
Commun. Comput. Phys.
doi: 10.4208/cicp.030610.010411s

Vol. 11, No. 4, pp. 1103-1143
April 2012

Elements of Mathematical Foundations for

Numerical Approaches for Weakly Random

Homogenization Problems

A. Anantharaman and C. Le Bris∗
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Abstract. This work is a follow-up to our previous work [2]. It extends and com-
plements, both theoretically and experimentally, the results presented there. Under
consideration is the homogenization of a model of a weakly random heterogeneous
material. The material consists of a reference periodic material randomly perturbed
by another periodic material, so that its homogenized behavior is close to that of the
reference material. We consider laws for the random perturbations more general than
in [2]. We prove the validity of an asymptotic expansion in a certain class of settings.
We also extend the formal approach introduced in [2]. Our perturbative approach
shares common features with a defect-type theory of solid state physics. The compu-
tational efficiency of the approach is demonstrated.
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1 Introduction

Our purpose is to follow up on our previous study [2]. Let us recall, for consistency, that
we consider homogenization for the following elliptic problem





−div
((

Aper

( x

ǫ

)
+bη

( x

ǫ
,ω

)
Cper

( x

ǫ

))
∇uǫ

)
= f (x), in D⊂R

d,

uǫ =0, on ∂D,
(1.1)
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where the tensor Aper models a reference Z
d-periodic material which is randomly per-

turbed by the Z
d-periodic tensor Cper, the stochastic nature of the problem being en-

coded in the stationary ergodic scalar field bη (the latter getting small when η vanishes).
We have studied in [2] the case of a perturbation that has a Bernoulli law with parameter
η, meaning that bη is equal to 1 with probability η and 0 with probability 1−η. In the
present work, we address more general laws. The common setting is that all the per-
turbations we consider are, to some extent, rare events which, although rare, modify the
homogenized properties of the material. Our approach is a perturbative approach, and
consists in approximating the stochastic homogenization problem for

Aη(x,ω)=Aper(x)+bη (x,ω)Cper

using the periodic homogenization problem for Aper. In short, let us say that our main
contribution is to derive an expansion

A∗
η =A∗

per+ηĀ∗
1+η2 Ā∗

2+o(η2), (1.2)

where A∗
η and A∗

per are the homogenized tensors associated with Aη and Aper respectively,

and the first and second-order corrections Ā∗
1 and Ā∗

2 can be, loosely speaking, computed
in terms of the microscopic properties of Aper and Cper and the statistics of second order
of the random field bη . The formulation is made precise in [2] and in Sections 2 and 3
below.

Motivations behind setting (1.1), as well as a review of the mathematical literature on
similar issues and a comprehensive bibliography, can be found in [2]. We complement
our study of the perturbative approach introduced with [2] in two different directions.

In Section 2, we rigorously establish an asymptotic expansion of the homogenized
tensor in a mathematical setting where our input parameter (the field bη in (1.1)) enjoys
appropriate weak convergence properties, as η vanishes, in a reflexive Banach space,
namely a Lebesgue space L∞(D,Lp(Ω)) (with p>1). In such a setting, we are in position
to rigorously prove a first order asymptotic expansion (announced in [3] and precisely
stated in [3, Theorem 2.1] and Theorem 2.1 below) for the homogenization of Aη, using
simple functional analysis techniques very similar to those exposed in [4]. In our Corol-
laries 2.1 and 2.2, the expansion is pushed to second order under additional assumptions.

Our aim in Section 3 is to further extend our formal theory of [2]. Recall that this for-
mal theory, rather than manipulating the random field bη itself, consists in focusing on its
law. We indeed assume that the image measure (the law) corresponding to the perturba-
tion admits an expansion (see (3.3) below) with respect to η in the sense of distributions.
While [2] has only addressed the specific case of a Bernoulli law, we consider here more
general laws and proceed with the same formal derivations. These derivations lead to
a first-order correction Ā∗

1 in (1.2) obtained as the limit when N → ∞ of a sequence of

tensors A∗,N
1 computed on the supercell [−N/2,N/2]d . It is the purpose of Proposition

3.1 to prove the convergence of A∗,N
1 . The second-order term Ā∗

2 is likewise defined, in

Proposition 3.2, as the limit of a sequence of tensors A∗,N
2 when N → ∞. The proof of
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convergence is not given here for it involves long and technical computations. We refer
the reader to [1] for the details. As in [2], our approach in this Section exhibits close ties
with classical defect-type theories used in solid state physics.

We emphasize that, in sharp contrast to the exact stochastic homogenization of Aη, the
determination of the first and second-order terms in (1.2) relies on entirely deterministic
computations, albeit of very different kind, for both approaches of Sections 2 and 3.

Finally, a comprehensive series of numerical tests in Section 4 show, beyond those
contained in [2], that the two approaches exposed here are efficient and quite robust:
the computational workload induced by the perturbative approach is light compared to
the direct homogenization of [2], and expansion (1.2) proves to be accurate for not so
small perturbations.

We complement the text by a long appendix. The reader less interested in theoretical
issues can easily omit the reading of this appendix. Besides providing, in Section A.1
and for consistency, some theoretical results useful in the body of the text, the purpose
of this appendix is two-fold. We examine in details in Section A.2 the one-dimensional
setting, and we show that, expectedly, all our formal expansions can be made rigorous
through explicit computations. We next demonstrate, in Section A.3, that our two modes
of derivation coincide in a particular setting appropriate for both the theoretical results
of Section 2 and the formal results of Section 3. This final section therefore provides a
proof of our formal manipulations of Section 3, in a setting-we concede it-that is not the
setting the approach was designed to specifically address. Definite conclusions on the
theoretical validity of the approach developed in Section 3 are yet to be obtained, even
though applicability and efficiency are beyond doubt.

Throughout this paper, and unless otherwise mentioned, C denotes a constant that
depends at most on the ambient dimension d, and on the tensors Aper and Cper. We write
C(γ) when C depends on γ and possibly on d, Aper and Cper. The indices i and j denote
indices in J1,dK.

2 A model of a weakly randomly perturbed material

For consistency, we first recall the general setting of our related work [2].
Throughout this article (Ω,F ,P) denotes a probability space with P the probability

measure and ω∈Ω an event. We denote by E(X) the expectation of a random variable X
and Var(X) its variance.

We assume that the group (Zd,+) acts on Ω and denote by τk,k∈Z
d, the group action.

We also assume that this action is measure-preserving, that is,

∀A∈F , ∀k∈Z
d, P(A)=P(τkA),

and ergodic:

∀A∈F , (∀k∈Z
d, A=τkA) =⇒ (P(A)=0 or P(A)=1).
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We call F∈L1
loc(R

d,L1(Ω)) stationary if

∀k∈Z
d, F(x+k,ω)=F(x,τkω) almost everywhere in x∈R

d and ω∈Ω. (2.1)

Notice that if F is deterministic, the notion of stationarity used here reduces to Z
d-

periodicity, that is,

∀k∈Z
d, F(x+k)=F(x) almost everywhere in x∈R

d. (2.2)

We then consider the tensor field from R
d×Ω to R

d×d:

Aη(x,ω)=Aper(x)+bη(x,ω)Cper(x), (2.3)

where Aper and Cper are two deterministic Z
d-periodic tensor fields and bη a stationary

ergodic scalar field. The matrix Aper models the reference periodic material, perturbed by
Cper. This perturbation is random, thus the presence of bη. We refer the reader to [4] for a
more detailed presentation of the stationary ergodic setting in a similar weakly random
framework.

We make the following assumptions on the random field bη:

∃M>0, ∀η>0, ‖bη‖L∞(Q×Ω)≤M, (2.4a)

‖bη‖L∞(Q;L2(Ω))−→0
η→0+

, (2.4b)

where Q is the unit cell [−1/2,1/2]d .
Assumption (2.4b) encodes that the perturbation for small η is a rare event. Still, it is

able to significantly modify the local structure of the material when it happens, for we do
not require it to be small in L∞(Q×Ω) as η→0.

We additionally assume that there exist 0<α≤β such that for all ξ∈R
d, for almost all

x∈R
d and for all s∈ [−M,M],

α|ξ|2 ≤Aper(x)ξ ·ξ, α|ξ|2 ≤
(

Aper+sCper

)
(x)ξ ·ξ, (2.5a)

Aper(x)ξ|≤β|ξ|,
∣∣(Aper+sCper

)
(x)ξ

∣∣≤β|ξ|. (2.5b)

We can therefore use the classical stochastic homogenization results (see for instance [7]
for a comprehensive review or [2] for a concise presentation). The cell problems associ-
ated with (2.3) read





−div
(

Aη(∇w
η
i +ei)

)
=0, in R

d,

∇w
η
i stationary, E

(∫

Q
∇w

η
i

)
=0.

(2.6)

Problem (2.6) has a solution unique up to the addition of a random constant. The
function w

η
i is called the i-th corrector or cell solution.
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The homogenized tensor A∗
η is given by

∀i∈J1,dK, A∗
ηei=E

(∫

Q
Aη(∇w

η
i +ei)

)
. (2.7)

Throughout the rest of this paper we will denote by w0
i the i-th cell solution associated

with Aper, defined up to an additive constant by

{
−div

(
Aper(∇w0

i +ei)
)
=0, in Q,

w0
i Z

d-periodic.
(2.8)

The periodic homogenized tensor is then given by

∀i∈J1,dK, A∗
perei =

∫

Q
Aper(∇w0

i +ei). (2.9)

Due to the specific form of Aη, the following zero-order result can be easily proved.
The proof is actually the same as that in Lemma 1 of [2], which relies on the fact that
‖bη‖L∞(Q;L2(Ω)) converges to 0 as η tends to 0.

Lemma 2.1. When η→0, A∗
η →A∗

per.

Our goal is to find an asymptotic expansion for Aη with respect to η, and a first answer
is given by the following theorem announced as Theorem 1 in [3]:

Theorem 2.1 (Theorem 1, [3]). Assume that bη satisfies (2.4a) and (2.4b), and denote by mη =
‖bη‖L∞(Q;L2(Ω)). There exists a subsequence of η, still denoted η for the sake of simplicity, such

that bη/mη converges weakly-* in L∞(Q;L2(Ω)) to a limit field denoted by b̄0 when n→0. Then

• for all i∈J1,dK, the following expansion

∇w
η
i =∇w0

i +mη∇v0
i +o(mη) (2.10)

holds weakly in L2(Q;L2(Ω)), where w0
i is the solution to the i-th periodic cell problem and

v0
i is solution to





−div(Aper∇v0
i )=div

(
b̄0Cper(∇w0+ei)

)
, in R

d,

∇v0
i stationary, E

(∫

Q
∇v0

i

)
=0.

(2.11)

• A∗
η can be expanded up to first order as

A∗
η =A∗

per+mη Ã∗
1+o(mη), (2.12)

where

∀i∈J1,dK, Ã∗
1ei=

∫

Q
E(b̄0)Cper(∇w0

i +ei)+
∫

Q
Aper∇E(v0

i ). (2.13)
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Proof. We fix i∈J1,dK and define v
η
i =(w

η
i −w0

i )/mη . v
η
i is solution to





−div
(

Aη∇v
η
i

)
=div

( bη

mη
Cper

(
∇w0

i +ei

))
, in R

d,

∇v
η
i stationary, E

(∫

Q
∇v

η
i

)
=0.

