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Abstract. We propose a new Absorbing Boundary Condition (ABC) for the acoustic
wave equation which is derived from a micro-local diagonalization process formerly
defined by M.E. Taylor and which does not depend on the geometry of the surface
bearing the ABC. By considering the principal symbol of the wave equation both in
the hyperbolic and the elliptic regions, we show that a second-order ABC can be con-
structed as the combination of an existing first-order ABC and a Fourier-Robin condi-
tion. We compare the new ABC with other ABCs and we show that it performs well
in simple configurations and that it improves the accuracy of the numerical solution
without increasing the computational burden.

AMS subject classifications: 35L05

Key words: Wave equation, micro-local diagonalization, absorbing boundary condition, finite
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1 Introduction

The numerical simulation of waves propagation generally involves boundary conditions
which both represent the behavior of waves at infinity and provide a mathematical tool
to define a bounded computational domain in which a finite element method can be
applied. Most of these conditions can be justified as an approximation of the Dirichlet-
to-Neumann operator and when they both preserve the sparsity of the finite element
matrix and enforce dissipation into the system, they are called Absorbing Boundary Con-
ditions (ABC). Obviously an ABC impacts the accuracy of the numerical solution which
can be improved by using high-order conditions. Nevertheless a high-order condition
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requires to introduce auxiliary unknowns to be easily employed in a finite element for-
mulation [12–14] which increases the computational cost significantly. Moreover, increas-
ing the order of the condition can destroy the long-time stability of the wave equation.
Another limitation of existing ABCs is the type of surface bearing the ABC. Most of the
high-order ABCs have been derived for flat surfaces. They can be used for more general
boundaries which can be described by a collection of segments. Nevertheless, it is neces-
sary to introduce matching conditions between each segments which can be cumbersome
to implement.

In this paper, we show how to construct an ABC that fits the following criteria:

1. the ABC can be apply to arbitrarily-shaped boundaries;

2. the ABC does not require significant additional computations to be handled in a
finite element formulation;

3. the ABC preserves the long-time stability of the wave equation.

For that purpose, we investigate the possibility of improving an existing first-order ABC
which can be applied on arbitrarily-shaped boundaries. To minimize the computational
cost, we limit our study to the construction of second-order differential conditions. Re-
gardless of the implementation aspect, we can also note that Engquist and Majda showed
that conditions of order greater than two could lead to an ill-posed problem. The ex-
isting condition that we use is the first-order condition involving the curvature of the
absorbing boundary [10]. This condition is very easy to include in a variational formu-
lation. To justify our choice, we begin with comparing the curvature condition with the
BGT2 condition, introduced by Bayliss, Gunzburger and Turkel in [5], extended to the
time domain, knowing that the BGT2 condition is widely used by engineers. We show
that the extended BGT2 condition requires to introduce an auxiliary unknown and that
it performs as well as the curvature condition. We then investigate how to improve the
performances of the curvature condition. For that purpose, we use a generalization of the
Taylor diagonalization process by considering the principal symbol of the wave equation
both in the hyperbolic and the elliptic regions. Our approach meets an idea that was
formerly investigated in [12–14] but for flat surfaces extending conditions formerly pro-
posed by Higdon [15]. By using a classical finite element scheme, Hagstrom et al. [12–14]
have shown the improvements induced by the new condition. Nevertheless, we have
observed that the Hagstrom et al. condition is unstable when employed in an Interior
Penalty Discontinuous Galerkin (IPDG) formulation while our new condition seems to
be stable. Moreover, the Hagstrom et al. condition seems to be difficult to use on curved
surfaces while our condition can be applied straightforwardly, without any corner condi-
tion. The new condition that we construct is the combination of two boundary conditions
which each leads to a long-time stable system. Hence the new ABC should outperform
the Hagstrom et al. condition.

