wn+1

h ,∇W̃
)
=

(
γn

c,h~u
n+1
h CH2O,n

h ,∇W̃
)
+

(
Gn

H2O,h,W̃
)

+
(
Sn

H2O,h,W̃
)
, in porous media (a),

(
∇Wn+1

h ,∇W̃
)
=−

N

∑
i=1

W̃i ∑
j∈Λi

∫

Γij

[
(DH2O,n

g,h )−1
~un+1

h ·~n
]
ds

(
rijW

n+1
h,i +(1−rij)Wn+1

h,j

)
, in gas channels (b),

(3.12)

where Fij =
∫

Γij
[(DH2O,n

g,h )−1~un+1
h ·~n]ds is the numerical flux in gas channels of both an-

ode and cathode. The coefficients and source term are computed using Φn+1
e,h , Φn+1

s,h ,

CH2O,n
h ,CH2,n

h and CO2,n
h .
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5. FEM-Upwind FVM discretization of hydrogen transport




(
DH2,eff,n

g,h ∇CH2,n+1
h ,∇C̃H2

)
−

(
γn

c,h~u
n+1
h CH2,n+1

h ,∇C̃H2
)

−
( ∂Sn

H2 ,h

∂CH2
h

CH2 ,n+1
h ,C̃H2

)
=

(
Gn

H2,h,C̃H2
)
+

(
Sn

H2 ,h,C̃H2
)

−
( ∂Sn

H2 ,h

∂CH2
h

CH2 ,n
h ,C̃H2

)
−

( CH2,n
h

ρg,h
Γn

capdiff,h∇CH2O,n+1
h ,∇C̃H2

)
, anode porous media,

(
DH2,n

g,h ∇CH2 ,n+1
h ,∇C̃H2

)
+

N

∑
i=1

C̃H2
i ∑

j∈Λi

∫

Γij

[
~un+1

h ·~n
]
ds

(
rijC

H2,n+1
h,i +(1−rij)CH2,n+1

h,j

)
=0, anode channel,

(3.13)

where the numerical flux Fij=
∫

Γij
[~un+1

h ·~n]ds in anode channel. The coefficients and source

term are computed using Φn+1
e,h , Φn+1

s,h , CH2O,n+1
h , CH2,n

h and CO2,n
h .

6. FEM-Upwind FVM discretization of oxygen transport





(
DO2,eff,n

g,h ∇CO2,n+1
h ,∇C̃O2

)
−

(
γn

c,h~u
n+1
h CO2,n+1

h ,∇C̃O2
)

−
( ∂Sn

O2 ,h

∂CO2
h

CO2,n+1
h ,C̃O2

)
=

(
Gn

O2,h,C̃O2
)
+

(
Sn

O2 ,h,C̃O2
)

−
( ∂Sn

O2 ,h

∂C
O2
h

CO2,n
h ,C̃O2

)
−

(CO2,n
h

ρg,h
Γn

capdiff,h∇CH2O,n+1
h ,∇C̃O2

)
, cathode porous media,

(
DO2,n

g,h ∇CO2,n+1
h ,∇C̃O2

)
+

N

∑
i=1

C̃O2
i ∑

j∈Λi

∫

Γij

[
~un+1

h ·~n
]
ds

(
rijC

O2,n+1
h,i +(1−rij)CO2,n+1

h,j

)
=0, cathode channel,

(3.14)

where the numerical flux Fij =
∫

Γij
[~un+1

h ·~n]ds in cathode channel. The coefficients and

source term are computed using Φn+1
e,h , Φn+1

s,h , CH2O,n+1
h , CH2,n+1

h and CO2,n
h .

A careful symbolic calculation shows that all the derivatives of the source terms de-
fined in (2.15c) and (2.15f) are negative, i.e.,

∂Sn
Φe,h

∂Φe,h
<0,

∂Sn
Φs,h

∂Φs,h
<0,

∂Sn
H2 ,h

∂C
H2
h

<0,
∂Sn

O2 ,h

∂CO2
h

<0.

Thus, the zero-order terms in the weak formulations, which the above derivatives of
source terms arise from, turn out to be positive on the left hand side of (3.8), (3.9), (3.13)
and (3.14). On the other hand, these derivatives are all proportional to the transfer current
density determined by (2.16) with high magnitude. Hence, these positive zero-order
terms may strongly stabilize the entire discretization system and further accelerate the
entire nonlinear iteration.

For the initial guesses of Newton’s linearizations in the above discretizations, we sim-
ply choose uniform initial values for each principle variable in terms of their Dirichlet
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boundary conditions, i.e., Φ0
e,h =0, Φ0

s,,h =0 at anode and let Φ0
s,,h equal to an open-circuit

voltage at cathode, e.g., Φ0
s,,h =0.4V, and ~u0

h =~uin, CH2O,0
h =CH2O

in , CH2,0
h =CH2

in , CO2,0
h =CO2

in .