(2.14)

Using an argument similar to that used in the proof of Lemma 1 in [2], we have

∀η>0, ‖∇v
η
i ‖L2(Q×Ω)≤

1

α
‖Cper

(
∇w0

i +ei

)
‖L2(Q),

where α is defined in (2.5a).
The sequence ∇v

η
i is bounded in L2(Q×Ω) and therefore, up to extraction, weakly

converges in L2(Q×Ω) to some limit which is necessarily a gradient and which we denote
∇v0

i . Since bη converges strongly to 0 in L2(Q×Ω), bη∇v
η
i converges to 0 in D′(Q×Ω).

It is then easy to pass to the limit η→0 in (2.14) and to deduce that v0
i is solution to





−div
(

Aper∇v0
i

)
=div

(
b̄0Cper(∇w0

i +ei)
)
, in R

d,

∇v0
i stationary, E

(∫

Q
∇v0

i

)
=0.

Thus (∇w
η
i −∇w0

i )/mη converges, up to extraction, weakly to ∇v0
i in L2(Q×Ω). This

amounts to say that we have the following first-order expansion:

∇w
η
i =∇w0

i +mη∇v0
i +o(mη), in L2(Q×Ω) weak.

Inserting this expansion in (2.7), we obtain

A∗
ηei =A∗

perei+mη

∫

Q
E(b̄0)Cper(∇w0

i +ei)+mη

∫

Q
Aper∇E(v0

i )+o(mη),

which concludes the proof.

Remark 2.1. Notice that taking the expectation of both sides of (2.11), E(v0
i ) is actually

the Z
d-periodic function that is the unique solution (up to an additive constant) to

{
−div

(
Aper∇E(v0

i )
)
=div

(
E(b̄0)Cper(∇w0

i +ei)
)
, in Q,

E(v0
i ) Z

d-periodic.
(2.15)

The computation of A∗
η up to the first order in mη only requires solving 2d deterministic

problems, namely (2.8) and (2.15), in the unit cell Q.

In fact, the situation is even more advantageous when Aper is a symmetric matrix, as
shown by our next remark.
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Remark 2.2. Defining the adjoint problems to the cell problems (2.8),

{
−div

(
AT

per(∇w̃0
i +ei)

)
=0, in Q,

w̃0
i Z

d-periodic,
(2.16)

where we have denoted by AT
per the transposed matrix of Aper, allows to write the first-

order correction (2.13) in a slightly different form. Indeed, multiplying (2.15) by w̃0
j and

integrating by parts, we obtain

∫

Q
Aper∇E(v0

i )·∇w̃0
j =−

∫

Q
E(b̄0)Cper

(
∇w0

i +ei

)
·∇w̃0

j .

Likewise, multiplying (2.16) by ∇E(v0
i ) and integrating by parts yields

∫

Q
Aper∇E(v0

i )·
(
∇w̃0

j +ej

)
=0.

Combining these equalities gives

∫

Q
Aper∇E(v0

i )·ej =
∫

Q
E(b̄0)Cper

(
∇w0

i +ei

)
·∇w̃0

j

and thus (2.13) may be equivalently phrased as

∀(i, j)∈J1,dK2, Ã∗
1ei ·ej =

∫

Q
E(b̄0)Cper(∇w0

i +ei)·(∇w̃0
j +ej). (2.17)

When Aper is symmetric, w̃0
j =w0

j , and solving the periodic cell problems (2.8) suffices to

determine A∗
η up to the first order in mη .

Pushing expansion (2.12) to second order requires more information on bη:

Corollary 2.1. Assume in addition to (2.4a) and (2.4b) that

bη =ηb̄0+η2r̄0+o(η2) weakly−∗ in L∞(Q;L2(Ω)). (2.18)

Then

• for all i∈J1,dK, the following expansion

∇w
η
i =∇w0

i +η∇v0
i +η2∇z0

i +o(η2) (2.19)

holds weakly in L2(Q;L2(Ω)), where z0
i is solution to





−div(Aper∇z0
i )=div

(
r̄0Cper(∇w0

i +ei)
)
+div

(
b̄0Cper∇v0

i

)
, in R

d,

∇z0
i stationary, E

(∫

Q
∇z0

i

)
=0.

(2.20)
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• A∗
η can be expanded up to second order as

A∗
η =A∗

per+ηÃ∗
1+η2 Ã∗

2+o(η2), (2.21)

where Ã∗
1 is defined by (2.13) and for all i∈J1,dK,

Ã∗
2ei =

∫

Q
E(r̄0)Cper(∇w0

i +ei)+η2
∫

Q
CperE(b̄0∇v0

i )+
∫

Q
Aper∇E(z0

i ), (2.22)

or equivalently, for all (i, j)∈J1,dK2,

Ã∗
2ei ·ej =

∫

Q
E(r̄0)Cper(∇w0

i +ei)·(∇w̃j
0+ej)+

∫

Q
CperE(b̄0∇v0

i )·(∇w̃j
0+ej). (2.23)

Proof. The proof follows the same pattern as that of Theorem 2.1. The computation of the
second order relies on the fact that (2.18) implies that bη/η converges strongly to b̄0 in
L∞(Q;L2(Ω)), whereas the convergence was weak in Theorem 2.1. Likewise, the expan-
sion of the cell solution, namely (2.19), implies that (∇w

η
i −∇w0

i )/η converges strongly
to ∇v0

i in L2(Q;L2(Ω)). We then obtain (2.21) and (2.22) by inserting (2.19) in (2.7) and
deduce (2.23) from (2.22) as in Remark 2.2.

The computation of A∗
η up to the order η2 is much more intricate than that up to

the order η, for it requires determining E(b̄0∇v0
i ). Computing the periodic deterministic

function E(v0
i ) solution to the simpler problem (2.15) is not sufficient in general. We have

to determine the stationary random field v0
i solution to (2.11) in R

d.

It turns out that in a particular, practically relevant setting, we may still avoid solving
the random problem (2.11). This setting presents the additional advantage to provide
insight on the influence of spatial correlation.

Corollary 2.2. Assume that bη is uniform in each cell of Z
d and writes

bη(x,ω)= ∑
k∈Zd

1Q+k(x)Bη(τkω), (2.24)

where Bη satisfies

∀η>0, ‖Bη‖L∞(Ω)≤M, (2.25a)

Bη =ηB̄0+η2R̄0+o(η2) weakly in L2(Ω). (2.25b)

Assume also that

∑
k∈Zd

∣∣cov(B̄0,B̄0(τk·))
∣∣<∞. (2.26)
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Then the second-order term (2.23) can be rewritten

Ã∗
2ei ·ej =E(R̄0)

∫

Q
Cper(∇w0

i +ei)·(∇w̃j
0+ej)+Var(B̄0)

∫

Q
Cper∇ti ·(∇w̃0

j +ej)

+(E(B̄0))
2
∫

Q
Cper∇si ·(∇w̃0

j +ej)

+ ∑
k∈Zd ,k 6=0

cov(B̄0,B̄0(τk·))
∫

Q
Cper∇ti(·−k)·(∇w̃0

j +ej), (2.27)

where ti is a L2
loc(R

d) function solving

{
−div(Aper∇ti)=div

(
Cper1Q(∇w0

i +ei)
)
, in R

d,

∇ti ∈L2(Rd),
(2.28)

and si solves
{

−div
(

Aper∇si

)
=div

(
Cper(∇w0

i +ei)
)
, in Q,

si Z
d-periodic.

(2.29)

Proof. We notice first that the specific form (2.24) of bη considered implies that b̄0 and r̄0

defined in (2.18) here write

b̄0(x,ω)= ∑
k∈Zd

1Q+k(x)B̄0(τkω), (2.30a)

r̄0(x,ω)= ∑
k∈Zd

1Q+k(x)R̄0(τkω). (2.30b)

The rest of the proof mainly consists in showing that in this particular setting, ∇v0
i and

the product b̄0∇v0
i can be written using the deterministic functions ti and si. The existence

of ti and its uniqueness up to an additive constant come from Lemmas 6 and 7 in [2].
We start by proving that the sum

∑
k∈Zd

(
B̄0(τkω)−E(B̄0)

)
∇ti(x−k) (2.31)

is a convergent series in L2(Q×Ω).
To this end, we compute the norm of the remainder of this series:

∥∥∥ ∑
|k|≥N

(
B̄0(τk·)−E(B̄0)

)
∇ti(·−k)

∥∥∥
2

L2(Q×Ω)

= ∑
|k|≥N

∑
|l|≥N

cov(B̄0(τk·),B̄0(τl·))
∫

Q
∇ti(·−k)∇ti(·−l)

≤1

2 ∑
|k|≥N

∑
|l|≥N

|cov(B̄0(τk·),B̄0(τl·))|
(
‖∇ti(·−k)‖2

L2(Q)+‖∇ti(·−l)‖2
L2(Q)

)
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≤ ∑
|k|≥N

∑
|l|≥N

|cov(B̄0(τk·),B̄0(τl ·))|‖∇ti(·−k)‖2
L2(Q)

≤ ∑
|k|≥N

(
‖∇ti(·−k)‖2

L2(Q) ∑
|l|≥N

|cov(B̄0(τk·),B̄0(τl·))|
)

≤ ∑
|k|≥N

(
‖∇ti(·−k)‖2

L2(Q) ∑
|l|≥N

|cov(B̄0,B̄0(τl−k·))|
)

≤ ∑
|k|≥N

‖∇ti(·−k)‖2
L2(Q) ∑

k∈Zd

|cov(B̄0,B̄0(τk·))|.

Using (2.26), we obtain

∥∥∥ ∑
|k|≥N

(
B̄0(τk·)−E(B̄0)

)
∇ti(·−k)

∥∥∥
2

L2(Q×Ω)
≤C ∑

|k|≥N

‖∇ti(·−k)‖2
L2(Q). (2.32)

Since ∇ti∈L2(Rd), the right-hand side of (2.32) converges to zero when N goes to infinity.
Consequently, (2.31) defines a vector T in L2(Q×Ω). It is clear from (2.31) that

∂Tp/∂xn = ∂Tn/∂xp for all (n,p)∈ J1,dK2. Thus T is a gradient, and there exists a func-
tion ṽi such that

∇ṽi =T+E(B̄0)∇si = ∑
k∈Zd

(
B̄0(τk·)−E(B̄0)

)
∇ti(x−k)+E(B̄0)∇si. (2.33)

Since si is Z
d-periodic, we deduce from (2.33) that

∇ṽi is stationary and E

(∫

Q
∇ṽi

)
=0. (2.34)

We then compute, using (2.28) and (2.29),

−div(Aper∇ṽi)= ∑
k∈Zd

−div(Aper∇ti(·−k))
(
B̄0(τk·)−E(B̄0)

)
−div(Aper∇si)E(B̄0)

= ∑
k∈Zd

div
(
Cper1Q+k

(
∇w0

i +ei

))(
B̄0(τk·)−E(B̄0)

)
+div

(
Cper

(
∇w0

i +ei

))
E(B̄0)

= ∑
k∈Zd

div
(
Cper1Q+kB̄0(τk·)

(
∇w0

i +ei

))
. (2.35)

Because of (2.30a), (2.35) implies

−div(Aper∇ṽi)=div
(
b̄0Cper(∇w0+ei)

)
. (2.36)

It follows from (2.34) and (2.36) that ṽi solves (2.11). As (2.11) has a solution unique up to
the addition of a random constant, we obtain

∇v0
i =∇ṽi = ∑

k∈Zd

(
B̄0(τk·)−E(B̄0)

)
∇ti(x−k)+E(B̄0)∇si. (2.37)
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We deduce from (2.30a) and (2.37) that

E(b̄0∇v0
i )= ∑

k∈Zd

∑
l∈Zd

1Q+lE(B̄0(τl ·)(B̄0(τk·)−E(B̄0)))∇ti(·−k)+(E(B̄0))
2 ∑

l∈Zd

1Q+l∇si

= ∑
k∈Zd

∑
l∈Zd

1Q+l cov(B̄0(τk·),B̄0(τl ·))∇ti(·−k)+(E(B̄0))
2 ∑

l∈Zd

1Q+l∇si,

and then that

1QE(b̄0∇v0
i )=Var(B̄0)∇ti+ ∑

k∈Zd ,k 6=0

cov(B̄0(·),B̄0(τk·))∇ti(·−k)+(E(B̄0))
2∇si. (2.38)

We conclude by inserting (2.30b) and (2.38) in (2.23).

