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Abstract. A multi-hierarchy simulation model aiming magnetic reconnection stud-
ies is developed and improved in which macroscopic and microscopic physics are
computed consistently and simultaneously. Macroscopic physics is solved by mag-
netohydrodynamics (MHD) algorithm, while microscopic dynamics is expressed by
particle-in-cell (PIC) algorithm. The multi-hierarchy model relies on the domain de-
composition method, and macro- and micro-hierarchies are interlocked smoothly by
hand-shake scheme. As examination, plasma flow injection is simulated in the multi-
hierarchy model. It is observed that plasmas flow from a macro-hierarchy to a micro-
hierarchy across the magnetic field smoothly and continuously.
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1 Introduction

Collisionless magnetic reconnection is one of the fundamental processes in which energy
is converted from magnetic field energy to kinetic energy. It plays an essential role in the
rapid energy release in laboratory fusion device and astrophysical plasmas [1–3]. Fur-
thermore, of particular interest is an aspect of the coupling phenomenon between multi-
ple spatial and temporal scales. When magnetic reconnection occurs, the field topology
changes on a macroscopic scale and global plasma transport takes place. On the other
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hand, an electrical resistivity controlled by a microscopic process is necessary as a trigger.
A grand challenge is to understand a magnetic reconnection process as multi-hierarchy
phenomenon completely [4].

Magnetohydrodynamics (MHD) simulations [5,6] is one of the popular tool for inves-
tigation of magnetic reconnection. However, the MHD algorithm assumes artificial elec-
trical resistivity and viscosity, and can not describe their generation mechanism. On the
other hand, fully kinetic electromagnetic particle-in-cell (PIC) simulations [7–10] treat dy-
namics of plasma by calculating motions of electrons and ions in the first principle, thus
can express electrical resistivity and viscosity self-consistently [11–13]. However, the PIC
algorithm requires huge computer resources in memory and CPU time, consequently
large-scale simulation which deals with entire geomagnetosphere can not be executed.
In order to conquer this problem, we develop a multi-hierarchy simulation model, which
deals with both microscopic and macroscopic physics consistently and simultaneously as
the MAgnetic Reconnection Interlocked Simulation (MARIS) project.

Recently we succeeded in the first demonstration of multi-hierarchy simulation in
which plasma inflows come from the macroscopic domain and drive magnetic recon-
nection in the microscopic domain [14, 15]. Examining validity of our multi-hierarchy
model was done in the previous work. In 2008, we simulated the propagation of Alfvén
wave and observed that waves smoothly propagated in the multi-hierarchy simulation
box [16, 17]. Now in this paper, in order to demonstrate validity of our model moreover,
we simulate plasma flow injection in the multi-hierarchy model. This work plays a role to
emphasize that magnetic reconnection phenomena found in the multi-hierarchy model
as shown in [14, 15] exhibit true physics.

In Section 2, we describe the method of our multi-hierarchy simulation model for
magnetic reconnection studies. The simulation domain is divided into three domains,
and the macroscopic (MHD) and microscopic (PIC) domains are interlocked via the in-
terface domain. Also, it is shown that the MHD and PIC algorithms have different time
steps and how data are exchanged each other. In Section 3, we perform multi-hierarchy
simulations of plasma injection. Plasmas are observed to smoothly and continuously
flow in multi-hierarchy simulation box. In Section 4, we discuss a numerical error accu-
mulated when thermal velocities are computed. Section 5 gives a summary of our work.

2 Multi-hierarchy simulation method

2.1 Multi-hierarchy structure of magnetic reconnection

In the multi-hierarchy structure of magnetic reconnection, the characteristic spatial and
temporal scales are different by domains. In the vicinity of the reconnection point, phe-
nomena are microscopic. For instance, the width of a current sheet and the gradient scale
of magnetic field are of the order of ion gyroradius (strictly describing, the ion meander-
ing scale). On the other hand, as being away from the reconnection point, phenomena
relax to large-scale and slow behavior. As a result, plasma behavior can be expressed
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Figure 1: Schematic diagram of a multi-hierarchy model for magnetic reconnection simulation. Simulation
domain is divided into three domains; MHD, PIC, and interface domains.

by one-fluid model in the domain enough more than the ion skin depth away from the
reconnection point [18].

