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Abstract. A new class of supersonic nonequilibrium flows is studied on the basis of
solving the Boltzmann and model kinetic equations with the aim to consider new non-
linear structures in open systems and to study anomalous transfer properties in relax-
ation zones. The Unified Flow Solver is applied for numerical simulations. Simple
gases and gases with inner degrees of freedom are considered. The experimental data
related to the influence of the so-called optical lattices on the supersonic molecular
beams are considered and numerical analysis of the nonequilibrium states obtained
on this basis is made. The nonuniform relaxation problem with these distributions
is simulated numerically and anomalous transport is confirmed. The conditions for
strong changes of the temperature in the anomalous transfer zones are discussed and
are realized in computations.

PACS: 05.20.Dd, 47.45.Ab, 51.10.+y

Key words: The Boltzmann equation, anomalous transport, relaxation zones.

1 Introduction

The thermodynamics of nonequilibrium processes is generally used to study macroscopic
transfer phenomena in gases and liquids. The classical transport equations are based on
the well-known Navier-Stokes formalism. From the kinetic point of view this formalism
is the limit case of the more general kinetic formalism, and if the Knudsen number is not
small then the ordinary macroscopic relationships can be invalid (the irreversible ther-
modynamics can be invalid in this case) and for adequate description it is necessary to
solve the Boltzmann equation or other kinetic equations. There are some physical effects
intrinsic to the kinetic processes: thermodiffusion, thermoforesis etc (see, e.g., [1]). But
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we will consider effects differing from these phenomena based on the gradients of some
quantities. In contrast to these processes the transport processes under consideration
are realized because of the dissipation in the boundary and this dissipation is caused by
the strong nonequilibrium. In these problems of the nonequilibrium supersonic nonuni-
form relaxation the boundary nonequilibrium distribution for the supersonic flow forms
the gradient of the distribution function (and consequently the macroscopic parameters)
downstream. Transport properties of monatomic one-component gases in the spatial
nonuniform relaxation zones have been subject to research in [2, 3]. The mixtures of sim-
ple gases and gases with inner degrees of freedom have been studied for these problems
in [4]. The anomalous (from the traditional viewpoint) irreversible transfer of momen-
tum and energy in the scale of the mean free path has been obtained. Namely, in 1D flow
the signs of the velocity gradient and the appropriate component of the nonequilibrium
stress tensor are the same as well as the signs of the temperature gradient and the heat
flux. The special method of expanding in the powers of a small parameter permits to
derive the closed form of the transport equations with the mentioned anomalous proper-
ties. It is important to note that for supersonic flows the known approach of expansion in
powers of inverse Mach numbers 1/M does not provide this effect which is due to taking
into account the differences of expansion for each molecular velocity.

Numerical results are obtained with the Unified Flow Solver (UFS) [5] for the Boltz-
mann equation and for some model kinetic equations (of the BGK-type) describing, in
particular, molecular (with inner energy) one-component and multi-component gases.
The approach applied in the present papers is the direct methods for solving the Boltz-
mann equation and model kinetic relaxation equations (details are given in [4]). We
can also notice the other approaches for solving kinetic equations. The most popular
approach is DSMC method which has been elaborated by Bird and the other authors
(see [6]). We developed the approach of the direct numerical solving the Boltzmann equa-
tion and from our point of view it provides reliable results for the problems under con-
sideration. This approach and the DSMC method possess advantages and disadvantages
in kinetic theory (see, e.g., in [2]). We can only mention the approximated approaches,
such as kinetic models with small numbers of discrete velocities (Broadwell etc). The
very popular Lattice Boltzmann Method (LBM) can be applied, strictly speaking, to slow
near equilibrium flows.