In this paper, we consider a model problem for the time-dependent wave equation in
a two-dimensional domain Ω with an obstacle inside and an ABC on its external bound-
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Figure 1: Studied domain.

ary (see Fig. 1). We have

(S)























∂2
t u−div

(

c2∇u
)

= f , in (0,T) × Ω,

u(0,x)=0 ; ∂tu(0,x)=0, in Ω,

∂nu=0, on ΓN,

∂nu=Bu, on Γabs,

where f is the source function, c the velocity of the wave u (the unknown field), T the final
time, n the unit outward normal vector, ΓN and Γabs respectively the boundary with the
Neumann condition and the ABC which is represented by the operator B. The operator
B is differential, for instance, it reads 1

c ∂t which corresponds to the simplest ABC.
In this paper, we restrict our study to the 2D case but the extension to the 3D case is

relatively unmediated.

2 The time domain BGT2 condition

We aim at constructing efficient ABCs of order 2 which can be used for the acoustic wave
equation on arbitrarily-shaped boundaries. The most straightforward approach consists
in considering a second-order ABC that can be derived easily from the BGT2 condition.
Indeed this condition is widely used by engineers for the Helmholtz equation because of
its efficiency and its simplicity of implementation.Then it could perform well in the time
domain too. We restrict our study to the case of a circular boundary but the same work
can be done for an ellipse by using the condition proposed in [17].

In the time harmonic domain, the BGT-2 ABC is given by

∂nu=

(

ik− 1

2R
+

1

8R(1−ikR)

)

u+
1

2R(1−ikR)
∂2

θu, (2.1)

where θ is the angular polar coordinate, R is the radius of the circle and k denotes the
frequency.
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To write the condition in the time-domain, we apply an inverse Fourier transform to
(2.1). We then get

∂nu+∂tu+
1

2R
u=(1+R∂t)

−1

(

1

8R
u+

1

2R
∂2

θu

)

. (2.2)

The resulting condition is nonlocal since it involves the inverse of 1+R∂t but it can be
easily localized by introducing an auxiliary variable as follows











∂nu+∂tu+
1

2R
u=w,

(1+R∂t)w=
1

8R
u+

1

2R
∂2

θu.

(2.3)

Written as above, the ABC corresponds to a perturbation of the curvature ABC (C-ABC)
defined by

∂tu+∂nu+
1

2R
u=0,

and which has been derived by several authors (see for instance Engquist and Majda [10])
by applying different approaches. In the following, the condition (2.3) will be called TD-
BGT2 ABC. To measure how the new condition performs, we have included it in a IPDG
formulation [11] of the wave equation. We refer the reader to the appendix A for more
detail on the IPDG formulation. This leads to the solution of the algebraic system















M
d2U

dt2
+B

dU

dt
+BκU+KU−GW=F,

CW+RC
dW

dt
=

D

8R
U− E

2R
U,

(2.4)

where U and W are the unknowns, F the source vector, M, B, Bκ,C, D and G block-diagonal
mass matrices and K, E are stiffness matrices. Except for M and K, all these matrices are
only defined on Γabs. The system reduces to the first algebraic equation when the C-ABC
is used, that is with G=0.

For the time discretization, we use the classical second-order Leap-Frog scheme, which
is quasi-explicit since all the matrices are block-diagonal and therefore easily invertible.

We have compared the performances of the TD-BGT2 conditions to the ones of the
C-ABC for two simple configurations. In the first configuration, the domain Ω is a disk
of radius 3m, centered in (0m, 0m) and Γabs is the boundary of Ω (see Fig. 1). We con-
sider zero initial condition and an off-center point source in space at (0m, 1m) which is a
second-derivative of a Gaussian with a dominant frequency of 1Hz.

In the second configuration, the domain Ω is a ring centered in (0m, 0m) of internal
radius 1m and of external radius 3m. Γabs is the external boundary of the ring and ΓN is
the internal one (see Fig. 2). We consider zero initial conditions and an off-center point
source in space at (0m,1.5m) which is a second-derivative of a Gaussian with a dominant
frequency of 1Hz.
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Figure 2: Computational domain: Circle. Figure 3: Computational domain: Ring.