Based on the above features, the method that different algorithms are used in different
domains is quite effective for magnetic reconnection studies. We refer to this method as
domain decomposition method.

2.2 Domain decomposition method

Let us describe the domain decomposition method in detail. We show the schematic
diagram of multi-hierarchy model for magnetic reconnection in Fig. 1. The simulation
domain is divided into three domains, the MHD, PIC, and interface domain, and the
MHD and PIC domains are connected via the interface domain in the upstream direction
along y-axis. The MHD domain is a macro-hierarchy, and is taken to be the region far
away from the reconnection point (the neutral sheet), namely the region outside the ion
skin depth. In the MHD domain, MHD simulation method is used as calculation algo-
rithm, since plasma dynamics in this domain is assumed to be expressed by one-fluid
model. On the other hand, the PIC domain is a micro-hierarchy, and covers the central
region. The physics in the PIC domain is calculated by PIC simulation method, since ki-
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netic effects are supposed to play important roles. Between the MHD and PIC domains,
an interface domain with a finite width is inserted. The physics in the interface domain
is solved by both the PIC and MHD algorithms. Thus, MHD condition should be fully
satisfied in the interface domain. In other word, the interface domain must be located
fully outside the ion skin depth.

2.3 Hand-shake scheme

In order to interlock the PIC and MHD domains smoothly, an interconnection algorithm
in the interface domain is crucial.

The governing equations in the MHD algorithm [19] are as follows:

∂ρ

∂t
=−∇·(ρu), (2.1)

∂(ρu)

∂t
=−∇·(ρuu)−∇P+

1

4π
(∇×B)×B, (2.2)

∂B

∂t
=∇×(u×B), (2.3)

∂P

∂t
=−∇·(Pu)−(Γ−1)P∇·u, (2.4)

where ρ, u, B, P, and Γ denotes the mass density, fluid velocity, magnetic field, pressure,
and ratio of specific heats. On the other hand, the basic equations in the PIC algorithm
[20] are

1

c

∂B

∂t
=−∇×E, (2.5)

1

c

∂E

∂t
=∇×B−

4π

c
J, (2.6)

∇·B=0, (2.7)

∇·E=4πρq, (2.8)

d(γkvk)

dt
=

qk

mk

(

E+
vk

c
×B

)

, (2.9)

dxk

dt
=vk, (2.10)

where xk, vk, mk, qk, and γk are the position, velocity, mass, charge, and Lorentz factor of
the k-th particle, respectively and E is the electric field†. The current density J and charge

†We solve Eqs. (2.5) and (2.6) in Maxwell equations for E and B, and E is adjusted by using the correction of
the electrostatic part to satisfy Eq. (2.8). Eq. (2.7) always holds if it is initially satisfied.
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density ρq are calculated by taking a sum over all the particles as,

J=
N

∑
k=1

qkvkS(x−xk), (2.11)

ρq =
N

∑
k=1

qkS(x−xk), (2.12)

where N is total number of particles, and S is the form function of particles. We advance
the simulation time by solving Eqs. (2.1)-(2.10). Physical quantities at the next time step
n+1 can be expressed as a function of ones at the current time step n;

Q
(n+1)
l =G(Q

(n)
1 ,Q

(n)
2 ,Q

(n)
3 ,···). (2.13)

Here Q
(n)
l is a physical quantity, the subscript l and superscript n represent the kind of

quantities and the time step, respectively, and G is a function of known quantities Q
(n)
l

‡.
At first, we consider macroscopic quantities such as electromagnetic field, fluid ve-

locity, mass density, and pressure. In the MHD algorithm, macroscopic quantities are
directly computed by Eqs. (2.1)-(2.4). On the other hand, the PIC algorithm calculates
individual particle motions and does not directly treat the fluid velocity, mass density,
and pressure. Hence, we obtain macroscopic quantities by assembling particle velocities
and positions statistically based on the relations,