The formulation of the nonuniform relaxation problem for 2D case is similar to one
for the supersonic free jet but with nonequilibrium boundary conditions in the orifice.
The obtained anomalous terms induce the search for the non-traditional transport in nu-
merical calculations. In the present paper we pay the attention to the possibility of exper-
imental testing the effects. For this purpose the numerical simulation for nonequilibrium
distributions obtained after modelling the electrical forces of the optical lattice are per-
formed. For goal of the experimental physical measurement it is important to have large
changes of macroparameters in the zone of the anomalous transport. Calculations on the
basis of the Boltzmann equation with strong nonequilibrium boundary dissipation and
large changes of mentioned values are also performed.
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2 The main equations and formulation of the problem

We start from the Boltzmann kinetic equation which governs the advection and collisions
of particles in a rarefied gas and which is written in the form (without external force)

∂ f

∂t
+∇r(ξ f )= I( f , f ), (2.1)

where x is physical coordinate, ξ(ξx,ξy,ξz) is the vector of molecular velocity, the collision
integral (with the traditional notations):

I( f , f )=
∫

[

f (ξ′1) f (ξ′)− f (ξ) f (ξ1)
]

|g|bdbdεdξ1 =−ν f +G.

All macroscopic parameters are treated as appropriate moments of the distribution func-
tion, e.g., density, mean velocity, stress tensor components, pressure, nonequilibrium
stress tensor components, temperature, heat flux, nonequilibrium entropy and entropy
flux respectively are the following expressions:

n=
∫

f dξ, u=
1

n

∫

f ξdξ, Pij =
∫

cicj f dξ,

p=
1

3
(Pxx+Pyy+Pzz), pij =Pij−p, T=

1

3kn

∫

f |c|2dξ,

qi =
1

2

∫

ci|c|2 f dξ, S=−H=−
∫

ln f f dξ, S=−
∫

ξ ln f f dξ,

where the thermal velocity is c= ξ−u and indices i, j= x,y,z.

We present also other equations. The relaxation model kinetic equation [7] of BGK-
type is used. For example for mixtures the model by Andries et al. is as follows

∂ fi

∂t
+ξ ·∇r fi =νi(Fi

m− fi).

Here Fi
m is appropriate Maxwellian for i-th species. These relaxation models come back

to the model by Bhatnagar-Gross-Krook [8] which possesses essential physical proper-
ties, in particular the H-theorem that is important for the strong nonequilibrium kinetic
processes beyond near equilibrium and thermodynamical approximations.

For molecular gases we consider the so-called R-model, i.e., the model kinetic equa-
tion by Rykov (see, e.g., [9]), which describes rotational degrees of freedom of gases (for
many physically important situations with not very high temperature it is a correct as-
sumption). The so-called 3T model (see [10]) is also applied, which allows us to take into
account both rotational and vibrational degrees of freedom and which is easily general-
ized to the mixtures of molecular gases. In the present paper only the rotational degrees
of freedom are considered.
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The formulation of the spatially nonuniform (nonhomogeneous) relaxation problem
(NRP) is given in [2,3]. For 1D NRP for a steady case for a simple one-component gas the
following boundary conditions are accepted:

f (0,ξ)=F(ξ), ∀ξx >0; f (+∞,ξ)=0, ∀ξx <0,

where F(ξ) is the nonequilibrium distribution function. Note that one can try to for-
mulate the problem for the supersonic flows where for the nonequilibrium boundary
function there are some particles moving towards the orifice, but the amount of these
particles with negative velocities downstream is negligible so the zero condition for the
negative velocities gives the same results (for the distribution function and for the main
macroparameters) as with the equilibrium distribution function at infinity.

In our numerical simulations we considered velocity space with both positive and
negative velocity components. If we put the appropriate value of the Maxwellian for the
boundary condition (at infinity) for the negative velocity instead of the zero the influence
of this factor on the results was negligible (that has been proved in [11]).

For molecular gases the formulation is analogous. Generalization of the formulation
of NRP for mixtures and molecular gases and for 2D is given in [4]. For 2D flow the
boundary nonequilibrium distribution function is accepted in a slit. The formulation of
NRP for 3D case has a similar form but nonequilibrium distribution is set in a plane
orifice.