It is easy to verify that each solution vn
h → vh (v = Φe,Φs,u,p,CH2O,CH2 ,CO2) as n→∞.

Thus, the above Newton’s or Picard’s linearization-induced discretizations converge to
the original finite element-upwind finite volume discretizations without linearization.
Whereas, the speed of this convergent process solely depends on the efficient algorithms
we employ to design the discretizations, e.g., Kirchhoff transformation, upwind finite
volume scheme and Newton’s linearization. By means of an appropriately precondi-
tioned GMRES iterative solver [7, 12, 19, 20, 27, 45, 47] at each iteration step, the nonsym-
metric positive definite linear algebraic systems, which are derived from the above nu-
merical discretizations, are able to be solved in the manner of efficiency and robustness.

4 Introduction to FEPG

FEPG is the abbreviation of an automated finite element/finite volume program genera-
tor. It was first invented for finite element program generation by Guoping Liang, one of
the authors of this paper, in 1990, and has been significantly developed in the past two
decades, including finite volume program generation as well. FEPG is a self-contained
general-purpose software package that can automatically generate finite element/finite
volume source code based on a high-level algorithm description language (script), com-
ponent programming and human intelligence technologies. Aiming at providing user a
very flexible and powerful simulation tool to produce finite element/finite volume so-
lutions for multiphysics problems, FEPG can work for many kinds of problems in sci-
ence and engineering computing that may be described by a complex system of PDEs,
spreading all over the fields such as solid mechanics, fluid dynamics, physics, chemistry,
thermodynamics, biology, geophysics, astronomy, electromagnetics, meteorology and so
on.

A major breakthrough of FEPG is that, it provides user a special script-algorithm
description language-to input the definitions of PDEs based on finite element/finite vol-
ume method. This is a significant difference from many other finite element program
packages (e.g., ANSYS, NASTRAN) that deliver to user a black box for solving problems
in some particular fields, which is very difficult for the end-user and the third-party to
maintain and develop in order to match their particular needs. Moreover, FEPG is also
more extraordinary than other automated program generation packages in virtue of its
unique high-level algorithm description language. Although other automated genera-
tion packages (e.g., FreeFEM, Comsol, FEniCS, DUNE-FEM, Abaqus) also allow user to
define/modify the original PDEs based on their weak forms by either directly coding
in C++/Fortran languages or calling the built-in function-library, few of them provide a
special script language for user to conveniently define PDEs, finite element/finite volume
discretizations and numerical algorithms.

FEniCS [3] does have its own high-level scripts called Unified Form Language (UFL),
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together with DOLFIN component and through Python interface, to express weak forms,
discretizations and linear algebraic solvers for the finite element method of PDEs. In this
sense, FeniCS is similar with FEPG. However, FEniCS requires users to grasp Python
programming language (like C and Java) first because Python plays the crucial role on
the interface of UFL script and finite element method. Another numerical PDEs’ toolbox,
Distributed and Unified Numerics Environment (DUNE-FEM) [2], is also a finite element
package based on the weak form of PDEs. But DUNE-FEM does not provide a high-
level script language for users, C++ programming language is actually the minimum
requirement of DUNE that users must possess.

On the other hand, FEPG not only just automatically generates source code for fi-
nite element method based on the weak form of PDEs, moreover, it also provides au-
tomated code generation for finite volume/difference method according to their nodal
equations. Actually, the most extraordinary thing is that, FEPG can even combine fi-
nite element method with finite volume method together in one unified framework of
automated generation, and efficiently implement the combined finite element-upwind
finite volume method for a convection-dominated diffusion reaction problem, as demon-
strated in Section 5. Nevertheless, FEniCS does not possess of the automated generation
for finite volume/difference method. Although DUNE-FEM supports both finite element
method and finite volume/difference method, it still cannot implement the combined fi-
nite element-upwind finite volume method in one unified framework for a convection-
dominated diffusion problem.

FEniCS employs formula library technique to define finite element space. However,
the drawback of using library technique is that, it will be very hard for users to creatively
design their new element with its special basis function that actually does not exist in
the element library. Distinctively, besides providing formula library for users, FEPG also
possesses such power to create a new element by carefully defining its piecewise basis
functions in terms of the provided algorithm description script. This is a significant ad-
vantage for users to conduct their creative research on finite element method.