ρ=
N

∑
k=1

mkS(x−xk), (2.14)

ρu=
N

∑
k=1

mkvkS(x−xk), (2.15)

P=
1

3

N

∑
k=1

mk(vk−u)2S(x−xk). (2.16)

A macroscopic quantity in the interface domain Qinterface is given by a hand-shake
scheme [16, 21];

Qinterface =FQMHD+(1−F)QPIC. (2.17)

The interconnection function F depends on the coordinates. The quantity QMHD is cal-
culated by the MHD algorithm independently of the PIC algorithm and corresponds to
the left-hand side of Eq. (2.13), while QPIC is solved by the PIC algorithm not using the
MHD algorithm and corresponds the left-hand side of Eq. (2.13). After obtaining QMHD

‡In the strict sense, we employ the leap-flog method in the PIC algorithm, thus Q
(n+1/2)
l is included in

the right-hand side of Eq. (2.13). However, this fact does not affect an interconnection algorithm discussed
below.
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and QPIC, we have Qinterface according to the hand-shake scheme (2.17). At the next time
step, the obtained quantity Qinterface is substituted in the right-hand side of Eq. (2.13).

However, an electric field E and current density J are treated exceptionally, since they
are not independent variables in the MHD algorithm, in which EMHD and JMHD are given
as

EMHD=−uMHD×BMHD, (2.18)

and

JMHD=
1

4π
∇×BMHD. (2.19)

By using Eq. (2.17), Einterface and Jinterface are obtained, however they are not used in
Eq. (2.13) in the MHD algorithm, while they are substituted in the right-hand side of
Eq. (2.13) in the PIC algorithm.

In order to solve the physics in the interface domain with the PIC algorithm, micro-
scopic quantities such individual particle positions and velocities are needed. We assume
that the (shifted) Maxwellian distribution is satisfied in the interface domain. At every
PIC time step, particle velocities and positions in the interface domain are removed and
newly determined so as to satisfy the profiles with the fluid velocity uinterface, mass den-
sity ρinterface, pressure Pinterface (the thermal velocity vT,interface, number density ninterface),
and the current density Jinterface. The new information of particle velocities and positions
are substituted in the right-hand side of Eq. (2.13). After that, Eq. (2.13) goes forward one
time step [the equations of motion (2.9) and (2.10) are solved] and particle velocities and
positions at the next PIC time step are calculated.

2.4 Unit-transformation

Exchange of physical quantities between the MHD and PIC algorithms requires to trans-
form unit, since normalization constants are different each other. Table 1 represents phys-
ical quantities and normalization constants in the MHD and PIC algorithms. For instance,
velocities in the MHD algorithm are normalized to the Alfvén speed vA, while ones in
the PIC algorithm are normalized to the speed of light c.

We show the unit-transformation of physical quantities calculated by the PIC algo-
rithm. First of all, we assume that normalization constant of magnetic field in the MHD
algorithm equals to that of the PIC algorithm and define that MHD unit length is α times
PIC unit length;

Bn=
mSP

e cωce

qSP
e

, (2.20)

L=α(c/ωce), (2.21)

where Bn is the normalization constant of magnetic field in the MHD algorithm and is ar-
bitrary, mSP

e is the electron super-particle mass, ωce is the electron gyrofrequency, qSP
e is the



1012 S. Usami et al. / Commun. Comput. Phys., 11 (2012), pp. 1006-1021

Table 1: Normalization constants in the MHD and PIC equations. Here, L, Bn, and ρn are arbitrary, c is the

speed of light, ωce is the electron gyrofrequency, vA is the Alfvén speed [vA = Bn(4πρn)−1/2], mSP
e is the

electron super-particle mass, and qSP
e is the electron super-particle charge.