3 Procedure of closure for strong nonequilibrium states and new

transport equations

For obtaining the moment equations we use the expansion of kinetic equations in powers
of a small parameter, depending on the longitudinal molecular velocity and consider the
first terms. One can demonstrate this technique, for instance, for 1D steady flow. In this
case the equation can be written:

∂ f

∂x
=

1

ξx
I=

1

u0

(

1−α+···+(−1)nαn+···
)

I,

where α≡α(ξx)=(ξx−u0)/u0 and u0 is mean velocity of a gas mixture for the nonequi-
librium distribution in the boundary at x=0. Neglecting the influence of the tails of the
distribution function, we assume that f =0 for |ξx−u0|>∆U (∆U>3

√
T/m, where T is

temperature and m is a mass of the molecule). Then for sufficiently large Mach numbers
in the input flow, one can suppose that ξx >0 and |α|<1 for any x in the domain under
consideration. We will be restricted by the first order approximation. We assume that
inclusion of new terms of this series (that is the Leibniz series) will improve the accuracy
of the considered expansion.

For the case of 1D nonuniform relaxation problem (NRP) for a monatomic one-
component gas according to [2, 3] this expansion leads to the closure for the first order
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approximation with the following transport equations (we emphasize that the moment
equation are closed for strong nonequilibrium states with the moments treated in the
kinetic sense):

∂u

∂x
=

1

µU
pxx,

∂T

∂x
=

1

λU
qx, (3.1)

where pxx is the nonequilibrium stress tensor component, qx is the heat flux, the coeffi-
cients

µU =u2
0m(m/8K)1/2/(6A), λU =3ku2

0(m/8K)1/2/(8A)

(for Maxwell molecules if the Boltzmann equation is used). Here the constant A=0.343
and the constant K appears in the expression for the appropriate potential. If the BGK
equation is used we have

µU =u2
0mn0/ν, λU =3ku2

0n0/(2ν)

in relations (3.1), where n0 and u0 are respectively the density and the velocity of the gas
at the boundary and ν is a frequency. It is obvious that Eq. (3.1) differ principally from the
ordinary equations of transfer nonequilibrium stress and heat flux in the framework of
the Navier-Stokes theory. Note that coefficients µU and λU depend on the square of mean
velocity in the boundary. The closed form of the moment equations for the near equilib-
rium flows is traditionally deduced with the aid of the Chapman-Enskog formalism, i.e.,
the expansion in a small Knudsen number. For our case of the strong nonequilibrium
state for the boundary conditions (and appropriate of the large local Knudsen number)
this approach is not valid.

4 Numerical technique and computational simulations

The Unified Flow Solver (UFS) [5] is used for numerical simulations in all problems un-
der consideration. UFS includes the direct Boltzmann solver both for 1 component, for
multicomponent or for mixtures of gases and continuum solver. A uniform mesh of dis-
crete velocities is used for a bounded velocity domain. The collision integral is computed
in the full form using the conservative scheme with Korobov’s nodes (different collision
models can be selected) or in the model form of BGK type: BGK, S-Model, R-model or
3T-model. Kinetic continuum schemes are used for continuum solver. Cartesian dynam-
ically adapting to the solution meshes are applied in physical space. Automatic selection
of the solver type (kinetic or continuum) is done for each cell of physical space using a
switching criterion, and the solutions are coupled on the boundaries of kinetic and con-
tinuum domains. So it can be said that adaptive mesh and algorithm refinement (AMAR)
is applied in the UFS. The parallel automatic domain decomposition and dynamic load
balancing are implemented in UFS. In the current study only kinetic modules of UFS are
used, and the numerical method of these modules is briefly described in the following
paragraphs.
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The finite volume technique is applied for the approximation of the Boltzmann equa-
tion in physical space. The following numerical scheme can be written after integration
of the Boltzmann equation for i-th point in velocity space over j-th cell in physical space,
and using the 1-st order finite difference scheme in time:

f k
ij− f k−1

ij

τ
V+ ∑

f ace

(ξi ·n) f ace f k−1
i, f aceS f ace= Ii( f k

∗j)V, (4.1)

where k is the time index, ∗ denotes all points in velocity space for the given cell, f k−1
i, f ace is

the value of the function on the cell face, n is the unit outward normal vector to the face,
V is the cell volume, and S f ace is the face surface area. For calculation of the face values of
the distribution function standard interpolation schemes are applied. The calculation of
collision integrals is done with the use of semi-regular methods (quasi Monte Carlo with
Korobov’s sequences).