In both configurations, we set the final time T=40s.
To compare the efficiency of the TD-BGT2 condition to the one of the C-ABC, we

set three receivers near the absorbing boundary at points (0m, 2.85m), (−2m, 2m) and
(−2.85m, 0m) and we compute the relative L2

(x,y)([0,T]) error at each receiver which co-

ordinates are (x,y). This error is defined by

(

∫ T
0 (uapp(t,(x,y))−uex(t,(x,y)))2dt

)1/2

(

∫ T
0
(uex(t,(x,y)))2dt

)1/2
,

where uapp is the approximation of the solution and uex is the exact solution obtained
thanks to a Cagniard-de Hoop method [7]. The error is given after 6000 iterations (with a
time step equal to 6.959e−3s). In Table 1, we give the results for the first configuration and
in Table 2, the ones for the second one. Each column corresponds to a receiver and each
line to a given ABC. We can remark that the TD-BGT2 condition gives better results than
the C-ABC. This is not surprising since it corresponds to a second-order approximation of
the Dirichlet-to-Neumann operator while the C-ABC is a first-order approximation. The
first column depicts very good results for both conditions because the corresponding
receiver is set at normal incidence and we already know that the C-ABC is very efficient
in this case.

Table 1: Relative L2 error (in %) – circle.

(0, 2.85) (-2, 2) (-2.85, 0)
C-ABC 1.136 2.347 3.154

TD-BGT2 1.059 2.182 2.939

Table 2: Relative L2 error (in %) – ring.

(0, 2.85) (-2, 2) (-2.85, 0)
C-ABC 1.42 7.21 5.77

TD-BGT2 1.30 6.71 5.39



H. Barucq, J. Diaz and V. Duprat / Commun. Comput. Phys., 11 (2012), pp. 674-690 679

Figure 4: Decay of the energy: TD-BGT2 ABC.

Even if we have not been able to prove the decay of an energy, we have computed the
classical one En+1/2 given by

En+1/2=

(

M
Un+1−Un−1

∆t
,
Un+1−Un−1

∆t

)

+
(

KUn,Un+1
)

, (2.5)

where Un =U(n∆t) to show the stability of the method. We have plotted in Fig. 4 the
evolution of this energy with respect to the number of iterations in time until 6000 iter-
ations. We can see that the scheme remains stable. We precise that we have performed
this experiment until 1000000 iterations (6959s) and we have not observe any instability.
We thus claim that the TD-BGT2 preserves the long-time stability of the wave equation.

Hence the TD-BGT2 ABC outperforms the C-ABC but the improvement is not signifi-
cant enough considering that we have added an auxiliary function to apply the TD-BGT2
ABC and we have thus increased the computational burden. Moreover, the BGT2-ABC
can not be applied on any arbitrarily-shaped boundary, even if it can be written easily for
an ellipse [17]. Hence the TD-BGT2 ABC does not satisfy all the criteria defined in the
introduction.

3 A new family of second-order ABCs for the acoustic wave

equation

In this section, we are interested in constructing a new absorbing boundary condition
using the micro-diagonalization method developed by M.E. Taylor [18]. We want this
condition to be written for all regular convex domains and to take into account both
propagating and evanescent waves. Indeed, our idea is to compose two first-order con-
ditions: one for the propagating waves and the other one for the evanescent waves. First,
we present the main steps of this micro-diagonalization method. For the sake of simplic-
ity, the velocity c is supposed to be equal to 1m.s−1.
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3.1 The micro-diagonalization method applied to the wave equation

In this section, we tackle the enrichment of existing ABCs by applying the factorization
theorem initially established by M.E. Taylor [18] to study the propagation of singulari-
ties of strictly hyperbolic systems. We consider two different approaches and we analyze
the impact of the modified condition on the accuracy of the numerical solution. Just
as was previously mentioned, we would like to investigate the possibility of construct-
ing high-order absorbing boundary conditions without involving high-order differential
operators. Hence we limit our work to the application of the first step of factorization
which means that we are only dealing with the diagonalization of the principal symbol
of the wave equation. Indeed, according to [2], the following steps necessarily involve
differential operators with order higher than two.