Hence, the users of FEniCS, DUNE-FEM and etc. are all required to have professional
training on advanced computer programming in C/C++/Python languages. Whereas,
FEPG does not have such demand for user, what it needs from user is just a script to de-
scribe the weak form of PDEs, and some basic user-defined functions using FORTRAN
language, if necessary. On the other hand, many automated program generation pack-
ages do not provide source code for user, but FEPG does. FEPG can generate all of plain
source codes in FORTRAN for user, which can be transferred to any other platforms
for free, then easily compiled and ran without any additional requirement on compiling
environment. Thus, based on the FEPG-generated source code, users can quickly create
their own programming environment and software development for finite element/finite
volume programs, where FEPG offers them with ultimate degree of freedom to investi-
gate up-to-date numerical tricks, such as element types and algorithms. Owning to the
above features, FEPG makes it become possible for people to implement and deliver an
open, error-free finite element/finite volume source code within days or even hours that
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would otherwise take them months or even years.

Roughly speaking, by virtue of the high-level algorithm description language, to-
gether with component programming technique provided by FEPG, user can efficiently
construct his finite element/finite volume code by writing a series of script files. These
scripts are used to define piecewise basis function, numerical quadrature, coordinates
transformation, weak form, nodal equation, discretization/linearization scheme, linear
algebraic solver, and etc. Each script has its own syntax and input format which are par-
ticularly designed for finite element/finite volume method. For example, a simple line
in the finite element script

[u_i/x_j;u_i/x_j] (4.1)

actually means the following weak form for a 3D Laplacian term −△~u:

(∂u

∂x
,
∂ũ

∂x

)
+

(∂u

∂y
,
∂ũ

∂y

)
+

(∂u

∂z
,
∂ũ

∂z

)
+

( ∂v

∂x
,
∂ṽ

∂x

)
+

(∂v

∂y
,
∂ṽ

∂y

)
+

(∂v

∂z
,
∂ṽ

∂z

)

+
(∂w

∂x
,
∂w̃

∂x

)
+

(∂w

∂y
,
∂w̃

∂y

)
+

(∂w

∂z
,
∂w̃

∂z

)
, (4.2)

where ~u = (u,v,w)T is a 3D vector, and ~̃u = (ũ,ṽ,w̃)T represents the corresponding test
function. The script syntax, e.g., q/x, denotes the partial derivative ∂q/∂x, and [q/x;q/x]

represents an inner product
( ∂q

∂x
,
∂q̃

∂x

)
=

∫

Ω

∂q

∂x

∂q̃

∂x
dx.

Here, the second q behind the semicolon in the script [q/x;q/x] denotes the test function
q̃ with respect to q.

If comparing the script (4.1) with the real weak form (4.2), we can find that (4.1) indeed
has a very similar form with the inner product, where the vector-tensor representation is
employed in FEPG to simplify the syntax of a vector: a single symbol of an inner prod-
uct simply represents a sum of nine inner products in the weak form (4.2). Compiled
by FEPG-owned script compiler, this one line script (4.1) will immediately turn to a para-
graph of Fortran source code which includes all the above weak formulation. More script
descriptions can be found in next section where we will apply FEPG to the multiphysics
PEMFC model described in Section 2. For the elaborate illustration about FEPG, we refer
to [1, 21].

5 FEPG scripts for PEMFC simulation

The algorithm description language (script) plays the crucial role in automatically gener-
ating finite element/finite volume source code for a multiphysics PDEs model. It is used
to define the weak form of PDEs including discretization and/or linearization, finite ele-
ment formula including basis function, numerical quadrature and coordinate transform,



84 P. Sun, S. Zhou, Q. Hu and G. Liang / Commun. Comput. Phys., 11 (2012), pp. 65-98

and etc. The FEPG system requires user to write a PDE (or VDE if the vector-tensor repre-
sentation is adopted) file with PDE (or VDE) as its extension name, in which the original
PDEs are imported in weak form for finite element discretization, or nodal equation form
for finite volume discretization.

In the following we demonstrate how to write this script for the weak formulations
(3.8)-(3.14) of a multiphysics PEMFC model defined in Section 2.

To explain distinctly, each line in the script is followed by a comment symbol ”//”
and then the comment and/or the corresponding weak form term.

Finite element script file: ”fuelcell.vde”

DEFI //Paragraph keyword of name definition, where there is
//a beginning keyword for each line as follows.

DISP e s u v w p wh h o //The name of principle unknowns (Φn+1
e,h ,Φn+1

s,h ,~un+1
h ,

//pn+1
h ,Wn+1

h ,CH2,n+1
h ,CO2,n+1

h ).
COOR x y z //The name of coordinate variables.
COEF en sn un vn wn pn //The known coefficients needed for nonlinear iteration

COEF h2on h2n o2n //(Φn
e,h,Φn

s,h,~un
h , pn

h ,Wn
h ,CH2,n

h ,CO2,n
h ).