It is worth mentioning that in order to numerical analogs of the conservation laws to
be fulfilled the numerical scheme should be conservative. For scheme (4.1) this means
that the moments of collision integral with the weights of collision invariants must be
equal to 0:

∑
i

Ii( f k
∗j)φα=0, α=0, x, y, z, 2, (4.2)

where

φ0=1, φx= ξx, φy= ξy, φz= ξz, φ2= ξ2.

For the full collision integral this is performed by introducing the conservative correction
of the collisions frequency (the full collision integral is considered to be the sum of direct
and inverse parts Ii( f k

∗j)=− fiνi( f k
∗j)+Gi( f k

∗j))

ν∗i =νi(1+a0+axξx+ayξy+azξz+a2ξ2). (4.3)

Substitution of the corrected value of frequency (4.3) into (4.2) results in a system of 5
linear equations for 5 unknowns aα, α=0, x, y, z, 2, which is easily solved. If a BGK-type
collision integral is considered, the parameters of the equilibrium function are chosen in
such a way that the Eq. (4.2) to be true.

Some results for molecular gases (nitrogen and oxygen) are obtained with the R-
model equation for two-atomic molecular gas with rotational degrees of freedom for 1D
NRP. The nonequilibrium boundary conditions are given by a sum of two Maxwellians.
One can recognize in Fig. 1 the anomalous character of heat transfer for the total temper-
ature and heat flux (the signs of the temperature gradient and the heat flux are the same).
The difference in profiles for these molecular gases is small.

The problem for 2D case for a plane flow has been considered in [4], now we study
2D case for an axisymmetrical flow. The axisymmetrical solutions are of importance due
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Figure 1: Profiles of total temperature. Figure 2: Profiles of total heat flux for oxygen and
nitrogen.

Figure 3: Profiles of the longitudinal velocity at
different values of r.

Figure 4: Profile of the component of the nonequi-
librium stress tensor at different values of r.

to the obvious physical sense related to the flows of the gas in molecular beams. The
R-model is applied (Mach number M=3, Knudsen number Kn=1). Profiles in Figs. 3, 4
demonstrate the anomalous character of the irreversible momentum transfer for all dis-
tances from the axis of the symmetry (the longitudinal velocities increase downstream
and the nonequilibrium stresses are positive). For 2D problem there is no, of course, such
simple moment relationships as in the case of 1D NRP. But for areas near the symme-
try line where the transversal derivatives are small one expects the appearance of the
effects similar to the 1D NRP flows. In Fig. 3 greater velocities correspond to the val-
ues of transversal coordinate r which are closer to the symmetry line. These calculations
confirm that all profiles for any coordinate r demonstrate the anomalous character of the
momentum transport. One can see that the change of the velocity in the relaxation zones
is relatively large.

A special interest is the computations with the boundary nonequilibrium functions
obtained by the simulation related to the real experimental processes, namely to the in-
teractions of the optical lattice with the supersonic molecular beam. The optical lattice
is a shallow (mK) periodic optical potentials. The transport and dynamics of ultra-cold
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atoms have been widely studied [12,13]. Recently deceleration and acceleration of molec-
ular and atomic species travelling in a supersonic beam has been demonstrated using
optical lattices [14]. From our point of view it is very interesting that this technique can
provide us the strong nonequilibrium functions which is a necessary condition for a re-
alization of NRP flow.