Theorem 2.1 (and its two corollaries) are only of interest if E(b̄0) 6=0. Indeed, if E(b̄0)=
0 it only states that A∗

η =A∗
per+o(mη).

The prototypical case where Theorem 2.1 does not provide valuable information is
the case studied in [2]: bη(x,ω) = ∑k∈Zd1Q+k(x)Bk

η(ω), where the Bk
η are independent

identically distributed variables that have Bernoulli law with parameter η, i.e., are equal
to 1 with probability η and to 0 with probability 1−η. Then, using the notation of Theo-
rem 2.1, b2

η =bη , mη =
√

η and b̄0=0, and we only get A∗
η =A∗

per+o(
√

η) (while Appendix

6.1 of [2] shows that there exists a tensor Ā∗
1 such that A∗

η = A∗
per+ηĀ∗

1+o(η) at least in
dimension one). Omitting the dependence on the space variables since bη is uniform in

each cell of Z
d in this particular setting, a suitable functional space F on Ω to obtain a

non trivial weak limit of bη/‖bη‖F would be L1(Ω) for the norm of each Bk
η in L1(Ω) is

equal to η. The Dunford-Petti weak compactness criterion in that space is however not
satisfied by bη/‖bη‖L1(Ω). The reason is of course that bη/‖bη‖L1(Ω) converges in the set
of bounded measures to a Dirac mass. The techniques used in the proof of Theorem 2.1
and its two corollaries thus do not work in this setting.

The above considerations somehow suggest that an alternative viewpoint might be
useful. Because of (2.4b), the image measure dPx

η of bη(x,·) converges to a Dirac mass
in the sense of distributions. Our alternate approach, related to our work [2], consists in
working out an expansion of the image measure (or of the law), rather than an expansion
of the random variable. Like in [2], our manipulations are mostly formal. Some rigorous
foundations, in specific settings, are provided in the appendix.

3 A formal approach

3.1 A new assumption on the image measure

For simplicity, we assume as in Corollary 2.2 that bη is uniform in each cell of Z
d, and is

of the form

bη(x,ω)= ∑
k∈Zd

1Q+k(x)Bk
η(ω), (3.1)
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where the Bk
η are independent identically distributed random variables, the distribution

of which is given by a ”mother variable” Bη. For convenience we slightly modify (2.25a)
and require

∃ǫ>0, ∀η>0, ‖Bη‖L∞(Ω)≤M−ǫ, (3.2a)

‖Bη‖L2(Ω)−→0
η→0

. (3.2b)

Assumption (3.2a) is a technical assumption which implies in particular that for every
η>0, the image measure dPη of Bη is a distribution with compact support contained in the
open set [−M,M]. Of course the specific values of M and ǫ have no particular significance.
Throughout the sequel we denote by E ′([−M,M]) the space of distributions on R with
compact support in [−M,M], and by 〈T,ϕ〉 the action of a distribution T∈E ′([−M,M])
on a test function ϕ∈C∞([−M,M]) (basic elements of distribution theory can be found
for instance in [6]).

Because of Assumption (3.2b) and Lebesgue dominated convergence theorem, it is
clear that for every ϕ∈C∞([−M,M]),

E(ϕ(Bη)) −→
η→0+

ϕ(0).

Since E(ϕ(Bη))=〈dPη,ϕ〉 and ϕ(0)=〈δ0,ϕ〉 where δ0 is the Dirac mass at 0, dPη converges
to δ0 in E ′([−M,M]).

This leads us to assume that dPη satisfies

dPη =δ0+ηdP̄1+η2dP̄2+o(η2), in E ′([−M,M]), (3.3)

which is equivalent to

∀ϕ∈C∞([−M,M]), E(ϕ(Bη))= 〈dPη ,ϕ〉= ϕ(0)+η〈dP̄1,ϕ〉+η2〈dP̄2,ϕ〉+o(η2).

Of course dP̄1 and dP̄2 also have a compact support contained in [−M,M]: for every
test function ϕ with compact support in R\[−M+ǫ,M−ǫ], it holds for all η>0

〈dPη ,ϕ〉=E(ϕ(Bη))=0=η〈dP̄1,ϕ〉+η2〈dP̄2,ϕ〉+o(η2),

which yields 〈dP̄1,ϕ〉= 〈dP̄2,ϕ〉= 0. Then the supports of dP̄1 and dP̄2 are contained in
[−M+ǫ,M−ǫ]⊂ [−M,M].

Denoting by M′=M−ǫ/2, we deduce from classical distribution theory that there ex-
ist a constant C>0 and integers p1 and p2 (namely the orders of dP̄1 and dP̄2 respectively)
such that

∀ϕ∈C∞([−M,M]), |〈dP̄1,ϕ〉|≤C sup
s∈[−M′,M′]

sup
0≤n≤p1

∣∣∣ dn

dsn
ϕ(s)

∣∣∣, (3.4a)

∀ϕ∈C∞([−M,M]), |〈dP̄2,ϕ〉|≤C sup
x∈[−M′,M′]

sup
0≤n≤p2

∣∣∣ dn

dsn
ϕ(s)

∣∣∣. (3.4b)
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Let us now give some additional motivations underlying Assumption (3.3).
The first motivation is related to our work presented in [2] in which Bη has Bernoulli

law with parameter η, meaning that it is equal to 1 with probability η and 0 with proba-
bility 1−η. Then the image measure dPη is equal to δ0+η(δ1−δ0), so that it satisfies (3.3)
exactly at order 1 with dP̄1=δ1−δ0.

The second motivation comes from the following result, which shows that there is an
easy way, used in our numerical experiments, to build perturbations satisfying (3.3).

Lemma 3.1. Consider B a random variable in L3(Ω). Let K be a positive real, and define Bη =
ηB1|ηB|≤K. Then Bη, which obviously satisfies (3.2a) and (3.2b), also satisfies (3.3) with

dPη =δ0−ηE(B)δ′0+
η2

2
E(B2)δ′′0 +O(η3), in E ′(R). (3.5)

Proof. Let us denote by dP the image measure of B, and consider ϕ∈D(R) (i.e., ϕ∈C∞(R)
and has compact support). Then

〈dPη ,ϕ〉=
∫

|ηs|≤K
ϕ(ηs)dP+ϕ(0)

∫

|ηs|≥K
dP (3.6)

=
∫

R

ϕ(ηs)dP+
∫

|ηs|≥K
(ϕ(0)−ϕ(ηs))dP. (3.7)

Since B is in L3(Ω), ∫

|ηs|≥K
dP=O(η3),

and thus, ϕ being a bounded function,

〈dPη,ϕ〉=
∫

R

ϕ(ηs)dP+O(η3).

Then, since ϕ∈D(R), there exists C>0 such that

∀s∈R,
∣∣∣

ϕ(ηs)−ϕ(0)−ηsϕ′(0)− η2

2 s2 ϕ′′(0)

η2

∣∣∣≤Cη|s|3.

Again using B∈L3(Ω), this implies that

∫

R

( ϕ(ηs)−ϕ(0)−ηsϕ′(0)− η2

2 s2 ϕ′′(0)

η2

)
dP−→0

η→0
,

which is just a rewriting of (3.5) since

∫
dP=1,

∫
sdP=E(B) and

∫
s2dP=E(B2).

So, the lemma is proved.
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Before exposing our approach in this new setting, we prove the following elementary
result which we will often use in the sequel:

Lemma 3.2. It holds 〈dP̄1,1〉=0 and 〈dP̄2,1〉=0.

Proof. It holds on the one hand 〈dPη,1〉=1 since dPη is a probability measure, and on the
other hand

〈dPη ,1〉=〈δ0,1〉+η〈dP̄1,1〉+η2〈dP̄2,1〉+o(η2)

=1+η〈dP̄1,1〉+η2〈dP̄2,1〉+o(η2),

so that the conclusion follows.

3.2 An ergodic approximation of the homogenized tensor

Let us consider a specific realization ω̃ ∈ Ω of Aη in IN = [−N/2,N/2]d , N being for
simplicity an odd integer, and solve the following ”supercell” problem:

{
−div

(
Aη(x,ω̃)(∇w

η,N,ω̃
i +ei)

)
=0, in IN ,

w
η,N,ω̃
i (NZ)d-periodic.

(3.8)

Then we have

∀i∈J1,dK, A∗
ηei= lim

N→+∞

1

Nd
E

(∫

IN

Aη(x,ω)(∇w
η,N,ω
i (x)+ei)

)
dx. (3.9)

The proof of (3.9) is given in [2]. We only outline it here for convenience. We know
from Theorem 1 in [5] that

1

Nd

∫

IN

Aη(x,ω̃)(∇w
η,N,ω̃
i (x)+ei)dx converges to A∗

ηei almost surely in ω̃∈Ω. (3.10)

Since (Nd)−1
∫

IN
Aη(x,ω̃)(∇w

η,N,ω̃
i (x)+ei)dx is the periodic homogenization of Aη(x,ω̃)

on IN , it is also well known that for all (i, j)∈J1,dK2,

1

Nd

(∫

IN

A−1
η (x,ω̃)dx

)−1
ei ·ej ≤

1

Nd

∫

IN

Aη(x,ω̃)
(
∇w

η,N,ω̃
i (x)+ei

)
·ejdx

≤ 1

Nd

(∫

IN

Aη(x,ω̃)dx
)

ei ·ej, (3.11)

so that for all N∈2N+1, for all η>0 and for almost all ω̃∈Ω,

∣∣∣ 1

Nd

∫

IN

Aη(x,ω̃)(∇w
η,N,ω̃
i (x)+ei)·ejdx

∣∣∣≤β, (3.12)

where β is defined by (2.5b). Using (3.12) and the Lebesgue dominated convergence
theorem, we can take the expectation in (3.10) and get (3.9).
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Remark 3.1. The same result holds for homogeneous Dirichlet and Neumann bound-

ary conditions instead of periodic conditions in the definition of w
η,N,ω̃
i (see [5] for more

details).