FUNC div //The name of user-defined divergent function.
SHAP c 8 //Define nodal basis function with trilinear polynomial.
GAUS c //Define Gaussian numerical quadrature with 8 points.
VECT x x y z //Define coordinate vector ~x =(x,y,z)T.
VECT u u v w //Define unknown velocity vector ~u=(u,v,w)T.
VECT un un vn wn //Define known velocity vector ~un =(un,vn,wn)T.
$gvs fcfvm //Call finite volume code ”fcfvm.gvs” to deal with

//the dominant advection terms in gas channels.

FUNC //Paragraph keyword of user-defined functions.
$c6 include ‘declaration’ //User-defined Fortran77 source code to import all
$c6 include ‘coefficient’ //necessary coefficients, starting with the keyword $c6
$c6 include ‘material’ //that means the first 6 columns are left as blank.

div=+[u_i/x_i] //Divergent function of velocity ∇·~u= ∂u
∂x + ∂v

∂y + ∂w
∂z .

STIF //Paragraph keyword of stiffness matrices.

DIST=[e/x_i;e/x_i]*diff_e //(κeff∇Φn+1
e,h ,∇Φ̃e).

-[e;e]*dSe_de //−
( ∂Sn

Φe,h
∂Φe,h

Φn+1
e,h ,Φ̃e

)
.

+[s/x_i;s/x_i]*diff_s //(σeff
s ∇Φn+1

s,h ,∇Φ̃s).

-[s;s]*dSs_ds //−
( ∂Sn

Φs,h
∂Φs,h

Φn+1
s,h ,Φ̃s

)
.

+[u_i/x_j;u_i/x_j]*diff_u //(µn∇~un+1
h ,∇~̃u).

-[u_i;u_i/x_j]*un_j*advect_u //−
( ρ

ε2~u
n
h~u

n+1
h ,∇~̃u

)
in porous media.

+[u_i;u_i]*visc/K //−(Sn+1
p,h ,~̃u).

-[p;div]+[div;p] //−(pn+1
h ,∇·~̃u)+(∇·~un+1

h , p̃).

+[p/x_i;p/x_i]*det**(2./3.)*C //δ(h2)(∇pn+1
h ,∇ p̃), where ”det” is the

//determinant of coordinate transform
//matrix and equal to the volume of mesh cell.
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+[wh/x_i;wh/x_i] //(∇Wn+1
h ,∇W̃).

+[h/x_i;h/x_i]*diff_h //
(

DH2,eff,n
g,h ∇CH2 ,n+1

h ,∇C̃H2
)
.

-[h;h/x_i]*un_i*advect_h //−
(
γn

c,h~u
n
h CH2,n+1

h ,∇C̃H2
)

in porous media.

-[h;h]*dSh_dh //−
( ∂Sn

H2,h

∂C
H2
h

CH2,n+1
h ,C̃H2

)
.

+[o/x_i;o/x_i]*diff_o //
(

D
O2,eff,n
g,h ∇C

O2,n+1
h ,∇C̃O2

)
.

-[o;o/x_i]*un_i*advect_o //−
(
γn

c,h~u
n
h C

O2,n+1
h ,∇C̃O2

)
in porous media.

-[o;o]*dSo_do //−
( ∂Sn

O2,h

∂C
O2
h

CO2,n+1
h ,C̃O2

)
.

LOAD=[e]*(Se-dSe_de*en) //
(
Sn

Φe,h
,Φ̃e

)
−

( ∂Sn
Φe,h

∂Φe,h
Φn

e,h,Φ̃e
)

in catalyst layers.

+[s]*(Ss-dSs_ds*sn) //(Sn
Φs,h

,Φ̃s)−
( ∂Sn

Φs,h
∂Φs,h

Φn
s,h,Φ̃s

)
in catalyst layers.

+[u_i]*0.0+[p]*Sm/rho //
( Sn

m,h

ρn
h

, p̃
)

in catalyst layers.

-[p]*un_i*grad_rho_i/rho //−
(∇ρn

h
ρn

h
·~un

h , p̃
)
.

+[w]*Sw //
(
Sn

H2O,h,W̃
)

in catalyst layers.

+[w]*Gw //
(

Gn
H2O,h,W̃

)
.

+[w/x_i]*un_i*wn*advect_w //
(
γn

c,h~u
n
h CH2O,n

h ,∇W̃
)

in porous media.

+[h]*(Sh-dSh_dh*hn) //
(
Sn

H2 ,h,C̃H2
)
−

( ∂Sn
H2,h

∂C
H2
h

C
H2 ,n
h ,C̃H2

)
in ACL.

+[h]*Gh //
(

Gn
H2 ,h,C̃H2

)
.

-[h/x_i]*{wn/x_i}*hn*diff_cap //−
( C

H2,n
h
ρg,h

Γn
capdiff,h∇CH2O,n

h ,∇C̃H2
)
.

+[o]*(So-dSo_do*on) //
(
Sn

O2 ,h,C̃O2
)
−

( ∂Sn
O2,h

∂C
O2
h

C
O2,n
h ,C̃O2

)
in CCL.