normalization constant
Quantity MHD PIC
length L c/ωce

velocity vA c
time L/vA 1/ωce

magnetic field Bn mSP
e cωce/qSP

e

electric field vABn mSP
e cωce/qSP

e

mass - mSP
e

charge - qSP
e

mass density ρn mSP
e (c/ωce)−3

pressure ρnv2
A mSP

e c2(c/ωce)−3

current density Bn/(4πL) qSP
e c(c/ωce)−3

electron super-particle charge, and L is arbitrary length. The parameter α can be deter-
mined freely. Furthermore, in particle simulations, the ion-to-electron mass ratio mi/me

is given, and the ratio of the electron plasma frequency to the electron gyrofrequency
ωpe/ωce is also taken to be certain value, which is satisfied at the standard electron num-
ber density ne0. Therefore, we can transform PIC quantities in PIC unit system to those
in MHD unit system as follows.

BM−u=BP−u, (2.22)

EM−u=
ωpe

ωce

√

mi

me
EP−u, (2.23)

rM−u=
1

α
rP−u, (2.24)

uM−u=
ωpe

ωce

√

mi

me

meue,P−u+miui,P−u

me+mi
, (2.25)

tM−u=
1

α

ωce

ωpe

√

me

mi
tP−u, (2.26)

ρM−u=
1

ne0,P−u

ne,P−ume+ni,P−umi

mi
, (2.27)

PM−u=

(

ωpe

ωce

)2 1

ne0,P−u

ne,P−umev
2
Te,P−u+ni,P−umiv

2
Ti,P−u

me
, (2.28)

JM−u=α

(

ωpe

ωce

)2 1

ne0,P−u
JP−u, (2.29)

where r, ue, ui, t, vTe, and vTi denote the length, electron fluid velocity, ion fluid velocity,
time, electron thermal velocity, and ion thermal velocity, respectively and the subscripts
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M-u and P-u mean quantities normalized in MHD and PIC unit systems, respectively. Let
us note that the quantities on the left-hand side have MHD unit, however they are data
simulated by the PIC algorithm. In other words, quantities such as uM−u and ρM−u cor-
respond to QPIC in Eq. (2.17). As state above, after transformation from PIC to MHD unit
systems, we operate the relation (2.17) in order to give macroscopic physical quantities
in the interface domain.

On the other hand, for treating physics in the interface domain with the PIC algo-
rithm, we transform Qinterface in MHD unit system into Qinterface in PIC unit system. Fur-
thermore, for creating Maxwellian distribution in the PIC algorithm, fluid (averaged) ve-
locities, thermal velocities, and number densities of electrons and ions in PIC unit system
are needed. Thus, supposing electrons and ions have the same number density and tem-
perature each other, we transform the fluid velocity, mass density and pressure in MHD
unit system to the number densities, fluid (averaged) velocities, and thermal velocities of
electron and ion in PIC unit system, respectively as follows.

ne,P−u=ni,P−u=ne0,P−u
mi

me+mi
ρM−u, (2.30)

ue,P−u=
ωce

ωpe

√

me

mi
uM−u−

1

α

(

ωce

ωpe

)2 me+mi

mi

JM−u

ρM−u
, (2.31)

ui,P−u=
ωce

ωpe

√

me

mi
uM−u, (2.32)

v2
Te,P−u=

1

2

(

ωce

ωpe

)2 me+mi

mi

PM−u

ρM−u
, (2.33)

v2
Ti,P−u=

1

2

(

ωce

ωpe

)2 me+mi

mi

me

mi

PM−u

ρM−u
. (2.34)

The electron fluid velocity is determined by Eq. (2.31), since the difference between ion
and electron fluid velocities produces an electric current in the PIC algorithm.

2.5 Simulation time-flow

We show time-flow of our multi-hierarchy simulation in Fig. 2. We employ multi-time
step scheme, where the MHD and PIC algorithms have different time steps each other.
Large time steps are for the MHD algorithm, and small ones are for the PIC algorithm.
For advancing time from t1 to t2, the PIC algorithm receives interpolation values of MHD
data at t1 and at t2 from the MHD algorithm at every PIC time step. On the other hand,
at t1, the MHD algorithm gets PIC data averaged over several steps around t1.

The following procedure makes time advance from t1 to t2.