For convenience, we label the unit cells of IN from 1 to Nd. The k-th cell is denoted by
Qk, for 1≤ k≤Nd. A given realization Aη(x,ω̃) can then be rewritten

Aη(x,ω̃)=Aper(x)+
Nd

∑
k=1

1Qk
(x)skCper(x),

with sk = Bk
η(ω̃) for all k∈ J1,NdK. The Bk

η(ω̃) being independent random variables, the

joint probability of the Nd-uplet (s1,··· ,sNd) is simply the product ∏
Nd

k=1dPη(sk).

Remark 3.2. The approach exposed in the sequel works also, with minor changes, for
random variables which are not independent but correlated with a finite length of corre-
lation. We present it in the independent setting for simplicity.

We now define

As1,···,s
Nd =Aper+

Nd

∑
k=1

1Qk
skCper for (s1,··· ,sNd)∈ [−M,M]N

d
.

We denote by w
s1,···,s

Nd

i the solution of the i-th cell problem for the periodic homogeniza-
tion of As1,···,s

Nd on IN , that is

{
−div

(
As1,···,s

Nd (∇w
s1,···,s

Nd

i +ei)
)
=0, in IN,

w
s1,···,s

Nd

i (NZ)d-periodic.
(3.13)

Then, defining

A∗,N
η ei =

1

Nd
E

(∫

IN

Aη(x,ω)(∇w
η,N,ω
i (x)+ei)

)
dx, (3.14)

we have

A∗,N
η ei =

1

Nd

∫

RNd

(∫

IN

As1,···,s
Nd (∇w

s1,···,s
Nd

i +ei)
) Nd

∏
k=1

dPη(sk). (3.15)

It is proved in Lemma A.1 of the Appendix that ∇w
s1,···,s

Nd

i is a C∞ function of (s1,··· ,sNd)

in [−M,M]N
d
. Thus, since dP̄1 and dP̄2 have compact support in [−M,M] (as well as δ0 of

course), we can make these distributions act on As1,···,s
Nd and ∇w

s1,···,s
Nd

i as functions of
(s1,··· ,sNd).
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It follows from (3.3) that

Nd

∏
k=1

dPη(sk)=
Nd

∏
k=1

δ0(sk)+η
Nd

∑
l=1

dP̄1(sl)
Nd

∏
k=1,k 6=l

δ0(sk)+
η2

2

Nd

∑
l=1

Nd

∑
m=1

dP̄1(sl)dP̄1(sm)
Nd

∏
k=1,k 6={l,m}

δ0(sk)

+η2
Nd

∑
l=1

dP̄2(sl)
Nd

∏
k=1,k 6=l

δ0(sk)+oN(η
2), in E ′([−M,M]N

d
). (3.16)

We stress that the remainder oN(η
2) in (3.16) depends on N, hence the notation.

Moreover the products (3.16) are to be understood as tensorized products: we work

in E ′([−M,M])⊗1E ′([−M,M])⊗2 ···⊗Nd−1E ′([−M,M])⊂E ′([−M,M]N
d
).

Inserting (3.16) in (3.15), we obtain the following second-order expansion

A∗,N
η =A∗,N

0 +ηA∗,N
1 +η2A∗,N

2 +oN(η
2). (3.17)

Before making the first three orders in (3.17) precise, note that (3.9), (3.14) and (3.17) imply

A∗
η = lim

N→∞

(
A∗,N

0 +ηA∗,N
1 +η2 A∗,N

2 +oN(η
2)
)
. (3.18)

In the sequel we exchange in (3.18) the limit in N and the series in η in order to guess a
second-order expansion of A∗

η depending only on η. Since we are not able to justify this
permutation, our approach is formal.

We now detail the first three orders in (3.17).
First, we notice that for i∈J1,dK,

A∗,N
0 ei =

1

Nd

〈 Nd

∏
k=1

δ0(sk),
∫

IN

As1,···,s
Nd (∇w

s1,···,s
Nd

i +ei)
〉

=
1

Nd

∫

IN

A0,···,0(∇w0,···,0
i +ei)

=
1

Nd

∫

IN

Aper

(
∇w0

i +ei

)

=A∗
perei,

which obviously gives the zero-order term expected for A∗
η. Then

A∗,N
1 ei=

1

Nd

Nd

∑
l=1

〈
dP̄1(sl)

Nd

∏
k=1,k 6=l

δ0(sk),
∫

IN

As1,···,s
Nd (∇w

s1,···,s
Nd

i +ei)
〉

. (3.19)

It is easy to see that, by (NZ)d-periodicity of w
s1,···,s

Nd

i ,

〈
dP̄1(sl)

Nd

∏
k=1,k 6=l

δ0(sk),
∫

IN

As1,···,s
Nd (∇w

s1,···,s
Nd

i +ei)
〉
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does not depend on l. The expression (3.19) can then be rewritten

A∗,N
1 ei =

〈
dP̄1(s),

∫

IN

As,0···,0(∇ws,0,···,0
i +ei)

〉
. (3.20)

We change the notations for convenience, and define, for s∈ [−M,M],

As,0
1 =As,0···,0=Aper+s1QCper, (3.21)

and w1,s,0,N
i =ws,0,···,0

i solution to

{
−div

(
As,0

1 (∇w1,s,0,N
i +ei)

)
=0, in IN,

w1,s,0,N
i (NZ)d-periodic.

(3.22)

The matrix As,0
1 corresponds to the periodic material with a defect of amplitude s located

in Q (i.e., at a position 0∈Z
d in IN), and w1,s,0,N

i is the i-th cell solution for the periodic

homogenization of As,0
1 in IN . Since w1,s,0,N

i = ws,0,···,0
i , it is of course a C∞ function of

s∈ [−M,M].
With these notations, we find that

A∗,N
1 ei=

〈
dP̄1(s),

∫

IN

As,0
1 (∇w1,s,0,N

i +ei)
〉

. (3.23)

For the second-order term, we first define the set

TN =
{

k∈Z
d,Q+k⊂ IN

}
= J−N−1

2
,
N−1

2
K

d

. (3.24)

The cardinal of TN is of course Nd and
⋃

k∈TN
{Q+k}= IN .

For (s,t)∈ [−M,M]2 and k∈TN , we define

As,t,0,k
2 =Aper+s1QCper+t1Q+kCper, (3.25)

and w2,s,t,0,k,N
i solution to

{
−div

(
As,t,0,k

2 (∇w2,s,t,0,k,N
i +ei)

)
=0, in IN ,

w2,s,t,0,k,N
i (NZ)d-periodic.

(3.26)

The matrix As,t,0,k
2 corresponds to the periodic material with two defects of amplitude

s and t located in Q and Q+k (i.e., at positions 0∈Z
d and k∈Z

d in IN) respectively. The

function w2,s,t,0,k,N
i is the i-th cell solution for the periodic homogenization of As,t,0,k

2 in IN .
It is a C∞ function of (s,t)∈ [−M,M]2.
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Figure 1: From left to right: zero defect, one defect and two defects.

Then computations similar to that presented for the first order yield

A∗,N
2 ei=

1

2 ∑
k∈TN ,k 6=0

〈
dP̄1(s)dP̄1(t),

∫

IN

As,t,0,k
2 (∇w2,s,t,0,k,N

i +ei)
〉

+
〈

dP̄2(s),
∫

IN

As,0
1 (∇w1,s,0,N

i +ei)
〉

. (3.27)

A setting with zero, one and two defects is shown in Fig. 1 in the two-dimensional case
of a reference material Aper consisting of a periodic lattice of circular inclusions.

Remark 3.3. It is illustrative to consider the particular case where the random variable
Bη has a Bernoulli law. This is the case treated in [2]. Then, expansion (3.3) holds exactly
with dP̄1 = δ1−δ0. The distribution dP̄2 and all other terms of higher order identically
vanish. The expressions (3.23) and (3.27) then coincide with (3.17) and (3.18) in [2].

In the next section we prove that A∗,N
1 converges to a finite limit when N →∞. The

case of the second-order term A∗,N
2 , which is also shown to converge, is discussed in

Section 3.4.

3.3 Convergence of the first-order term

We study here the convergence as N goes to infinity of A∗,N
1 defined by (3.23).

Proposition 3.1. The sequence A∗,N
1 converges in R

d×d to a finite limit Ā∗
1 when N→∞.

Proof. We fix (i, j)∈J1,dK2 and study the convergence of A∗,N
1 ei ·ej.

Using (3.22) and the adjoint problems defined by (2.16), we first obtain, for all s ∈
[−M,M],

∫

IN

As,0
1 (∇w1,s,0,N

i +ei)·ej =
∫

IN

As,0
1 (∇w1,s,0,N

i +ei)·(ej+∇w̃0
j ).
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Then, letting the distribution dP̄1 act on the left and right-hand sides, and using (3.23),
we find that

A∗,N
1 ei ·ej =

〈
dP̄1(s),

∫

IN

As,0
1 (∇w1,s,0,N

i +ei)·(ej+∇w̃0
j )
〉

. (3.28)

Because of the definition of As,0
1 ,

∫

IN

As,0
1 (∇w1,s,0,N

i +ei)·(ej+∇w̃0
j )

=
∫

IN

Aper(∇w1,s,0,N
i +ei)·(ej+∇w̃0

j )+
∫

Q
sCper(∇w1,s,0,N

i +ei)·(ej+∇w̃0
j ). (3.29)

Next, using (2.16),

∫

IN

Aper(∇w1,s,0,N
i +ei)·(ej+∇w̃0

j )=
∫

IN

(∇w1,s,0,N
i +ei)·AT

per(ej+∇w̃0
j )

=
∫

IN

ei ·AT
per(ej+∇w̃0

j ). (3.30)

We know from Lemma 3.2 that 〈dP̄1,1〉=0. Thus

〈
dP̄1(s),

∫

IN

ei ·AT
per(ej+∇w̃0

j )
〉
=0. (3.31)

Collecting (3.28), (3.29), (3.30) and (3.31), we get

A∗,N
1 ei ·ej =

〈
dP̄1(s),

∫

Q
sCper(∇w1,s,0,N

i +ei)·(ej+∇w̃0
j )
〉

. (3.32)

We now define

q1,s,0,N
i =w1,s,0,N

i −w0
i . (3.33)

q1,s,0,N
i solves

{
−div

(
As,0

1 ∇q1,s,0,N
i

)
=div(s1QCper(∇w0

i +ei)), in IN ,

q1,s,0,N
i (NZ)d-periodic.

(3.34)

Using (3.33) in (3.32), we rewrite

A∗,N
1 ei ·ej =

〈
sdP̄1(s),

∫

Q
Cper(∇w0

i +ei)·(ej+∇w̃0
j )
〉

+
〈

dP̄1(s),
∫

Q
sCper(∇q1,s,0,N

i +ei)·(ej+∇w̃0
j )
〉

. (3.35)
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The rest of the proof consists in showing that

〈
dP̄1(s),

∫

Q
sCper(∇q1,s,0,N

i +ei)·(ej+∇w̃0
j )
〉

,

which is of course equal to

〈
sdP̄1(s),

∫

Q
Cper(∇q1,s,0,N

i +ei)·(ej+∇w̃0
j )
〉

converges to a finite limit when N→∞.
More precisely, defining

∀s∈ [−M,M], ∀N∈2N+1, f N(s)=
∫

Q
Cper(∇q1,s,0,N

i +ei)·(ej+∇w̃0
j ),

we will prove that the sequence f N and its derivatives converge uniformly, when N goes
to infinity, to a limit function f ∞ and its derivatives.