+[o]*Go //
(

Gn
O2,h,C̃O2

)
.

-[o/x_i]*{wn/x_i}*on*diff_cap //−
( C

O2,n

h
ρg,h

Γn
capdiff,h∇CH2O,n

h ,∇C̃O2
)
.

END //The end

Comparing with the weak forms given in Section 3, we can see that each term in the
paragraphs of STIF and LOAD in ”fuelcell.vde” exactly matches with the same term in
the weak form, as shown in the above comments, where the vector-tensor representa-
tion in FEPG plays an important role to simplify the script syntax. In the following finite
volume script, the similar trick of alternate subscript is also used to shorten the abun-
dant rotative script writings in the nodal equations. To be more concentrate, we only
demonstrate the nodal equation part in the following finite volume script and neglect
those definition paragraphs.

Finite volume script file: ”fcfvm.fvs”

··················
{

&m 12 14 15 23 26 34 37 48 56 58 67 78 //These indices are alternately
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&i 13 18 16 13 27 13 38 18 16 57 27 38 //substituted for the same indices
&j 16 13 18 27 16 38 27 38 57 18 57 57 //used in next paragraph
&r 21 41 51 32 62 43 73 84 65 85 76 87

#

$c6 call squr(xc,x&m,fx&i,fx&j,uc, //Compute numerical flux, e.g.,:
u&m,fu&i,fu&j,flux&m,flux&mr) //Fij =

∫
Γij

[
~un

h ·~n
]
ds,∀j∈Λi.

$c6 call samar(flux&mr,r&m,emu,mode) //Compute upwind parameter rij

$c6 flux&r = -flux&m //Fij+Fji =0
$c6 r&r = 1.0-r&m //rij +rji =1
}

{

&u u

{

&i 1 2 3 4 5 6 7 8

&j 2 3 4 1 8 5 6 7

&k 4 1 2 3 6 7 8 5

&l 5 6 7 8 1 2 3 4

#

EQUATION &i &u //Paragraph keyword of nodal equations
[r&i&j*flux&i&j+r&i&k*flux&i&k //Nodal equation form, e.g.,:

+r&i&l*flux&i&l]u(&i) // ∑
j∈Λi

∫
Γij

[~un
h ·~n]ds(rijC

H2,n+1
h,i

+[(1-r&i&j)*flux&i&j]u(&j) //+(1−rij)CH2,n+1
h,j )

+[(1-r&i&k)*flux&i&k]u(&k)

+[(1-r&i&l)*flux&i&l]u(&l)=0

}

}

END //The end

Note that the above finite volume script ”fcfvm.fvs” will be compiled to ”fcfvm.gvs”
and further its source code, which will then be called by the element subroutine code
generated by the finite element script ”fuelcell.vde” due to the line ”$gvs fcfvm” written
in its first definition paragraph.

Via the above scripts, FEPG system integrates the pointwise vertex-centered finite
volume nodal equation into the element-wise finite element computation. This ingenious
combination can be further interpreted in Fig. 4, where, any grid point shall be encom-
passed by a control volume which is formed by the adjacent faces between the midpoint
of element edges, the center of element faces and the element barycenter. All of such con-
trol volumes eventually form a so-called dual mesh, corresponding to the original grid
points. Thus, when FEPG conducts finite element computation for local stiffness ma-
trix and local right-hand-side vector in each element, the corresponding part of control
volume locating in this element can be computed as well and the obtained nodal equa-
tions are contributed to the local finite element stiffness matrix. On the other hand, when
all of neighborhood elements of one grid point are swept during the element-wise finite
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element computation, an entire control volume, or, all of the finite volume nodal equa-
tions associate with this grid point are constructed, simultaneously. A combined finite
element-finite volume discretization is then produced, and both advantages of finite ele-
ment method and finite volume method with upwind scheme are all utilized, sufficiently.

Hence, by writing above finite element/finite volume scripts and then running the
automated program generator FEPG, we can immediately obtain an entire finite ele-
ment/finite volume source code for a complex 3D, two-phase, multiphysics PEMFC
model. These generated numerical source codes are easy to maintain and develop since
we only need to edit the above finite element/finite volume scripts for a updated PDE
model and/or numerical algorithm, where the algorithm description language provides
us the tremendous convenience in the sense that it is simply a mathematical language
specially working for finite element/finite volume method, and because of this, we are
able to claim that FEPG system is capable of dealing with many kinds of physical prob-
lems as long as their mathematical PDE model is well defined. On the other hand, FEPG
is also an open platform that allows user to develop their own finite element/finite vol-
ume schemes as well as numerical algorithms, which in reverse, can enrich FEPG’s for-
mula/algorithm libraries as well.