Step 1: Supposing that at t= t1, physical quantities of the MHD and PIC domains are given.

Step 2: The MHD algorithm sends MHD information at t1 to the PIC algorithm.
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t1 t2

time-average time-average

...

t MHD

t PIC

MHD time step

PIC time step

Figure 2: Time-flow of the multi-hierarchy simulation. The time steps for the MHD and PIC algorithms are
different each other.

Step 3: The PIC algorithm sees MHD data at t1 received in Step 2 as QMHD in Eq. (2.17) and
advances to t= t1+δt, where δt is time which corresponds to several time steps of the PIC
algorithm.

Step 4: PIC information averaged over the period from t1−δt to t1+δt is sent to the MHD algorithm.

Step 5: The MHD algorithm advances one time step and reaches t2, referring to PIC data obtained
in Step 4 as QPIC in Eq. (2.17).

Step 6: PIC information at t=t1+δt which were obtained in Step 3 is removed and the PIC algorithm
goes back to t= t1.

Step 7: The MHD algorithm sends MHD data at t1 and ones at t2 to the PIC algorithm.

Step 8: During t1 < t< t2, the PIC algorithm refers to MHD data interpolated between at t1 and at
t2 received in Step 7 as QMHD in Eq. (2.17) and advances to t2.

3 Simulation results

Now we perform multi-hierarchy simulation of plasma injection from the MHD to PIC
domains. Fig. 3 shows the schematic diagram of simulation box. This model is not
configured for simulations of magnetic reconnection, hence, the following initial con-
dition is given; the external magnetic field Bx0 is taken to be x direction and the plasma
mass density is uniform. The simulation box size is 4(c/ωce)×176(c/ωce)×1(c/ωce).
The simulation domain is divided as follows. MHD domain: 0< y/(c/ωce)< 40, 136<
y/(c/ωce)<176, PIC domain: 48<y/(c/ωce)<128, interface domain: 40<y/(c/ωce)<48,
128< y/(c/ωce)< 136. The system is periodic in x and z directions and is free in the y
direction.

For plasma injection, an external electric field Ezd(t) is applied at the entire outside
boundary [y/(c/ωce) = 0, 176] of the MHD domain. According to ExB drift, plasmas
flow inward in the y direction across the magnetic field. The electric field at the input
boundary Ezd(t) is programmed to evolve from zero to a constant value E0. Here, E0 is
0.06Bx0 at y/(c/ωce)=0 and −0.06Bx0 at y/(c/ωce)=176 in PIC unit system.
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Figure 3: Schematic diagram of multi-hierarchy simulation box. Plasmas are injected from the MHD to PIC
domains.
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Figure 4: Bird’s-eye view of plasma mass density ρ/ρ0 at ωcet=0, 400, 800, and 1200. Here, ρ0 is the initial
mass density.
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Simulation parameters are as follows. The ion-to-electron mass ration is mi/me=100,
and the ratio of the electron plasma frequency to the electron gyrofrequency is ωpe/ωce=
1.0. The grid spacings for the MHD and PIC algorithms are ∆rMHD/L=∆rPIC/(c/ωce)=
0.25. The parameter α in Eq. (2.21) is taken to be 1.0, thus ∆rMHD is equal to ∆rPIC. MHD
time step is ∆tMHD/(L/vA)= 0.1 and PIC time step is ∆tPICωce = 0.1. Thus, 10 PIC time
steps correspond to 1 MHD time step. As the interconnection function F, we use

F(y)=
1

2

(

1+cos

[

π
y−yMHD

yPIC−yMHD

])

, (3.1)

where yMHD and yPIC are the boundary positions of the interface domain on the MHD and
PIC sides, respectively [17]; yMHD/(c/ωce)=40, 136 and yPIC/(c/ωce)=48, 128. However,
if we operate Eq. (3.1) for the thermal velocity (pressure), a numerical error would pile
up. Then, we take

F(y)=

{

1, (for y 6=yPIC),

0, (for y=yPIC),
(3.2)

only for the thermal velocity. In the Section 4, we will discuss why a different intercon-
nection function is operated only for the thermal velocity (pressure).