The ABCs that we consider are derived from the micro-local approximation of the
Dirichlet-to-Neumann operator related to the artificial surface Γabs. We thus begin with
rewriting the acoustic wave equation in a local coordinate system (r,s). The couple (r,s)
describes a point in the neighborhood of Γabs in such a way that Γabs = {r= 0}. We use
the same coordinate system as in [3] and the acoustic wave equation reads then as

∂2
t u−∂2

r u−κr∂ru−h−1∂s

(

h−1∂su
)

=0, (3.1)

where κ is the curvature of Γabs, h=1+rκ(s) and κr =h−1κ.
Next, to apply Taylor’s method, we rewrite (3.1) as a first-order system. We thus

introduce an auxiliary unknown v which satisfies ∂tv+∂ru=0 in a neighborhood of Γabs

and if U denotes the field U=(v,u), U is solution to the first-order system

∂rU= LU.

The entries of L are first-order pseudodifferential operators and σ(L) = L= L1+L0 is
given by

L1=





0 −h−2ξ2−ω2

iω
−iω 0



∈S1 and L0=





−κr −h−3∂s(h)ξ

ω
0 0



∈S0,

where ξ and ω are the dual variables associated respectively to s and t. We use standard
notations such as σ(L) for the symbol of L and we refer the reader to [16] for the definition

of spaces Sm. Let λ1 denote the symbol λ1 =
(

h−2ξ2−ω2
)1/2

. Then, when λ1 6= 0, the
principal symbol of L admits two single eigenvalues λ1 and −λ1. When h−2ξ2−ω2

>0,
λ1 is real and when h−2ξ2−ω2

<0, λ1 is imaginary. Following [2, 9, 10], we introduce

V0=
1√
2







iω

λ1
1

1 −λ1

iω






(3.2)
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and then we have

V0L1V−1
0 =

(

λ1 0
0 −λ1

)

. (3.3)

Now, a first-order ABC can be derived from the approximation and the localization of
the global boundary condition

((I+K−1)V0U)2=0 on Γabs, (3.4)

where K−1 is a regularizing operator which principal symbol K−1 is given by

K−1=









0 − iκω3

4λ4
1

− iκω

4λ2
1

0









. (3.5)

Remark 3.1. When h−2ξ2−ω2
>0, the frequencies (ω,ξ) cover the elliptic region. If not,

(ω,ξ) lie in the hyperbolic region.

When λ1 is imaginary, (3.4) can be rewritten as, after using a truncated Taylor expan-
sion on λ1 under a high-frequency hypothesis: ω2≫h−2ξ2,

∂tu+∂nu+
κ

2
u=0 on Γabs, (3.6)

which is the C-ABC presented in the previous section in the case of a circle. The resulting
condition involves differential operators but it should be called micro-differential since it
is justified in the propagating cone ω2≫h−2ξ2.

The technique of diagonalization wave equation with variable coefficients has been
used by Engquist and Majda [10] to construct absorbing boundary conditions but it was
applied only when the operator K−1 is anti-diagonal. That K−1 is anti-diagonal is suf-
ficient to diagonalize the principal symbol of the wave equation and therefore construct
absorbing boundary conditions. However the matrix K−1 is actually not unique because
its diagonal coefficients are not fixed by the diagonalization process. Here we have cho-
sen zero but we could have used any functions in S−1.

In our work, we first consider the case where the operator K−1 has a nonzero diagonal
entry, which determines a family of boundary conditions depending on a parameter.
This is the object of Section 3.2. The non-diagonal term is fixed to be consistent with the
symbols of degree -1. It is interesting to note that in doing exactly the same calculations
as in the work of Engquist and Majda, we obtain conditions which localization of lowest
degree, ie the differential operator obtained from a Taylor approximation of order 1, will
be necessarily a differential operator of order two. In Section 3.3, we adapt the technique
of Engquist and Majda to the elliptic region.
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3.2 Improving the C-ABC in the hyperbolic region

As it was previously announced, a first task consists in considering the family of ABCs
that can be derived when K−1 is modified by introducing a non-zero diagonal term. This
idea has been formally applied in [4] for the 2D Maxwell system but only from a theoret-
ical point of view. To the best of our knowledge, the numerical impact of this approach
has never been investigated. Herein, we propose to modify K−1 as follows