Applying Lemma A.2 of the appendix to (3.34), we obtain that for all s ∈ [−M,M],

∇q1,s,0,N
i converges in L2(Q), when N→∞, to ∇q1,s,0,∞

i , where q1,s,0,∞
i is a L2

loc(R
d) function

solving

{
−div

(
As,0

1 ∇q1,s,0,∞
i

)
=div(s1QCper(∇w0

i +ei)), in R
d,

∇q1,s,0,∞
i ∈L2(Rd).

(3.36)

Moreover, arguing as in the proof of Lemma A.2 (given in our previous work [2]), it

is easy to see that for all k ∈ N and all s ∈ [−M,M], ∇∂k
s q1,s,0,N

i converges in L2(Q) to

∇∂k
s q1,s,0,∞

i .
We then define f ∞ by

∀s∈ [−M,M], f ∞(s)=
∫

Q
Cper(∇q1,s,0,∞

i +ei)·(ej+∇w̃0
j ).

Because of (A.6a) and (A.6b) in Lemma A.3 of the appendix, and using a classical result
of differentiation under the integral sign, it is clear that

∀k∈N, ∀s∈ [−M,M],
dk

dsk
f N(s)=

∫

Q
Cper(∇∂k

s q1,s,0,N
i +ei)·(ej+∇w̃0

j ),

and

∀k∈N, ∀s∈ [−M,M],
dk

dsk
f ∞(s)=

∫

Q
Cper(∇∂k

s q1,s,0,∞
i +ei)·(ej+∇w̃0

j ).

The convergence of ∇∂k
s q1,s,0,N

i to ∇∂k
s q1,s,0,∞

i in L2(Q) for every k∈N thus yields

∀k∈N, ∀s∈ [−M,M], lim
N→+∞

dk

dsk
f N(s)=

dk

dsk
f ∞(s). (3.37)
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On the other hand, we deduce from Lemma A.4 that there exists a constant C(p1,M)
(recall that p1 is the order of dP̄1(s)) such that for all k∈J0,p1K,

∀(s,s′)∈ [−M,M]2, ∀N∈2N+1,
∣∣∣ dk

dsk
f N(s)− dk

dsk
f N(s′)

∣∣∣≤C(p1,M)|s−s′|. (3.38)

It is straightforward to see that (3.37) and (3.38) imply that

∀0≤ k≤ p1,
dk

dsk
f N converges uniformly to

dk

dsk
f ∞, in [−M,M]. (3.39)

It follows from (3.4a) and (3.39) that

〈sdP̄1(s), f N(s)〉→〈sdP̄1(s), f ∞(s)〉,

and then
〈

dP̄1(s),
∫

Q
sCper(∇q1,s,0,N

i +ei)·(ej+∇w̃0
j )
〉

−→
N→∞

〈
dP̄1(s),

∫

Q
sCper(∇q1,s,0,∞

i +ei)·(ej+∇w̃0
j )
〉

. (3.40)

Collecting (3.35) and (3.40), we conclude that A∗,N
1 converges to a limit tensor Ā∗

1 defined
by

∀(i, j)∈J1,dK2, Ā∗
1ei ·ej =

〈
sdP̄1(s),

∫

Q
Cper(∇w0

i +ei)·(ej+∇w̃0
j )
〉

+
〈

dP̄1(s),
∫

Q
sCper

(
∇q1,s,0,∞

i +ei

)
·(ej+∇w̃0

j )
〉

. (3.41)

Thus, the proof is completed.

3.4 Convergence of the second-order term

We state here the result concerning the second-order term A∗,N
2 defined by (3.27). The

proof being rather long and technical, we do not present it here for conciseness. We refer
the reader to [1] for the details.

Proposition 3.2. The sequence A∗,N
2 converges to a finite limit Ā∗

2 in R
d×d when N→∞.

4 Numerical experiments

The purpose of this section is to assess the numerical relevance of the approaches of Sec-
tions 2 and 3. To this end we build and homogenize stochastic composite materials using
laws that satisfy the assumptions of these sections. Our motivations are not strictly iden-
tical for the two approaches. In contrast to the first approach which relies on a rigorous
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proof, our second approach is formal and we thus need to demonstrate its correctness
experimentally (note that the tests performed in [2] in the Bernoulli case are already to be
considered as a component of the validation of the approach). We wish to check that the
expansions derived in Sections 2 and 3 provide an accurate and efficient approximation
to the direct stochastic computation. The limited computational facilities we have access
to impose that we restrict ourselves to the two-dimensional setting. We first explain our
general methodology, which is the same as that presented in [2], and then make precise
the specific settings.

4.1 Methodology

We mainly consider as in [2] a reference material Aper that consists of a constant back-
ground reinforced by a periodic lattice of circular inclusions, that is

Aper(x1,x2)=20× Id+100 ∑
k∈Z2

1B(k,0.3)(x1,x2)× Id,

where B(k,0.3) is the ball of center k and radius 1. Loosely speaking, the role of the
perturbation is to randomly eliminate some fibers:

Cper(x1,x2)=−100 ∑
k∈Z2

1B(k,0.3)(x1,x2)× Id.

We will also, in our last test, consider a laminate

Aper(x1,x2)=5+10 ∑
l∈Z

1l≤x1≤l+1(x1,x2),

with the perturbation yielding an error in the lamination direction:

Cper(x1,x2)=10 ∑
l∈Z

1l≤x2≤l+1(x1,x2)× Id−10 ∑
l∈Z

1l≤x1≤l+1(x1,x2)× Id.

For both materials (shown in Fig. 2), we have chosen the values of the coefficients in order
to have a high contrast between Aper and Aper+Cper and thus for the perturbation to have
an important impact on the microscopic structure. The specific value of these coefficients
has no other significance.

We will consider different perturbations bη, all of which satisfy (3.1) with the Bk
η inde-

pendent and identically distributed.

Our goal is to compare A∗
η with its approximation A∗

per+ηA∗,N
1 +η2A∗,N

2 . A major
computational difficulty is the Monte-Carlo computation of the ”exact” matrix A∗

η given

by formula (2.7). It ideally requires to solve the stochastic cell problems (2.6) on R
d.

To this end we first use ergodicity and formula (3.9), and actually compute, for a given

realization ω and a domain IN chosen here to be [0,N]2 for convenience, A∗,N
η (ω) defined

by

A∗,N
η (ω)ei =

1

Nd

∫

IN

Aη(x,ω)
(
∇w

η,N,ω
i (x)+ei

)
dx. (4.1)
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Figure 2: Left: a periodic lattice of circular inclusions. Right: a one-dimensional laminate.

In a second step, we take averages over the realizations ω.
For each ω, we use the finite element software FreeFem++† to solve the boundary

value problems (3.8) and compute the integrals (4.1). We work with standard P1 finite
elements on a triangular mesh such that there are 10 degrees of freedom on each edge of
the unit cell Q.

We define an approximate value A∗,N
η as the average of A∗,N

η (ω) over 40 realiza-
tions ω. Our numerical experiments indeed show that the number 40 is sufficiently large
for the convergence of the Monte-Carlo computation. We then let N grow from 5 to 80 by

steps of 5. We observe that A∗,N
η stabilizes at a fixed value around N = 80 and thus take

A∗,80
η as the reference value for A∗

η in our subsequent tests.
The next step is to compute the zero-order term A∗

per, and the first-order and second-
order deterministic corrections. Using the same mesh and finite elements as for our ref-
erence computation above, we compute A∗

per using (2.8) and (2.9). The computation of
the next orders depends on the setting:

• in the setting of Section 2, the first-order correction is given by (2.13) in Theorem 2.1
and is thus independent of N; since bη is of the form (2.24), we use formula (2.27)
in Corollary 2.2 for the second-order correction which depends on N through the
term ti defined on R

d by (2.28), and which has to be approximated on IN; we let N
grow from 5 to 80 by steps of 5;

• in the setting of Section 3, the corrections A∗,N
1 and A∗,N

2 are respectively given by

(3.23) and (3.27); we let N grow from 5 to 80 by steps of 5 for A∗,N
1 ; the compu-

tation of A∗,N
2 being far more expensive (there is not only an integral over IN but

also a sum over the N2 cells in (3.27)), we have to limit ourselves to N = 25 and
approximate the value for N larger than 25 by the value obtained for N=25.

We stress that there are three distinct sources of error in these computations:

†available at www.freefem.org.
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• the finite elements discretization error;

• the truncation error due to the replacement of R
d with IN , in the computation of the

stochastic cell problems (2.6) that are replaced with (3.8), as well as in the computa-
tion of the integrals (4.1);

• the stochastic error arising from the approximation of the expectation value by an
empirical mean.

Detailed comments on these various errors and the way we deal with them are pro-
vided in [2]. We just emphasize, in the setting of Section 3, that it is not our purpose to
prove through our tests that

A∗
η =A∗

per+ηĀ∗
1+η2Ā∗

2+o(η2)

with a o(η2) which would be independent of N, of the number of realizations and of the
size of the mesh. We only wish to demonstrate that the second-order expansion is an
approximation to A∗

η sufficiently good for all practical purposes. We will observe that

both A∗,N
1 and A∗,N

2 converge to their respective limits faster than A∗,N
η to A∗

η (which is
expected since the former quantities are deterministic and contain less information). We

will also observe that A∗
per+ηA∗,N

1 is closer to A∗
η than A∗

per and that the inclusion of the

second order improves the situation for A∗
per+ηA∗,N

1 +η2 A∗,N
2 is even closer.

To present our numerical results, we choose the first diagonal entry (1,1) of all the
matrices considered. Other coefficients in the matrices behave qualitatively similarly. We
illustrate a practical interval of confidence for our Monte-Carlo computation of A∗

η by

showing, for each N, the minimum and maximum values of A∗,N
η (ω) achieved over the

40 realizations ω.
We will use the following legend in the graphs:

• periodic: gives the value of the periodic homogenized tensor A∗
per;

• first-order: gives the value of the first-order expansion;

• second-order: gives the value of the second-order expansion;

• stochastic mean, minima and maxima: respectively give the values of A∗,N
η and the

extrema obtained in the computation of the empirical mean.

Finally, the results are given for various values of η which serve the purpose of testing
our approach in a diversity of situations, and in particular for perturbations that are ”not
so small”.

4.2 An example of setting for our theory in Section 2 (and 3)

Consider Bη =ηG10≤ηG≤1 where G is a normalized centered Gaussian random variable.
It is easy to check that

Bη =ηG10≤G≤+∞+o(η2), in L2(Ω),
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Figure 3: Inclusions – results for a Gaussian perturbation and η=0.1. Left: complete results. Right: close-up

on A∗,N
η and the first and second-order corrections.