First we considered NRP with the parameters corresponding to the experimental data
for nitric oxide (NO) and use the R-model equation for obtaining the mentioned anoma-
lous transport effects. We use two boundary conditions which correspond to nonequi-
librium distributions with the positive and negative heat fluxes corresponding to those
obtained in the experiment (see Fig. 4 from [14] on the top results with negative flux, on
the bottom with the positive heat flux). The temperature of this molecular gas in the ex-
periment was very small (1.8K) so the assumption that the vibrational degrees of freedom
can be negligible is valid. Numerical simulations showed that the anomalous transport
takes place however the change of the temperature in relaxation zone is not large (of the
order of 1%) therefore the experimental observation of these effects is not a simple task.
The problem of obtaining experimental conditions for strong nonequilibrium and larger
changes of temperature should be posed.

The physical influence of the optical lattice on the molecules in the beam can be de-
scribed by the appropriate electrical field, see [14]. A periodic optical dipole potential is
created by the interaction between a polarisable particle and the field of an optical inter-
ference pattern as a result of counter propagating laser fields. The Boltzmann equation
is solved in the collisionless limit because the characteristic time of interaction between
of the electric field and the molecules is smaller than the time between collisions. We
consider a supersonic beam of argon Ar (one can use not only molecular but also atomic
gas due to polarization of the atoms). We use a simple atomic beam for simplicity. For
considered beam the temperature is 30K. The one-dimensional unsteady free-molecular
Boltzmann equation with the force term is written:

∂ f

∂t
+ξx

∂ f

∂x
+

Fx

m

∂ f

∂ξx
=0. (4.4)

Here m is a mass of the particle. The electric force is as follows (see [15]):

Fx =−1

2
αqE1(t)E2(t)sin(qx−βt2),

where E1 and E2 are the electric field amplitudes (two counterpropagating fields are
used), α is a static polarizability for Ar (the polarizability to mass ratio of Ar is presented
in [16]), q is the wavenumber, β is the frequency chirp due to the time dependent fre-
quency difference between each of the fields.

Initially particles in the beam are at thermal equilibrium. The nonequilibrium distri-
bution function obtained as a result of the influence of optical lattice is shown in Fig. 5.
After obtaining the distribution function from Eq. (4.4) we solve NRP with the Boltz-
mann Eq. (2.1) for the steady case. For a monatomic gas we use the collision integral
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Figure 5: The nonequilibrium distribution function (”prepared” from the initial equilibrium Maxwell distribution
function after solving Eq. (4.4)) which is a boundary for NRP.

with the hard sphere model. The nonequilibrium distribution from Fig. 5 was accepted
as a boundary condition in 1D NRP. The results of the computations for the Boltzmann
equation for Ar are presented in Figs. 6 and 7. One can see the anomalous character of
the transport.

Figure 6: Temperature and heat flux profiles for
NRP with the mentioned distribution function as a
function of the boundary condition.

Fig. 7. Velocity and nonequilibrium stress tensor component profiles for NRP with the mentioned 

x

Figure 7: Velocity and nonequilibrium stress tensor
component profiles for NRP with the mentioned
distribution function as a function of the boundary
condition.

5 Computations with a large change of temperature in the

relaxation zones

The obvious drawback of the considered NRP is the small change of the temperature in
the relaxation zones (change of velocity is larger in some cases). If the change is smaller
than 10% it is hard to measure the effects in experiments and the hypothetical model of
heat devices (e.g., the microrefrigerator) is not seen very interesting. The problem of max-
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Fig. 8. Profiles of temperature T and heat flux q .Figure 8: Profiles of temperature T and heat flux
qx.

Fig. 9. Profiles of longitudinal velocity u and nonequilibrium stress tensor component Figure 9: Profiles of longitudinal velocity u and
nonequilibrium stress tensor component pxx.

imizing these changes should be posed. The analysis of the relationships representing
conservative laws for macroparameters shows that the changes of mentioned quantities
depend on the magnitude of the dissipation (pxx, qx/u0) for the boundary nonequilib-
rium distribution.