K−1=









0 − iκω3

4λ4
1

− iκω

4λ2
1

γ(s)

λ1









, (3.7)

where γ is a parameter depending only on the curvilinear abscissa s. The other diagonal
term is kept equal to zero because it is not involved in writing the boundary condition.
Indeed, it affects only the part of the reentrant wave field that should not be modeled.
We then get

Theorem 3.1. A family of first-order condition depending on a parameter is

∂t(∂nu+∂tu)=
(κ

4
−γ
)

∂nu−
(κ

4
+γ
)

∂tu on Γabs. (3.8)

Proof. We recall that the first-order boundary condition is given by

((I+K−1)V0U)2=0 on Γabs. (3.9)

The symbol of the corresponding operator reads as

σ((I+K−1)V0)=((I2+K−1)V0)+R−2,

where R−2∈S−2. Therefore, the truncation of σ((I+K−1)V0) in S−1 is given by

τ−1((I+K−1)V0)=((I2+K−1)V0)

=
1√
2











iω

λ1
− iκω3

4λ4
1

1+
κω2

4λ3
1

κω2

4λ3
1

+1+
γ(s)

λ1
− iκω

4λ2
1

− λ1

iω
− γ(s)

iω











. (3.10)

Using a first-order Taylor expansion for ω>>h−1ξ, we then obtain

τ−1((I2+K−1)V0)1=
1√
2









1− iκ

4ω
1+

iκ

4ω

1+
iκ

4ω
+

γ

iω

iκ

4ω
−1− γ

iω









. (3.11)
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Then, combining (3.4) with the definition of U, we get

∂t (∂nu+∂tu)=
(κ

4
−γ
)

∂nu−
(κ

4
+γ
)

∂tu on Γabs.

This completes the proof.

We then get a second-order condition depending on a parameter γ. When γ=0, we
can recover the C-condition by simplifying the Taylor expansion.

3.3 Diagonalization in the elliptic region

The matrix K−1 can be defined when (ω,ξ) covers the elliptic region exactly in the same
way than in Section 3.2. We get

Theorem 3.2. A first-order condition taking into account the evanescent waves is given by

∂nu+βu=0 on Γabs. (3.12)

Proof. We proceed in the same way as in the proof of Theorem 3.1. Now, λ1=
√

h−2ξ2−ω2

is real and as in [13], we propose to apply the parametrization λ1=β, with β>0. We then
get

τ−1((I2+K−1)V0)=
1√
2







iω

β
1

1 − β

iω







and the resulting condition reads as

∂nu+βu=0 on Γabs.

This completes the proof.

We have then a Fourier-Robin condition which has been derived from the approxima-
tion of the Dirichlet-to-Neumann operator into the elliptic region. We can observe that if
the wave equation is coupled with (3.12) only, the resulting system is conservative when
β>0. Indeed, if E(t) denotes the functional

E(t)= 1

2

∫

Ω

(

|∂tu|2+|∇u|2
)

dx+
1

2

∫

Γabs

β|u|2dF,

defined for any regular solution to the wave equation, t 7−→ E(t) is a constant and it
defines an energy if β>0.
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3.4 A new family of ABCs

We are now willing to derive a new family of ABCs. The construction is straightfor-
ward since it is based on the combination of the conditions (3.6) and (3.12). The idea
of combining both the propagating and the evanescent conditions follows the represen-
tation of the wave field U from its inverse Fourier transform that can be defined from
the algebraic relation involving L. Indeed, the inverse Fourier transform is used to rep-
resent the wavefield as the sum of two integrals which are defined respectively in the
cone of propagation and the elliptical region. By construction, each integral satisfies the
exact condition making the approximate condition. Since both approximate conditions
commute, an approximation of the exact condition is obtained by combining the two ap-
proximate conditions. The idea of decomposing the wave field will be included explicitly
in the next section devoted to numerical experiments.