Fig. 4 shows bird’s-eye view of the mass density in the (y,x) plane at the various
times. The mass density is normalized to the initial mass density ρ0. At the initial state
(ωcet=0), mass density is uniform. In the early phase (ωcet≃400), mass density increases
in the MHD domain. At ωcet = 800 plasmas smoothly and continuously flow from the
MHD to PIC domains through the interface domain, and at ωcet=1200, mass density in
the PIC domain reaches its maximum value ρ/ρ0 =1.91.

We can see that the mass density profile at ωcet=1200 forms plateau structure. Using
the momentum equation (2.2), the formation process of plateau structure is explained
as follows. The force applied to plasma is mainly the gradient of magnetic pressure.
Plasmas are carried inward by this force. In the early phase, there is pressure gradient
in the MHD domain. At ωcet ≃ 900, leading plasmas collide at the center of the PIC
domain. By that time, the electric field Ezd applied at the outside boundary of the MHD
domain has already reached to a constant value. Thus, at ωcet≃900 the magnetic pressure
becomes to be nearly uniform. Plasmas however continue to move inward due to their
inertia and accumulate at the center in the PIC domain. As a result, the magnetic pressure
in the central region becomes to be higher, and thus following plasmas can not enter the
central region and accumulate straight outside the high-pressure region so as to extend
the high-pressure region. Therefore, plasma mass density profiles form plateau structure
as shown in Fig. 4.

In these plasma injection phenomena, system spatial scale (∼60c/ωce) is much larger
than the ion gyroradius (=2.5c/ωce) and temporal scale (∼500/ωce) is also greater than
the ion gyroperiod (1/ωci = 100ωce). Therefore, these phenomena can be treated by the
MHD framework. Let us compare results of the multi-hierarchy simulation with those of
a MHD simulation, namely whole domain is calculated only with the MHD algorithm.
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Figure 5: Spatial profiles of the plasma mass density ρ at ωcet=0, 400, 800, 1200. Black and red lines represent
results of the multi-hierarchy simulation and MHD simulation, respectively.
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Figure 6: Spatial profiles of the magnetic field Bx for the same case as Fig. 5. Black and red lines represent
results of the multi-hierarchy simulation and MHD simulation, respectively.
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Table 2: Maximum of plasma mass density and width of its plateau for various |E0|. Data with the multi-
hierarchy and MHD simulations are listed for comparing.

maximum ρmax/ρ0 width of plateau hp/(c/ωce)
|E0|/Bx0 multi-hierarchy MHD multi-hierarchy MHD
0.02 1.35 1.32 65 64
0.04 1.63 1.63 55 55
0.05 1.77 1.77 56 58
0.06 1.91 1.91 57 60
0.08 2.17 2.16 59 66

Fig. 5 shows spatial profiles of the mass density averaged in the x and z directions at the
various times. Black and red lines denotes results of the multi-hierarchy simulation and
MHD simulation, respectively. At ωcet = 0, two lines are perfectly overlapped, so that
black line is not seen. We can see that profiles of multi-hierarchy and MHD simulations
are almost the same each other, though a profile in the multi-hierarchy simulation is a
little different from one by MHD simulation around the interface domain at ωcet= 800.
Especially in the PIC domain, both the profiles and maximum values of mass density by
the multi-hierarchy simulation fit well to those by the MHD simulation. Fig. 6 displays
spatial profiles of the magnetic field for the same case as Fig. 5. We can see that the mag-
netic field also evolve in the similar way to the mass density, and is smoothly interlocked
between the MHD and PIC domains.