Figure 4: Inclusions – results for a Gaussian perturbation and η=0.2. Left: complete results. Right: close-up

on A∗,N
η and the first and second-order corrections.

so that Corollary 2.2 of Section 2 applies. Alternatively, we can use Lemma 3.1, which
gives

dPη =δ0−η
1√
2

δ′0+
η2

4
δ′′0 +o(η2), in E ′(R),

to perform our formal approach. We verify in Section A.3 of the appendix that both
approaches yield the same results up to second order.

We show results for the lattice of inclusions and for η =0.1 and η=0.2 (Figs. 3 and 4
respectively).

The results are very satisfying for both values of η. The first-order correction, which
does not depend on N, enables to get substantially closer to A∗

η. Moreover, it is clear
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(especially from the close-ups) that the second-order correction A∗,N
2 converges very fast

(convergence is already reached at N=5), and in particular much faster than the stochas-

tic computation A∗,N
η . It also provides excellent accuracy.

4.3 A first example of setting for our formal approach of Section 3

Consider Rη a random variable having Bernoulli law with parameter η, and G a nor-
malized centered Gaussian random variable independent of Rη. We define the product
random variable

Bη =Rη×ηG1|ηG|≤1.

Then

E(ϕ(Bη))=E(ϕ(Rη×ηG1|ηG|≤1))

=ηE(ϕ(ηG1|ηG|≤1))+(1−η)ϕ(0)

=η(ϕ(0)+ηE(G)ϕ′(0)+
η2

2
ϕ′′(0)+o(η2))+(1−η)ϕ(0)

=ϕ(0)+
η3

2
ϕ′′(0)+o(η3).

This implies

dPη =δ0+
η3

2
δ
′′
0+o(η3), in E ′(R). (4.2)

In this case we only consider the first-order correction since the dominant order in (4.2)
is already tiny. We present the results in the case of the lattice of inclusions, for η = 0.2,
η=0.3 and η=0.5 (Figs. 5, 6, 7 respectively).

Once again, our approach converges rapidly and allows for an accurate approximate
value of A∗

η even for η as large as 0.5.

4.4 A second example of setting for our formal approach of Section 3

Consider Rη a random variable having Bernoulli law with parameter η, and U a uniform
variable on [0,1] independent of Rη. We define Bη =Rη−ηU. Then

E(ϕ(Bη))=E(ϕ(Rη−ηU))

=ηE(ϕ(1−ηU))+(1−η)E(ϕ(−ηU))

=η
(

ϕ(1)−ηE(U)ϕ′(1)+o(η)
)

+(1−η)
(

ϕ(0)−ηE(U)ϕ′(0)+
η2

2
E(U2)ϕ′′(0)+o(η2)

)

=ϕ(0)+η
(
−E(U)ϕ′(0)+ϕ(1)−ϕ(0)

)

+η2
(
−E(U)(ϕ′(1)−ϕ′(0))+

1

2
E(U2)ϕ′′(0)

)
+o(η2),
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Figure 5: Inclusions – results for perturbation (4.2) and η = 0.2. Left: complete results. Right: close-up on

A∗,N
η and the first-order correction.

Figure 6: Inclusions – results for perturbation (4.2) and η = 0.3. Left: complete results. Right: close-up on

A∗,N
η and the first-order correction.

Figure 7: Inclusions – results for perturbation (4.2) and η = 0.5. Left: complete results. (Right: close-up on

A∗,N
η and the first-order correction.
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Figure 8: Inclusions – results for perturbation (4.3) and η = 0.05. Left: complete results. Right: close-up on

A∗,N
η and the first and second-order corrections.

Figure 9: Inclusions – results for perturbation (4.3) and η = 0.1. Left: complete results. Right: close-up on

A∗,N
η and the first and second-order corrections.

so that

dPη =δ0+η
(
−E(U)δ′0+δ1−δ0

)

+η2
(
−E(U)(δ′1−δ′0)+

1

2
E(U2)δ′′(0)

)
+o(η2), in E ′(R). (4.3)

Notice that this complex case is a mixture of Sections 2 and 3. The first-order perturbation
is of course only the sum of the first-order perturbations for a Bernoulli law (Section 3
and [2]) and a uniform law (Section 2). The interaction of these laws at order 2, and
notably the δ′1 term, is much more involved and requires the computation of the cross

derivatives of w2,s,t,0,k,N
i with respect to s and t at s=0 and t=1.

We give the results in the case of the inclusions and for η = 0.05, η = 0.1 and η = 0.2
(Figs. 8, 9, 10, respectively).
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Figure 10: Inclusions – results for perturbation (4.3) and η= 0.2. Left: complete results. Right): close-up on

A∗,N
η and the first and second-order corrections.

Figure 11: Laminate – results for perturbation (4.3) and η= 0.4. Left: complete results. Right: close-up on

A∗,N
η and the first and second-order corrections.

For η=0.05 and η=0.1, the results display the same features as in our previous tests
and are very good. The case η = 0.2 is instructive: the second-order expansion signifi-
cantly departs from the ”exact” value provided by the direct stochastic computation. Our
interpretation is that, far from contradicting the validity of our expansion in the limit of
small η, it shows the limitations of the approach. The value η = 0.2 is too large for the
expansion to be accurate in the case of a lattice of inclusions with a high contrast between
the inclusions and the surrounding phase.

Interestingly, a value of η twice as large (0.4) provides a very accurate approximation
for another material, as shown by our final test performed on the laminate (Fig. 11).

Our approach has limitations and deteriorates, like any asymptotic approach, for
large values of η. The threshold is case dependent. The approach is however generi-
cally robust.
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Appendix

The objectives of this appendix are diverse. We first state some results used in Section 3.
Next we show that the approach formally derived in Section 3 is rigorous in dimension
one. Finally we prove that this approach is also rigorous, in general dimensions, in a
specific setting close to that of Theorem 2.1 and Corollary 2.2.

A.1 Some technical results

We state here some technical lemmas used in Section 3. Loosely speaking, these lemmas
all deal with the variations of the supercell correctors defined by (3.13), (3.22), and (3.26)
with respect to the amplitudes of the defects. For conciseness we refer to [1] for the
elementary proofs.

Lemma A.1. Let H̃1
per(IN) be the set of (NZ)d-periodic functions in H1

loc(R
d) with zero mean

on IN . The function

F : (s1,··· ,sNd)∈ [−M,M]N
d 7→ w̄

s1,···,s
Nd

i ∈ H̃1
per(IN),

where w̄
s1,···,s

Nd

i =w
s1,···,s

Nd

i −
∫

IN
w

s1,···,s
Nd

i and w
s1,···,s

Nd

i is defined by (3.13), is C∞.

Lemma A.2. Consider f ∈ L2(Q), and a tensor field A from R
d to R

d×d such that there exist
λ>0 and Λ>0 such that

∀ξ∈R
d, a.e in x∈R

d, λ|ξ|2 ≤A(x)ξ ·ξ and |A(x)ξ|≤Λ|ξ|.

Consider qN solution to

{
−div

(
A∇qN

)
=div(1Q f ), in IN ,

qN (NZ)d-periodic.
(A.4)

Then 1IN
∇qN converges in L2(Rd), when N goes to infinity, to ∇q∞, where q∞ is a L2

loc(R
d)

function solving

{
−div

(
A∇q∞

)
=div(1Q f ), in R

d,

∇q∞ ∈L2(Rd).
(A.5)

Lemma A.3. Consider q1,s,0,N
i and q1,s,0,∞

i solutions to (3.34) and (3.36) respectively and k∈N.
There exists a constant C(k,M), such that

∀s∈ [−M,M], ∀N∈2N+1, ‖∇∂k
s q1,s,0,N

i ‖L2(IN)≤C(k,M)‖∇w0
i +ei‖L2(Q), (A.6a)

∀s∈ [−M,M], ‖∇∂k
s q1,s,0,∞

i ‖L2(Rd)≤C(k,M)‖∇w0
i +ei‖L2(Q). (A.6b)
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The following result is an immediate consequence of Lemma A.3.

Lemma A.4. Consider q1,s,0,N
i and q1,s,0,∞

i solutions to (3.34) and (3.36) respectively. For every
k∈N, there exists a constant C(k,M) such that for all (s,s′)∈ [−M,M]2,

∀N∈2N+1, ‖∇∂k
s q1,s,0,N

i −∇∂k
s q1,s′,0,N

i ‖L2(IN)≤C(k,M)‖∇w0
i +ei‖L2(Q)|s−s′|, (A.7a)

‖∇∂k
s q1,s,0,∞

i −∇∂k
s q1,s′,0,∞

i ‖L2(Rd)≤C(k,M)‖∇w0
i +ei‖L2(Q)|s−s′|. (A.7b)

A.2 The one-dimensional case

We address here the one-dimensional context. All the computations are explicit, for the
settings of Sections 2 and 3. To stress the fact that we deal with scalar quantities, we
use lower-case letters for the tensors. Note also that in this section Q= [−1/2,1/2] and
IN =[−N/2,N/2].

A.2.1 An extension of Theorem 2.1

The following theorem extends the result of Theorem 2.1, stated in L∞(Q;L2(Ω)) to
L∞(Q;Lp(Ω)) for any p∈ [1,∞]:

Theorem A.1 (one-dimensional setting). Assume that d=1, that bη satisfies (2.4a) and

mη :=‖bη‖
L∞
(
[− 1

2 , 1
2 ];L

p(Ω)
)−→0

η→0
for some p>1.

There exists a subsequence of η, still denoted η for simplicity, such that bη/mη converges weakly-*

in L∞([− 1
2 , 1

2 ];L
p(Ω)) to a limit field denoted by b̄0 when η→0. Then

• the expansion

d

dx
wη =

d

dx
w0+mη

d

dx
v0+o(mη) (A.8)

holds weakly in L2([− 1
2 , 1

2 ];L
p(Ω)), where w0 is the periodic corrector and v0 solves





− d

dx
(aper

d

dx
v0)=

d

dx

(
b̄0cper

( d

dx
w0+1

))
, in R,

d

dx
v0 stationary, E

(∫ 1
2

− 1
2

d

dx
v0
)
=0.

(A.9)

• a∗η reads

a∗η = a∗per+mη

∫ 1
2

− 1
2

E(b̄0)cper

( d

dx
w0+1

)
+mη

∫ 1
2

− 1
2

aper
d

dx
E(v0)+o(mη).
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Proof. The periodic and stochastic correctors can be computed explicitly. They are respec-
tively given by

d

dx
w0=

(∫ 1
2

− 1
2

a−1
per

)−1
a−1

per−1 and
d

dx
wη =

(
E

(∫ 1
2

− 1
2

a−1
η

))−1
a−1

η −1.

Note that w0 is in W1,∞(− 1
2 , 1

2).
We define vη =(wη−w0)/mη . It solves





− d

dx

(
aη

d

dx
vη

)
=

d

dx

( bη

η
cper

( d

dx
w0+1

))
, in R,

d

dx
vη stationary, E

(∫ 1
2

− 1
2

d

dx
vη
)
=0.

(A.10)

We deduce from (A.10) that

aη
d

dx
vη =

bη

mη
cper

( d

dx
w0+1

)
+kη , (A.11)

where kη depends only on ω. Since kη is by construction stationary ergodic, it is constant,
and we compute from (A.10) and (A.11):

kη =− 1

mη

(
E

∫ 1
2

− 1
2

1

aη

)−1
×
(

E

∫ 1
2

− 1
2

bη

aη
cper

( d

dx
w0+1

))
.