Proposition 3.1. A second-order family of ABCs taking both propagating and evanescent
waves into account reads as

(∂n+β)
(

∂t+∂n+
κ

2

)

u=0 on Γabs. (3.13)

We could have considered the combination of the Fourier-Robin condition with the
one-parameter family of conditions but we would have obtained a third-order family of
conditions. Moreover, we are going to show that there is numerically no interest to apply
the one-parameter condition as compared to the C-ABC.

4 Numerical results

In this section, we first investigate the performances of the ABC (3.8) for different values
of γ. We conclude that γ=0 is the optimal value, which justifies the definition of the ABC
(3.13). Then, we compare the accuracy of the ABC (3.13) to the ones of the C-ABC and of
the TD-BGT2 ABC.

4.1 Numerical study of the one-parameter family of conditions

Let us consider the implementation of the ABC (3.8) into a finite element formulation.
We propose to define an auxiliary unknown to obtain an ABC easier to introduce in the
formulation. The ABC (3.8) is rewritten as follows:

∂nu=−∂tu−
κ

2

(

∂t−
κ

4
+γ
)−1

∂tu on Γabs

and we define ψ as the surface field satisfying

(

∂t−
κ

4
+γ
)

ψ=∂tu on Γabs.
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Table 3: Relative L2 error (in %) – circle.

(0, 2.85) (-2, 2) (-2.85, 0)
C-ABC 1.136 2.347 3.154
γ=κ 1.138 2.460 3.283

γ=κ/3 1.131 2.358 3.168
γ=3κ 1.353 2.782 3.596

Then the solution u satisfies

∂nu+∂tu=−κ

2
ψ on Γabs,

which can be easily included into the variational formulation (see Appendix A). We have
tested the ABC (3.8) for different values of the parameter γ in the case of the disk with-
out obstacle described at Section 2. In Table 3, we provide the relative L2 error at each
receiver for γ = κ, κ/3 and 3κ. We can easily see that the impact of the parameter γ is
not significant. Hence, in the following, we will consider the C-ABC for the propagating
waves which gives similar results than the ABC (3.8) but with a smaller computational
cost since there is no need to introduce an auxiliary function.

4.2 Numerical study of the new ABC

To implement the ABC (3.13) into a finite element formulation, we propose to use a more
convenient expression of (3.13) which can be easily introduced into the variational for-
mulation thanks to an auxiliary unknown. The ABC (3.13) is rewritten as

∂nu=−∂tu−
κ

2
u+
(

β+∂t−
κ

2

)−1
(

∂2
s −

κ2

4

)

u on Γabs

and we define ψ as the surface field satisfying

(

β+∂t−
κ

2

)

ψ=

(

∂2
s −

κ2

4

)

u on Γabs.

Then the solution u satisfies

∂nu+∂tu+
κ

2
u=ψ on Γabs.

Remark 4.1. As for the TD-BGT2 ABC, this condition can be seen as a penalization of the
first-order C-ABC. This is not surprising because the condition is the combination of the
curvature condition with a Robin condition. Moreover, this writing expresses explicitly
that the wave field u is not only propagating and the correction is represented by ψ.
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After having applied an IPDG space discretization, the algebraic form of the problem
is given by















M
d2U

dt2
+B

dU

dt
+BκU+KU−GΨ=F,

βCΨ+C
dΨ

dt
−CκΨ=−Dκ2

4
U−EU,

(4.1)

where the mass-matrices M, B, Bκ, G, C, Cκ and Dκ2 are block-diagonal.

Remark 4.2. As in the case of the TD-BGT2 ABC, the matrices B, Bκ , G, C, Cκ, Dκ2 and E
are not defined outside of the boundary, so the system to solve inside the domain is the
same as in the case when Γabs=∅.

As for the TD-BGT2 ABC, we use a second-order Leap-Frog scheme for the time dis-
cretization.

To evaluate the efficiency of our condition, we compare it with the TD-BGT2 ABC
and the C-ABC in the two configurations described at Section 2. In Fig. 5 (resp. Fig. 6)
we represent the relative L2 error computed at receiver (−2m, 2m) for various values of
β between 0.3 and 5 in the first (resp. second) configuration. These figures indicate that
the optimal value of β is about 0.7 for the two configurations. We have obtained similar
results for the receivers at point (0m, 2.85m) and (−2.85m, 0m). In Table 4 (resp. Table 5),
we compare the relative L2 error obtained for β=0.7 to the ones obtained with a C-ABC
and a TD-BGT2 ABC in the first (resp. second) configuration.