Suppose the nonequilibrium distribution function is a linear combination of two
delta-functions with different velocities u1 and u2, namely f (0,ξ)=n1δ(ξx−u1)+n2δ(ξx−
u2), we assume that the density and mean velocity are constant, in this case |qx| is propor-
tional to the cube of |u2−u1|. In the most test examples in [4] the nonequilibrium func-
tions is a sum of two Maxwellians with the difference of the mean velocities of the order
of unity. Increasing the value of |u2−u1| it is possible to obtain considerable increase both
in the boundary heat flux and in changes of macroparameters in the relaxation zone. The
following distribution function is used in calculations:

F=0.5FM(1,0,0,0.5)+0.7FM(5,0,0,0.5), (5.1)

where FM(ux,uy,uz,T) is Maxwellian with the unit density, velocity components ux, uy,
uz and temperature T. Results of the numerical analysis are presented in Figs. 8 and 9.

It is seen that the changes of the temperature and velocity are 40% and 15% respec-
tively. It is important to note that in the nonequilibrium boundary there is nonzero zone
of the distribution with negative velocities. But for equilibrium at infinity such zone is
negligible. Thus we cannot use the mentioned expansion in powers of a small parame-
ter in the entire velocity region. However the numerical analysis confirms the anomalous
character of the transport for each spatial point. The flow is supersonic: the Mach number
increases from M∼2 for the nonequilibrium boundary until to M∼3.5 at infinity.

Obtaining the nonequilibrium distribution with similar characteristics is a future task
both for simulation and experimental technique. The method of optical lattices is an in-
teresting and perspective tool for study of these processes and one can suppose, in partic-
ular, that it would be possible to create strong nonequilibrium distributions in supersonic
beams of particles using two or more optical lattices.
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Figure 10: The profiles of the entropy flux Sx and the specific entropy S/n.

6 Discussion and conclusions

To discuss the properties of the kinetic strong nonequilibrium system far from the tradi-
tional thermodynamical consideration it is important to present results of behaviour of
the H-function (or in other words S=−H, i.e., the nonequilibrium entropy in the prob-
lems under study). The H-theorem of course is valid for any nonequilibrium state, so we
should calculate the appropriate moments. For 1D NRP the analogue of the H-theorem
for the uniform relaxation problem is the statement that the entropy flux Sx must in-
crease. However the behaviour of the entropy S and the specific entropy S/n, where
n is density is not restricted by the H-theorem. Nevertheless one can suppose that these
values also increase. However the analysis based on the expansion in powers of the men-
tioned small parameter of the entropy evolution in space performed in [3] shows that for
the positive heat flux the entropy S and the reduced entropy S/n monotonously increase
downstream. For the case of the negative heat flux there is a small maximum for these
quantities. The computations with the boundary distributions (5.1) confirm this state-
ment. In Fig. 10 profiles of the entropy flux and the specific entropy are depicted. The
flux profile is monotonous and the curve of the specific entropy has a very small local
maximum that denotes that for the points downstream with respect to the point of the
maximum the specific entropy decreases.

The other issue of discussing is the transition from the nonequilibrium state in NRP to
equilibrium at infinity. Strictly speaking we have two characteristic parameters, namely a
small parameter mentioned above which depends on the value of the molecular velocity
and the Knudsen number which describes the extent of rarefaction of the gas. For a
strong nonequilibrium state Knudsen number is of the order of unity (or more) and the
mentioned expansion is valid. But for regions downstream where the gradients of all
quantities tend to zero the local Knudsen number also tend to zero. Thus there are two
concurrent expansions: mentioned earlier and the ordinary Chapman-Enskog series. It is
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a future task to find the relations between these formalisms. The problem of clarification
this mathematical and physical situation needs to be studied.

We can conclude that some computations for different kinetic equations for different
gases including molecular gases confirm the possibility of the anomalous transport in re-
laxation zones. Some 1D and 2D nonuniform relaxation problems are considered (3D free
jet problems are now under consideration but one can suppose that they will demonstrate
the analogous properties). Nevertheless the anomalous transport in the nonequilibrium
zones of the order of the mean free path is observed for some flow regions for all con-
sidered problems. It is important that the real physical situation intrinsic for the real
experiment is modelled in computations. One can expect that the theoretical and numer-
ical analysis of the conditions of nonuniform relaxation problem can help in observing
these effects experimentally.
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