6 Numerical results

By virtue of the automated finite element/finite volume program generator, and imple-
menting the efficient numerical methods designed in Section 3 for the weak formulations
(3.8)-(3.14) of the multiphysics PEMFC model defined in Section 2, we are able to obtain
a comprehensive efficiency for PEMFC modeling, numerical simulation as well as code
development. In this section, we demonstrate this efficiency by elucidating the follow-
ing attained numerical results for a single-channel PEMFC operating at Iref =0.2A/cm2,
Pa/c =1/1atm, Tcell =80◦C, inlet humidification of RHa/c =100/0%, and Stoich.a/c =3/3,
where highly dry air and highly humid and pure hydrogen are fed in the PEMFC. The
computer platform we employ to implement the numerical simulation of PEMFC is Dell
Precision Workstation T5400 equipped with 2.00GHz Intel Xeon CPU and 8.00 GB of
RAM.

The entire numerical simulation is carried out stably and quickly as we expect for a
fast iteration. The convergent results are eventually obtained for (Φn+1

e,h , Φn+1
s,h , ~un+1

h , pn+1
h ,

CH2O,n+1
h , CH2,n+1

h , CO2,n+1
h ) within 34 nonlinear iteration steps toward a tolerance of rel-

ative iteration error, 10−6. The entire convergence history is shown in the left of Fig. 5,
in contrast to the nonconvergent history shown in the right which arises from the stan-
dard finite element/finite volume approximations without using any specific numerical
technique.

The attained numerical results are shown in Figs. 6-12 for the principle unknowns,
which are comparable with those of [62] except that a dryout occurs on the anode side
of the membrane because the electro-osmotic drag will immediately remove water from
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Figure 5: Convergence histories of our FEM-Upwind FVM with Kirchhoff transformation (left) and standard

FEM/FVM (right), where the iteration error tolerance is 10−6.

(a) (b) (c)

Figure 6: (a) Hydrogen CH2 in anode; (b) Oxygen CO2 in cathode; (c) Liquid water saturation s in both anode
and cathode.

the anode side of the membrane, moreover, our model in this paper does not consider
water back diffusion effect in membrane. The elucidations of these numerical results
are given as follows. The consumption process of hydrogen in anode and oxygen in
cathode are displayed in Figs. 6(a), (b), 7 and 8. It can be seen that oxygen and hydrogen
concentrations decrease down the channel due to reaction consumption. In contrast to the
substantial decrease in the along-channel direction, the concentration only experiences a
small decline across the GDLs. In addition, the transport resistance under the land is
relatively large, leading to a considerable drop in the reactant concentration. Fig. 6(c),
Figs. 9-11 show the contour of the water concentration in both gas channels and porous
media. It can be seen that single and slight multiphase regions coexist in PEMFC at
the above designated operation- high-humidity in anode and zero-humidity in cathode.
The single-phase region is near the inlet of cathode where the dry air is fed in and in
the anode gas channel. Due to water production by fuel cell, a small amount of liquid
water emerges downstream, i.e., the water concentration CH2O > Csat = 16.11mol/m3 or
liquid water saturation s > 0 there, and the flow in the diffusion media shifts to gas-
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Figure 7: Hydrogen CH2 in XZ-plane (left) near the inlet, (middle) near the central section, (right) near the
outlet, in the anode.

Figure 8: Oxygen CO2 in XZ-plane (left) near the inlet, (middle) near the central section, (right) near the
outlet, in the cathode.

Figure 9: Liquid water saturation s in gas channels of anode (top) and cathode (bottom).

Figure 10: Liquid water saturation s in GDLs of anode (top) and cathode (bottom).

water multiphase flow. Liquid water emerges in the cathode diffusion layer and higher
saturation levels appear with the value as high as 15%. However, we can still think there
is no liquid water in gas channel since the maximum liquid saturation is only 1.2×10−3

in the gas channel of cathode. The anode side of the membrane is mainly dried out or
presents the single gas phase because of the effect of the electro-osmotic drag and no
water back diffusion is considered in this paper.
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(a) (b)

(c)

Figure 11: Water CH2O in XZ-plane (a)
near the inlet, (b) near the central sec-
tion, (c) near the outlet, in both anode
and cathode.

(a) (b) (c) (d)

Figure 12: (a) Proton potential Φe in MEA; (b) Electron potential Φs in electrode; (c) Velocity field; (d)
Pressure field, all in XY-plane.