Let us mention that the optimal value of β depends on many parameters. For instance,
it depends on the curvature of the boundary and on the space step h. We have reproduced
the experiment on a finer grid and we have obtained an optimal value of 2.7. It seems that
the value of β is inversely proportional to a power of h (maybe h2). We find a behavior
that is similar to that analyzed by Dolean et al. [8] in the case of optimized transmission
conditions.

Figure 5: Relative L2 error (in %) at point
(−2m, 2m): Circle.

Figure 6: Relative L2 error (in %) at point
(−2m, 2m): Ring.
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Table 4: Relative L2 error (in %) – circle.

(0, 2.85) (-2, 2) (-2.85, 0)
curvature 1.14 2.35 3.15

BGT-2 1.06 2.18 2.94
β=0.7 1.01 1.90 2.59

Table 5: Relative L2 error (in %) – ring.

(0, 2.85) (-2, 2) (-2.85, 0)
curvature 1.42 7.21 5.77

BGT-2 1.30 6.71 5.39
β=0.7 1.22 6.03 4.84

As we already observed in the previous experiments, the solution at the first receiver
located above the source is very accurate, whatever the condition is. This is due to the
fact that most of the waves impact the boundary at normal incidence above the source.
On the contrary, the solutions obtained at the two other receivers are more accurate with
the new condition than with the C-ABC or the TD-BGT2 ABC.

As for the TD-BGT2 ABC, we have not been able to prove the decay of an energy and
so we have computed the energy defined in (2.5). We have plotted in Fig. 7 the evolution
of this energy with respect to the number of iterations in time until 6000 iterations. We can
see that the scheme remains stable. We precise that we have performed this experiment
until 1000000 iterations (6959s) and we have not observe any instability. We thus claim
that the new condition preserves the long-time stability of the wave equation.

Figure 7: Decay of the energy: new condition.

Nevertheless we must observe that the experiments we have carried out concern the
case of a circular boundary, for which the curvature ABC is already very accurate. There-
fore we are now investigating the performances of the new ABC on an elliptic boundary.
In particular, we wish to know if it can improve significantly the accuracy of the solution
obtained with the C-ABC.
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5 Conclusion

In this paper, we have proposed a new ABC for the acoustic wave equation that can
be justify for any arbitrarily shaped surface by using a micro-local diagonalization pro-
cess. This ABC has been written for all regular convex domains and both consider the
hyperbolic and elliptic regions. We have performed some numerical tests in simple con-
figurations and we have observed that the accuracy of the solution is improved. We plan
to test numerically other configurations as elliptic domains or more general convex do-
mains. We expect to see more significant improvements in the accuracy of the solution
with such configurations than in the case of circular domains. We also plan to consider
the case of the grazing modes that is to say when λ1 = 0. In that case, the micro-local
diagonalization process can not be applied but it might be possible to use an asymptotic
expansion of the principal symbol of the acoustic wave equation [6].

A The IPDG method

In this appendix, we detail the construction of the IPDG method that we have used to
test the ABCS.

We consider a partition Th of Ω composed of triangles K, we denote by Ωh the set of
triangles, by Σabs the set of the edges on the absorbing boundary, by ΣN the set of the
edges on the Neumann boundary and by Σi the set of the edges in the domain such that
Σi∩(ΣN∪Σabs)=∅. For each Σ∈Σi, we have to distinguish the two triangles that share
Σ: we note them arbitrarily K+ and K−. We introduce useful notations to define the jump
and the average over edges

[[v]] :=v+ν
++v−ν

− and {{v}} :=
v++v−

2
,

where v+ and v− respectively refers to the restriction of v in K+ and K− and ν
± stands

for the unit outward normal vector to K±.
It is well-known that the IPDG formulation of (S) reads as [1, 11]