In order to confirm the applicability of this scheme, we perform simulations in the
cases of |E0|/Bx0 = 0.02, 0.04, 0.05, 0.06, and 0.08. It is observed that in the all cases
plasmas smoothly and continuously move from the MHD and PIC domains, and con-
sequently at ωcet ≃ 1200 mass density profiles form plateau structure as shown in the
bottom right panel of Fig. 5 and reach their maximum values. We investigate the maxi-
mum values of mass density ρmax at ωcet=1200 and the width of mass density plateau hp.
Here the width of plateau is defined as the range where the mass density is larger than
0.9ρmax at ωcet=1200. The results are listed in Table 2. Both the maximum of mass density
and width of its plateau of the multi-hierarchy simulations are in agreement with those
of MHD simulations. Our multi-hierarchy model can mimic a MHD model for plasma
injection simulation. From these results, it is concluded that the interlocking method
between the MHD and PIC domains (algorithms) is appropriate.

4 Discussion

In multi-hierarchy simulations in Section 3, Eq. (3.1) was not used as the interconnection
function F only for thermal velocities. Why we have to use the function (3.2) comes
from the character of the PIC algorithm. In general, when the PIC algorithm computes
a thermal velocity by assembling particle velocities statistically, the value containing a
numerical error vT(1+δ) is obtained, where vT is the exact thermal velocity and δ is a
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Figure 7: Spatial profiles of the plasma pressure P for the same case as Fig. 5. Here, P0 is the initial pressure.
Black and red lines represent results of the multi-hierarchy simulation and MHD simulation, respectively.

numerical error factor. If the numerical error has some tendencies, namely an averaged
numerical error <δ> 6=0, the error piles up.

Now it is supposed that particles have been distributed according to a Maxwellian
distribution with a thermal velocity vT. Let us consider a process that the PIC algorithm
calculates a thermal velocity by assembling these particle velocities statistically, gener-
ates a Maxwellian distribution with a thermal velocity calculated, and again calculates a
thermal velocity. At first, the PIC algorithm obtains vT(1+δ) by assembling these parti-
cle velocities statistically, though the exact thermal velocity is vT . Consequently, particles
with a thermal velocity vT(1+δ) are produced. Next, the PIC algorithm assembles these
particle velocities statistically again, and would obtain vT(1+δ)2. In general, δ is quite
small. However, if the above process is done many times, the error would be accumu-
lated so as to grow to large value.

Actually, in the multi-hierarchy simulations, all particles in the interface domain are
removed and new particles satisfying Maxwellian distribution are put at every PIC time
step. In the case when the interconnection function is Eq. (3.1), the numerical error of
thermal velocity could grow, since a part of vT,PIC is included in vT,interface. Therefore, we
employ Eq. (3.2) as the interconnection function F only for thermal velocities.

In Fig. 7, we show profiles of the plasma pressure for the same case as Figs. 5 and 6.
The pressure is continuously and smoothly connected through the interface domain. Its
profiles of multi-hierarchy and MHD simulations fit fairly well each other, except there
is a little difference in the PIC domain at ωcet=1200.
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Let us note the error growth of thermal velocity would occur in the case that a sub-
routine generates (shifted) Maxwellian distribution has the similar tendency.

5 Summary

For studies on magnetic reconnection process, we develop a multi-hierarchy simulation
model based on the domain decomposition method. The simulation domain is divided
into the MHD, PIC, and interface domains, and the domains differ in algorithms. Dy-
namics in the MHD and PIC domains are expressed by magnetohydrodynamics (MHD)
and particle-in-cell (PIC) algorithms, respectively. The two domains are smoothly inter-
locked through the interface domain. The physics in the interface domain is calculated
by both the MHD and PIC algorithms. The MHD and PIC algorithms have different time
steps each other, however, the simulation time advances satisfying synchronism between
the MHD and PIC algorithms.

We have simulated the injection of plasma flow by the multi-hierarchy model, which
is not configured for magnetic reconnection, thus the initial magnetic field is uniform,
but not anti-parallel. Plasmas are injected smoothly and continuously from the MHD to
PIC domains via the interface domains. Also, comparing them with MHD simulations,
we have confirmed that profiles of plasma mass density with the multi-hierarchy simu-
lations fit those with MHD simulations well. This result clearly shows the adequacy for
the multi-hierarchy simulation of magnetic reconnection which has demonstrated by the
authors in recent year.
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