Since w0 is in W1,∞(− 1
2 , 1

2), aη is coercive and cper is bounded, it holds

|kη |≤C
‖bη‖L1([− 1

2 , 1
2 ]×Ω)

mη
≤C

‖bη‖L1([− 1
2 , 1

2 ]×Ω)

‖bη‖L∞([− 1
2 , 1

2 ];L
p(Ω))

.

This implies that kη is a bounded function of η whatever p ≥ 1 and thus, using (A.11),

that dvη/dx is bounded in L2([− 1
2 , 1

2 ];L
p(Ω)) for all p≥ 1. As a result, for p> 1, dvη/dx

converges weakly and up to extraction in L2([− 1
2 , 1

2 ];L
p(Ω)) to a limit we denote dv0/dx.

The random field bη tends to 0 in L2([− 1
2 , 1

2 ];L
p(Ω)). Since it is bounded in L∞([− 1

2 , 1
2 ]×

Ω), it converges to 0 in L2([− 1
2 , 1

2 ];L
r(Ω)) for all r> p. By Hölder inequality it also con-

verges to 0 in L2([− 1
2 , 1

2 ];L
r(Ω)) for all 1<r<p. Thus it converges to 0 in L2([− 1

2 , 1
2 ];L

q(Ω))
where q= p/(p−1).

The space L2([− 1
2 , 1

2 ];L
q(Ω)) being the dual of L2([− 1

2 , 1
2 ];L

p(Ω)), we obtain that

bηcperdvη/dx tends to 0 in D′([− 1
2 , 1

2 ]×Ω). We can then take the limit η → 0 in (A.10)
and obtain that v0 is solution to (A.9).

We have thus proved that 1
mη

( d
dx wη− d

dx w0) converges, up to extraction, weakly to

dv0/dx in L2([− 1
2 , 1

2 ];L
p(Ω)), which is equivalent to (A.8).

The second assertion of Theorem A.1 is obtained by inserting (A.8) into the expression
(2.7) of a∗η .
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Note that the proof of Theorem A.1 depends crucially on the fact that we are able to
solve explicitly the cell problems.

Theorem A.1 allows for a better intuitive understanding of Theorem 2.1. In dimension
one, the homogenized coefficient is explicitly given by

a∗η =
(

E

∫ 1
2

− 1
2

1

aper+bηcper

)−1
,

which, when bη(x,ω)=∑k∈Z1[k,k+1](x)Bη(τkω), may be rewritten as the formal series

1

a∗η
=

∞

∑
k=0

(−1)k
E((Bη)

k)
∫ 1

2

− 1
2

( cper

aper

)k
a−1

per. (A.12)

Assume now that there exists p>1 such that ‖Bη‖Lp(Ω)→0 when η→0 and Bη/‖Bη‖Lp(Ω)

converges weakly in Lp(Ω) to some B̄0 with E(B̄0) 6=0. We have in particular

E(Bη)

‖Bη‖Lp(Ω)
→E(B̄0) 6=0,

which, since E(|Bη |p)→0, implies

E(|Bη |p)= o
η→0+

(
E(Bη)

)
. (A.13)

We now claim that, without loss of generality and up to an extraction in η, we may take
p=2 in (A.13). Indeed, if p<2, then since Bη is bounded in L∞(Ω), (A.13) implies

E(|Bη |2)= o
η→0+

(
E(Bη)

)
.

On the other hand, if p>2, we consider the normalized sequence Bη/‖Bη‖L2(Ω) in L2(Ω).

Up to extraction, it weakly converges to B̄2∈L2(Ω). Since

E(Bη)

‖Bη‖Lp(Ω))
=

E(Bη)

‖Bη‖L2(Ω)

‖Bη‖L2(Ω)

‖Bη‖Lp(Ω)
,

where the left hand side converges to E(B̄0) 6=0 and ‖Bη‖L2(Ω)/‖Bη‖Lp(Ω) is bounded by
1 by Hölder’s inequality,

E(B̄2)= lim
η→0

E(Bη)

‖Bη‖L2(Ω))
6=0

and (A.13) is satisfied with p=2.
We then take p = 2. Since E(|Bη |2) = oη→0+(E(Bη)) and Bη is bounded in L∞(Ω),

E(|Bη |k)= oη→0+(E(Bη)) for all k≥2.
This intuitively expresses that all orders higher than or equal to 2 are negligible as

compared to the first-order term in the series (A.12), and thus that a kind of ”separation
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of scales” is satisfied. This is of course formal since one has to check that the remainder
term consisting of the sum of all terms of order higher than or equal to 2 is o(E(Bη)), so
that

a∗η =
(∫ 1

2

− 1
2

1

aper

)−1
+
(∫ 1

2

− 1
2

1

aper

)−2(∫ 1
2

− 1
2

E(Bη)
cper

aper

)
+o

(
E(Bη)

)

=
(∫ 1

2

− 1
2

1

aper

)−1
+mη

(∫ 1
2

− 1
2

1

aper

)−2(∫ 1
2

− 1
2

E(B̄0)
cper

aper

)
+o

(
E(Bη)

)
.

But this is the purpose of the proofs of Theorems 2.1 and A.1, using another viewpoint,
to show this is indeed the case.

A.2.2 The setting of Section 3 in dimension one

We now prove that our approach of Section 3 is rigorous in dimension one.

Lemma A.5. In dimension d=1, it holds

a∗η = a∗per+ηā∗1+η2 ā∗2+o(η2),

where ā∗1 and ā∗2 are the limits as N→∞ of a∗,N
1 and a∗,N

2 defined generally by (3.23) and (3.27)
respectively.

Proof. Recall that in dimension one, a∗η is given by the simple explicit expression

a∗η =
(

E

∫ 1
2

− 1
2

1

aper+bηcper

)−1
=
〈

dPη(s),
∫ 1

2

− 1
2

1

aper+scper

〉−1
.

The proof thus consists in inserting expansion (3.3) in this explicit expression and identi-
fying successively the first three dominant orders.

Using (3.3), we write

(a∗η)
−1=

∫ 1
2

− 1
2

1

aper
+η

〈
dP̄1(s),

∫ 1
2

− 1
2

1

aper+scper

〉
+η2

〈
dP̄2(s),

∫ 1
2

− 1
2

1

aper+scper

〉
+o(η2)

=(a∗per)
−1

(
1+ηa∗per

〈
dP̄1(s),

∫ 1
2

− 1
2

1

aper+scper

〉
+η2a∗per

〈
dP̄2(s),

∫ 1
2

− 1
2

1

aper+scper

〉)
+o(η2).

This yields the expansion

a∗η = a∗per−η(a∗per)
2
〈

dP̄1(s),
∫ 1

2

− 1
2

1

aper+scper

〉
+η2(a∗per)

3
〈

dP̄1(s),
∫ 1

2

− 1
2

1

aper+scper

〉2

−η2(a∗per)
2
〈

dP̄2(s),
∫ 1

2

− 1
2

1

aper+scper

〉
+o(η2). (A.14)
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We now devote the rest of the proof to verifying that the coefficients of η and η2 in

(A.14) are indeed obtained as the limit as N →∞ of a∗,N
1 and a∗,N

2 defined generally by
(3.23) and (3.27) respectively, in this particular one-dimensional setting.

The function w1,s,0,N generally defined by (3.22) satisfies here





− d

dx

(
as,0

1

( d

dx
w1,s,0,N

i +1)
)
=0, in

[
− N

2
,
N

2

]
,

w1,s,0,N
i N-periodic.

(A.15)

We easily compute using (A.15):

as,0
1

( d

dx
w1,s,0,N+1

)
=N

(∫ N
2

− N
2

1

aper+s1[− 1
2 , 1

2 ]
cper

)−1

=N
(

N(a∗per)
−1− f (s)

)−1

=a∗per+
(a∗per)

2

N
f (s)+

(a∗per)
3

N2
f (s)2+o(N−2),

where

f (s)=
∫ 1

2

− 1
2

scper

aper(aper+scper)
.

Thus a∗,N
1 defined generally by (3.23) takes here the form

a∗,N
1 =

〈
dP̄1(s),

∫ N
2

− N
2

as,0
1

( d

dx
w1,s,0,N+1

)〉

=Na∗per

〈
dP̄1(s),1

〉
+(a∗per)

2
〈
dP̄1(s), f (s)

〉
+o(1).

We know from Lemma 3.2 that 〈dP̄1(s),1〉=0, whence

a∗,N
1 −→

N→∞
ā∗1 =(a∗per)

2
〈
dP̄1(s), f (s)

〉
. (A.16)

Likewise, we compute from (3.26), for k∈J−N−1
2 , N−1

2 K\{0},

as,t,0,k
2

( d

dx
w2,s,t,0,k,N+1

)
=N

(∫ N
2

− N
2

1

aper+s1[− 1
2 , 1

2 ]
cper+t1[k− 1

2 ,k+ 1
2 ]

cper

)−1

=N
(

N(a∗per)
−1−

∫ 1
2

− 1
2

scper

aper(aper+scper)
−
∫ 1

2

− 1
2

tcper

aper(aper+tcper)

)−1

=N
(

N(a∗per)
−1− f (s)− f (t)

)−1
.

Then

as,t,0,k
2

( d

dx
w2,s,t,0,k,N+1

)
= a∗per+

(a∗per)
2

N
( f (s)+ f (t))+

(a∗per)
3

N2
( f (s)+ f (t))2+o(N−2).
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Notice that this expression is independent of k (and so of the distance between the

two defects), so that a∗,N
2 defined by (3.27) here reads

a∗,N
2 =

N(N−1)

2

〈
dP̄1(s)dP̄1(t),a

∗
per+

(a∗per)
2

N
( f (s)+ f (t))+

(a∗per)
3

N2
( f (s)+ f (t))2

〉

+N
〈

dP̄2(s),a
∗
per+

(a∗per)
2

N
f (s)

〉
+o(1). (A.17)

Since we know from Lemma 3.2 that 〈dP̄1(s),1〉=0 and 〈dP̄2(s),1〉=0, (A.17) reduces to

a∗,N
2 =(a∗per)

3
〈
dP̄1(s), f (s)

〉2
+(a∗per)

2
〈
dP̄2(s), f (s)

〉
+o(1).

Thus

a∗,N
2 −→

N→∞
ā∗2 =(a∗per)

3
〈
dP̄1(s), f (s)

〉2
+(a∗per)

2
〈
dP̄2(s), f (s)

〉
. (A.18)

Finally, since

f (s)=
∫ 1

2

− 1
2

1

aper
−
∫ 1

2

− 1
2

1

aper+scper
and

〈
dP̄1(s),1

〉
=
〈
dP̄2(s),1

〉
=0,

we have

〈
dP̄1(s), f (s)

〉
=−

〈
dP̄1(s),

∫ 1
2

− 1
2

1

aper+scper

〉
, (A.19)

and

〈
dP̄2(s), f (s)

〉
=−

〈
dP̄2(s),

∫ 1
2

− 1
2

1

aper+scper

〉
. (A.20)

In view of (A.14), (A.16), (A.18), (A.19) and (A.20), we have proved

a∗η = a∗per+ηā∗1+η2 ā∗2+o(η2).