Find u∈U such that, ∀v∈H1(Ω),

∑
K∈Th

∫

K
∂2

t uv+a(u,v)− ∑
Σ∈Σabs

∫

Σ
c2∂nuv= ∑

K∈Th

∫

K
f v

with

a(u,v)=∑
K

∫

K
c2∇u∇v− ∑

Σ∈Σi

∫

Σ

(

{{c∇u}}[[v]]+{{c∇v}}[[u]]+α[[u]][[v]]
)

and α a penalization coefficient. We seek an approximation of the solution in the finite
element space Vk

h defined as follows

Vk
h =

{

v∈L2(Ω);v|K ∈Pk,∀K∈Th

}

, k∈N,
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where Pk is the set of polynomials of degree at most k on K.
The discrete problem is given by

(Sh)















Find uh∈Vk
h such that, ∀vh ∈Vk

h ,

∑
K∈Th

∫

K

∂2uh

∂t2
vh− ∑

Σ∈Σabs

c2Buh vh+a(uh,vh)= ∑
K∈Th

∫

K
f vh.

(A.1)

For the sake of simplicity, we consider a well-known first-order ABC to explain its imple-
mentation in the IPDG formulation

(

∂t+∂n+
κ

2

)

u=0 on Γabs, (A.2)

where κ is the curvature of Γabs.
In this case, we have

(Sh)



















Find uh∈Vk
h such that, ∀vh ∈Vk

h ,

∑
K∈Th

∫

K

∂2uh

∂t2
vh+a(uh,vh)+ ∑

Σ∈Σabs

c2
∫

Σ

(

∂uh

∂t
vh+

κ(.)

2
uh vh

)

= ∑
K∈Th

∫

K
f vh.

(A.3)

We already know that, to determine uh on a given triangle we need Ck
k+2 degrees of free-

dom. Since we consider a DG method we will have N := numbero f triangles×Ck
k+2 de-

grees of freedom in the whole domain. Let us consider {vi, 1≤ i≤N} a basis of Vk
h . We

can rewrite uh as uh(x,t)=∑
N
i=1Ui(t)vi(x).

The algebraic form of this problem is given by

M
d2U

dt2
+B

dU

dt
+BκU+KU=F, (A.4)

where M is the mass matrix, K the stiffness matrix and

U=(Ui)1≤i≤N , M=

(

∑
K∈Th

∫

K
vivj

)

1≤i,j≤N

,

B=

(

∑
Σ∈Σabs

c2
∫

Σ
vivj

)

1≤i,j≤N

, Bκ =

(

∑
Σ∈Σabs

∫

Σ

κ

2
vivj

)

1≤i,j≤N

, (A.5)

K=
(

a(vi,vj)
)

1≤i,j≤N
, F=

(

∑
K∈Th

∫

K
f vi

)

1≤i≤N

.

As for the time discretization, we use a finite difference scheme of order two with a time
step ∆t and we obtain

(

M+
∆t

2
B+

∆t2

2
Bκ

)

Un+1

=∆t2F−∆t2KUn+2MUn−MUn−1+
∆t

2
BUn−1−∆t2

2
BκUn−1 . (A.6)
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Remark A.1. We can remark that (M+ ∆t
2 B+ ∆t2

2 Bκ) is easily invertible because it is a
block-diagonal matrix.
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[6] D. Bouche, F. Molinet, Méthodes asymptotiques en électromagnétisme, Springer-Verlag,
1994.

[7] L. Cagniard, Reflection and refraction of progressive seismic waves, McGraw-Hill, 1962.
[8] V. Dolean, M.J. Gander, L. Gerardo-Giorda, Optimized Schwarz methods for Maxwells

equations, SIAM J. Sci. Comput., 31(3) (2009), 2193-2213.
[9] M. Ehrhardt, Absorbing boundary conditions for hyperbolic systems, Numer. Math. Theor.

Meth. Appl., 3 (2010), 295-337.
[10] B. Engquist, A. Majda, Absorbing boundary conditions for the numerical simulation of

waves, Math. Comp., 31 (1977), 629-651.
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