Figs. 12(a) and (b) show the potential contours of proton and electron, where we can
observe that the membrane electrode assembly (MEA) has a protonic potential gradient
across the MEA from anode to cathode, which is due to the production of proton at an-
ode catalyst layer as well as the consumption at cathode catalyst layer. Conversely, the
electronic potential gradient is presented across the electrode from cathode to anode. The
output average cell voltage is around 0.81 V obtained by subtracting the electronic po-
tential at the surface of anode from that at the surface of cathode, corresponding to the
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applied constant current density Iref =0.2A/cm2. Fig. 12(d) shows that the channel has a
pressure gradient along the channel due to the channel viscous flow, which will affect the
gaseous flow in the diffusion media according to the Darcy’s law and induce an along-
channel component of the gas velocity. On the other hand, because the pure hydrogen is
fed in the anode channel together with highly humid water vapor, while the highly dry

air is fed in the cathode channel of PEMFC, CO2
in is much smaller than CH2

in , thus the inlet
velocity at cathode is bigger than that at anode due to (2.19), inducing a larger magni-
tude of velocity field in cathode gas channel than that in anode gas channel, as shown in
Fig. 12(c).

The cell polarization curve is displayed in Fig. 13, qualitatively showing a good agree-
ment with the experiments in [64].

In order to verify the correctness of our numerical solutions, we carry out the follow-
ing numerical convergence study by doing simulations for PEMFC model (2.1)-(2.14) on a
sequence of refined grids produced by a grid doubling, e.g., from 20×4×2 to 160×32×16
(four grids), and compare the obtained number of iteration, simulation time, convergence
errors as well as mass balance errors on different mesh levels with increasing degree of
freedoms (DOFs), as shown in Fig. 14 and Tables 3-5. To draw a fine graph for the ten-
dencies of number of iteration and simulation time against increasing DOFs, we test more
grids besides the above four ones.

In Fig. 14(a) we can see that the number of iteration drops from 70 more steps to 30
steps along with increasing degree of freedoms on a sequence of grids. Such decrease
occurs very fast during the first four coarse grids, i.e., the number of iteration goes down
to 32 steps or so on the grid with about 100,000 DOFs. Then it turns out to be stable at 30
iterations when grids are finer and finer. On the other hand, Fig. 14(b) shows that the sim-
ulation time grows slowly up to about 35 minutes on coarse grids in the range of 100,000
DOFs, and then increases very fast when DOFs are greater than 100,000. These computa-
tional phenomena indicate that we do not need much finer grid for PEMFC simulation in
the sense of efficiency, i.e., less iteration step and less simulation time. A moderate grid
with about 100,000 DOFs is good enough to produce an efficient numerical simulation
for PEMFC model with about 30 steps in nonlinear iteration, 35 minutes in simulation
time, as well as relatively accurate numerical results which are demonstrated at below.

Note that the finite element space Sh we use for the discretizations (3.8)-(3.14) is a
piecewise linear polynomial space, it is well known that the following second order
convergence error in L2 norm holds for a pure linear finite element element on a quasi-
uniform grid

‖u−uh‖0 =O(h2), for u∈H2(Ω), (6.1)

where uh ∈Sh is the numerical solution of real solution u. However, we do not know the
real solution u of PEMFC model (2.1)-(2.14). To investigate the convergence error for the
obtained numerical solution uh, we carry out the following error estimates based on the
numerical solutions on a sequence of refined grids

‖u2j−1h−u2jh‖0 =‖u2j−1h−u+u−u2jh‖0≤‖u−u2j−1h‖0+‖u−u2jh‖0,
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Figure 13: Polarization curve.

(a) (b)

Figure 14: (a) Number of iteration versus degree of freedom; (b) Simulation time versus degree of freedom.

leading to
‖u2j−1h−u2jh‖0 =O

(
(5×22j−2)h2

)
, (6.2)

where we apply (6.1) to two adjacent mesh levels with the mesh size 2j−1h and 2jh, re-
spectively. Here j =1,2,··· , denoting the mesh level number, j =1 means the finest mesh
with mesh size h, and the mesh size of j-th level mesh is 2j−1h. Thus, we have the follow-
ing error indicator of seconder order convergence character

‖u2jh−u2j+1h‖0

‖u2j−1h−u2jh‖0
≈4. (6.3)

As for the combined finite element-finite volume method, the optimal error estimate (6.1)
is replaced by the following sub-optimal error estimate [14]

‖u−uh‖0 =O(h1+ε), for u∈H2(Ω), (6.4)

where ε∈[0,1). Correspondingly, we substitute (6.3) by the following new error indicator

‖u2jh−u2j+1h‖0

‖u2j−1h−u2jh‖0
≈21+ε. (6.5)

Applying (6.3) to the numerical solutions of potentials of electron and proton, and
(6.5) to the numerical solutions of concentrations of hydrogen, oxygen and water on



P. Sun, S. Zhou, Q. Hu and G. Liang / Commun. Comput. Phys., 11 (2012), pp. 65-98 93

Table 3: Convergence errors of charge potentials on successive refined grids.