So, the proof is completed.

A.3 A proof of the approach of Section 3 in a specific setting

The purpose of this final section is to prove that the formal approach of Section 3 is rig-
orous in a setting related to that of Corollary 2.2.

More precisely, we assume that the random field bη satisfies the assumptions of Corol-
lary 2.2. These assumptions do not imply that the image measure dPη satisfies assump-
tion (3.3) which is at the heart of the approach of Section 3, so that we have to impose that
dPη additionally satisfies (3.3). The following preliminary result then gives the necessary
form of the expansion of the image measure dPη .
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Lemma A.6. Assume that bη satisfies

bη(x,ω)= ∑
k∈Zd

1Q+k(x)Bk
η(ω), (A.21)

where the Bk
η are i.i.d random variables, the distribution of which is given by a ”mother variable”

Bη satisfying

∀η>0, ‖Bη‖L∞(Ω)≤M, (A.22a)

Bη =ηB̄0+η2R̄0+o(η2) weakly in L2(Ω). (A.22b)

Assume further that the image measure dPη of Bη satisfies (3.3). Then

dPη =δ0−ηE(B̄0)δ
′
0+

η2

2
E(B̄2

0)δ
′′
0 −η2

E(R̄0)δ
′
0+o(η2), in E ′(R). (A.23)

Proof. Firstly, notice that Bη/η converges strongly to B̄0 in L2(Ω) because of (A.22). Now
consider ϕ∈D(R). We have on the one hand

E

(B2
η

η2
ϕ(Bη)

)
→E

(
B̄2

0

)
ϕ(0),

and on the other hand

E
(

B2
η ϕ(Bη)

)
=η〈s2dP̄1,ϕ〉+η2〈s2dP̄2,ϕ〉+o(η2).

Thus s2dP̄1=0 and s2dP̄2=E(B̄2
0)δ0 in D′(R). It is then well known that there exist γ1, κ1,

γ2, κ2 in R such that

dP̄1=γ1δ0+κ1δ′0 and dP̄2=γ2δ0+κ2δ′0+
E(B̄2

0)

2
δ′′0 .

Lemma 3.2 implies γ1=γ2=0. Then, we have

E(Bη)=ηE(B̄0)+η2
E(R̄0)+o(η2)

and also

E(Bη)=η〈sdP̄1,1〉+η2〈sdP̄2,1〉+o(η2).

Thus 〈sdP̄1,1〉=E(B̄0) and 〈sdP̄2,1〉=E(R̄0), from which we deduce κ1=−E(B̄0) and
κ2=−E(R̄0).

Theorem 2.1 and Corollary 2.2 rigorously yield the second-order expansion

A∗
η =A∗

per+ηÃ∗
1+η2 Ã∗

2+o(η2)
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with Ã∗
1 and Ã∗

2 respectively defined by (2.13) and (2.22).
On the other hand, using (A.23), Section 3 yields the formal expansion

A∗
η =A∗

per+ηĀ∗
1+η2 Ā∗

2+o(η2).

where Ā∗
1 is the limit of the sequence A∗,N

1 defined by (3.23) or equivalently by (3.28), and

Ā∗
2 the limit of the sequence A∗,N

2 defined by (3.27).

The rest of this section is devoted to verifying that Ā∗
1 coincides with Ã∗

1 and Ā∗
2

coincides with Ã∗
2 in the specific setting of Lemma A.6.

A.3.1 First-order term

Using (A.23), (3.28) reads

A∗,N
1 ei ·ej =−E(B̄0)

〈
δ′0(s),

∫

Q
sCper(∇w1,s,0,N

i +ei)·(ej+∇w̃0
j )
〉

,

and we compute

A∗,N
1 =E(B̄0)

∫

Q
Cper(∇w1,0,0,N

i +ei)·(ej+∇w̃0
j ).

Setting s=0 in (3.22), it is clear that w1,0,0,N
i is equal to the periodic corrector w0

i . Then

A∗,N
1 =E(B̄0)

∫

Q
Cper(∇w0

i +ei)·(ej+∇w̃0
j ). (A.24)

Clearly A∗,N
1 does not depend on N and its limit is then

Ā∗
1 =E(B̄0)

∫

Q
Cper(∇w0

i +ei)·(ej+∇w̃0
j ). (A.25)

We recognize in the right-hand side of (A.25) the first-order coefficient in (2.17), which
we know from Remark 2.2 is equivalent to (2.13). Theorem 2.1 therefore shows that the
first-order expansion

A∗
η =A∗

per+ηĀ∗
1+o(η)

is correct with the values of the coefficients given by our formal approach of Section 3.
We now proceed similarly with the second-order coefficient.

A.3.2 Second-order term

Using the adjoint cell problems (2.16) in (3.27) as in the proof of Proposition 3.1, let us
first rewrite

A∗,N
2 ei ·ej = ∑

k∈TN ,k 6=0

〈
dP̄1(s)dP̄1(t),

∫

Q
sCper∇w2,s,t,0,k,N

i ·(ej+∇w̃0
j )
〉

+
〈

dP̄2(s),
∫

Q
sCper(∇w1,s,0,N

i +ei)·(ej+∇w̃0
j )
〉

. (A.26)
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Inserting (A.23) in (A.26), we start by focusing on

〈
dP̄2(s),

∫

Q
sCper(∇w1,s,0,N

i +ei)·(ej+∇w̃0
j )
〉

=
1

2
(E(B̄0))

2
〈

δ′′0 (s),
∫

Q
sCper(∇w1,s,0,N

i +ei)·(ej+∇w̃0
j )
〉

−E(R̄0)
〈

δ′0(s),
∫

Q
sCper(∇w1,s,0,N

i +ei)·(ej+∇w̃0
j )
〉

.

Denoting by ∂sw
1,0,0,N
i , the first derivative of w1,s,0,N

i evaluated at s=0, we compute

〈
dP̄2(s),

∫

Q
sCper(∇w1,s,0,N

i +ei)·(ej+∇w̃0
j )
〉

=E(B̄2
0)

∫

Q
Cper∇∂sw

1,0,0,N
i ·(∇w̃0

j +ej)+E(R̄0)
∫

Q
Cper(∇w1,0,0,N

i +ei)·(∇w̃0
j +ej)

=E(B̄2
0)

∫

Q
Cper∇∂sw

1,0,0,N
i ·(∇w̃0

j +ej)+E(R̄0)
∫

Q
Cper(∇w0

i +ei)·(∇w̃0
j +ej).

It follows from (3.22) that ∂sw1,0,0,N
i solves

{
−div(Aper∇∂sw

1,0,0,N
i )=div

(
1QCper(∇w0

i +ei)
)
, in IN ,

∂sw
1,0,0,N
i (NZ)d-periodic.

(A.27)

Applying Lemma A.2 to (A.27), we deduce that ∇∂sw
1,0,0,N
i converges in L2(Q), when

N→∞, to ∇ti defined by (2.28) in Corollary 2.2. Consequently,

〈
dP̄2(s),

∫

Q
sCper

(
∇w1,s,0,N

i +ei

)
·(ej+∇w̃0

j )
〉
−→
N→∞

E(B̄2
0)

∫

Q
Cper∇ti ·(∇w̃0

j +ej)

+E(R̄0)
∫

Q
Cper

(
∇w0

i +ei

)
·(∇w̃0

j +ej). (A.28)

Next, we address

∑
k∈TN ,k 6=0

〈
dP̄1(s)dP̄1(t),

∫

Q
sCper∇w2,s,t,0,k,N

i ·(ej+∇w̃0
j )
〉

=E(B̄0)
2 ∑

k∈TN ,k 6=0

〈
δ′0(s)δ

′
0(t),

∫

Q
sCper∇w2,s,t,0,k,N

i ·(ej+∇w̃0
j )
〉

.

Denoting by ∂tw
2,0,0,0,k,N
i the first derivative of w2,s,t,0,k,N

i with respect to t evaluated at
s= t=0, we have

∑
k∈TN ,k 6=0

〈
dP̄1(s)dP̄1(t),

∫

Q
sCper∇w2,s,t,0,k,N

i ·(ej+∇w̃0
j )
〉

=E(B̄0)
2 ∑

k∈TN ,k 6=0

∫

Q
Cper∇∂tw

2,0,0,0,k,N
i ·(ej+∇w̃0

j ). (A.29)
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It follows from (3.26) that ∂tw
2,0,0,0,k,N
i solves

{
−div(Aper∇∂tw

2,0,0,0,k,N
i )=div

(
1Q+kCper(∇w0

i +ei)
)
, in IN,

∂tw
2,0,0,0,k,N
i (NZ)d-periodic.

(A.30)

Defining dN
i =∑k∈TN

∂tw
2,0,0,0,k,N
i , it is easy to see that dN

i is a Z
d-periodic function that

solves
{

−div(Aper∇dN
i )=div

(
Cper(∇w0

i +ei)
)
, in Q,

dN
i Z

d-periodic.
(A.31)

Since problem (A.31) has a unique solution up to an additive constant, ∇dN
i =∇si where

si is defined by (2.29) in Corollary 2.2.

Finally, comparing (A.27) to (A.30) for k = 0, we find that ∇∂tw
2,0,0,0,0,N
i is equal to

∇∂sw
1,0,0,N
i and then also converges in L2(Q) to ∇ti when N→∞.

Then, starting from (A.29),

∑
k∈TN,k 6=0

〈
dP̄1(s)dP̄1(t),

∫

Q
sCper∇w2,s,t,0,k,N

i ·(ej+∇w̃0
j )
〉

=(E(B̄0))
2
∫

Q
Cper ∑

k∈TN

∇∂tw
2,0,0,0,k,N
i ·(ej+∇w̃0

j )−(E(B̄0))
2
∫

Q
Cper∇∂tw

2,0,0,0,0,N
i ·(ej+∇w̃0

j )

=(E(B̄0))
2
∫

Q
Cper∇si ·(ej+∇w̃0

j )−(E(B̄0))
2
∫

Q
Cper∇∂tw

2,0,0,0,0,N
i ·(ej+∇w̃0

j )

−→
N→∞

(E(B̄0))
2
∫

Q
Cper∇si ·(ej+∇w̃0

j )−(E(B̄0))
2
∫

Q
Cper∇ti ·(ej+∇w̃0

j ). (A.32)

It entails from (A.26), (A.28) and (A.32) that A∗,N
2 converges to a limit Ā∗

2 defined by

Ā∗
2ei ·ej =E(R̄0)

∫

Q
Cper(∇w0

i +ei)·(∇w̃0
j +ej)+Var(B̄0)

∫

Q
Cper∇ti ·(∇w̃0

j +ej)

+(E(B̄0))
2
∫

Q
∇si ·(ej+∇w̃0

j ).

Ā∗
2 is equal to the second-order term given by (2.27) in Corollary 2.2 since we deal with

independent random variables in each cell of Z
d. Thus the second-order expansion

A∗
η =A∗

per+ηĀ∗
1+η2Ā∗

2+o(η2)

derived from the formal approach of Section 3 is correct in this specific setting.
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