Resolution DOFs Electron Proton
Conv Ratio Conv Ratio

20×4×2 3429 1.47×10−5 4.43 4.61×10−7 4.52

40×8×4 16785 3.32×10−6 4.17 1.02×10−7 3.85

80×16×8 112185 7.95×10−7 – 2.65×10−8 –
160×32×16 815337 – – – –

Table 4: Convergence errors of species concentrations on successive refined grids.

Resolution Hydrogen Oxygen Water
Conv Ratio Conv Ratio Conv Ratio

20×4×2 2.42×10−3 2.64 1.05×10−3 3.18 1.23 3.73

40×8×4 9.15×10−4 3.39 3.30×10−4 3.42 0.33 3.75

80×16×8 2.70×10−4 – 9.66×10−5 – .088 –
160×32×16 – – – – – –

the aforementioned four subsequent grids by a grid doubling, we eventually obtain an
approximately optimal (second order) convergence character for charge potentials, as
shown in Table 3 where the convergence error ‖u2j−1h−u2jh‖0 (labeled ”Conv”) is reduced
by a factor of 4 or so (indicated by the values in columns ”Ratio”) for each doubling of
resolution, and a sub-optimal convergence rate for species concentrations illustrated by
Table 4 in which ‖u2j−1h−u2jh‖0 is reduced by a factor of 21+ε (0.4 < ε < 0.91) for each
doubling of resolution. In both tables, the columns labeled ”Ratio” show the ratios of
convergence errors between subsequent grid resolutions. Thus, we can conclude that
the numerical solutions obtained from the numerical discretizations (3.8)-(3.14) are rela-
tively accurate due to their consistent convergence characters with the well-established
approximation theory.

Now we analyze the mass balance errors for each species to investigate the accuracy
of their numerical discretizations. The mass balance error of species k can be calculated
by

∣∣Fk
out−Fk

in−Sk
∣∣

Fk
in

=

∣∣∮
∂Ωoutlet

(
Ckuy

)
|outletdτ−

∮
∂Ωinlet

(
Ckuy

)
|inletdτ−

∫
Ω

Skdx
∣∣

∮
∂Ωinlet

(
Ckuy

)
|inletdτ

, (6.6)

where Fk
out and Fk

in represent the total flux of species k through outlets and inlets of gas
channels in y-direction, respectively. The positive flux means it points in the positive di-
rection of y-axis. Sk denotes the source of species k occurring in PEMFC, which may bear
negative sign if the generation of species k is less than its consumption. (6.6) indicates
that the net incremental mass equals the outcome due to the source term.

By plugging in (6.6) with the assigned species concentrations Ck
inlet and velocity uy,inlet,

and the computed Ck
outlet, uy,outlet and Sk based on a sequence of refined grids, and com-
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Table 5: Mass balance errors of species on successive refined grids.

Resolution Hydrogen Oxygen Water
MB Ratio MB Ratio MB Ratio

20×4×2 0.2531 3.37 0.2488 3.97 0.8160 2.54
40×8×4 0.0752 5.19 0.0626 5.74 0.3215 3.99

80×16×8 0.0145 11.15 0.0109 3.76 0.0804 3.79
160×32×16 0.0013 – 0.0029 – 0.0212 –

puting the integrals in terms of a certain numerical quadrature, say, trapezoidal quadra-
ture rule, we attain the errors of mass balance (labeled ”MB”) for each species on different
mesh levels in Table 5. We compute the ratios of mass balance errors between subsequent
grid resolutions and label it as ”Ratio” in Table 5. The values in columns ”Ratio” indicate
that the convergence rates for mass balance errors vary between the order of 1.3 to 3.5. It
is hard to say how the mass balance error is exactly related to mesh size. However, Table
5 does show us a convergent mass balance error for each species with the convergence
rate of approximately second order, at least.

7 Conclusions and future work

In this paper, we introduce a novel automated program generator for finite element/finite
volume method (FEPG) and its application to the simulation of a multiphysics proton
exchange membrane fuel cell (PEMFC) model. It is the first time that we successfully ap-
ply Kirchhoff transformation to a 3D multiphase, multicomponent, multiphysics PEMFC
model and achieve a fast convergent nonlinear iteration and accurate numerical solu-
tions. In virtue of a high-level algorithm description language (script), we can efficiently
implement our advanced numerical techniques for the simulation of a complex multi-
physics PEMFC model on the FEPG platform. Numerical success for a 3D two-phase
transport, multiphysics PEMFC model demonstrates the efficiency of both our numerical
techniques and FEPG system. As for the future work, a more complicated PEMFC model
with a view to nonisothermality and water back diffusion effect through membrane will
be studied, and the corresponding efficient numerical method in terms of Kirchhoff trans-
formation will be developed as well. On the other hand, the automatically generated fi-
nite element/finite volume source code can be further developed toward the application
of adaptive and multilevel methods, even parallel computing by means of the parallel
version of FEPG system (pFEPG), which will be illustrated in the future work.
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