
Commun. Comput. Phys.
doi: 10.4208/cicp.230909.020910a

Vol. 10, No. 1, pp. 183-215
July 2011

Numerical Methods for Two-Fluid Dispersive

Fast MHD Phenomena

Bhuvana Srinivasan1,∗, Ammar Hakim2 and Uri Shumlak1

1 Aerospace and Energetics Research Program, University of Washington, Seattle,
WA 98195, USA.
2 Tech-X Corporation, 5621 Arapahoe Avenue Suite A, Boulder, CO 80303, USA.

Received 23 September 2009; Accepted (in revised version) 2 September 2010

Communicated by Chi-Wang Shu

Available online 30 March 2011

Abstract. The finite volume wave propagation method and the finite element Runge-
Kutta discontinuous Galerkin (RKDG) method are studied for applications to balance
laws describing plasma fluids. The plasma fluid equations explored are dispersive and
not dissipative. The physical dispersion introduced through the source terms leads to
the wide variety of plasma waves. The dispersive nature of the plasma fluid equations
explored separates the work in this paper from previous publications. The linearized
Euler equations with dispersive source terms are used as a model equation system to
compare the wave propagation and RKDG methods. The numerical methods are then
studied for applications of the full two-fluid plasma equations. The two-fluid equa-
tions describe the self-consistent evolution of electron and ion fluids in the presence
of electromagnetic fields. It is found that the wave propagation method, when run
at a CFL number of 1, is more accurate for equation systems that do not have dis-
parate characteristic speeds. However, if the oscillation frequency is large compared
to the frequency of information propagation, source splitting in the wave propagation
method may cause phase errors. The Runge-Kutta discontinuous Galerkin method
provides more accurate results for problems near steady-state as well as problems with
disparate characteristic speeds when using higher spatial orders.
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1 Introduction

There are a number of equation systems that are either hyperbolic or contain hyperbolic
parts. Homogeneous, hyperbolic equation systems are written as conservation laws of
the form [1, 2]

∂Q

∂t
+∇·F=0, (1.1)

where Q ∈ R
m represents the m conserved variables and F ∈ R

m×d represents fluxes in
d spatial directions. For all unit vectors ω ∈R

d the flux Jacobian, ∂(F·ω)/∂Q, has real
eigenvalues and a complete set of right eigenvectors. Some homogeneous, hyperbolic
equation systems include the Euler equations and magnetohydrodynamic (MHD) equa-
tions.

Inhomogeneous, hyperbolic equation systems are described by balance laws of the
form

∂Q

∂t
+∇·F=S, (1.2)

where S∈R
m represents the source terms. The source Jacobian for Eq. (1.2) is ∂S/∂Q.

The presence of real eigenvalues in the source Jacobian results in an equation system
that contains diffusive sources. The Navier-Stokes equations and the 10-moment fluid
equations [3] are examples of inhomogeneous, hyperbolic equation systems containing
diffusive source terms.

For inhomogeneous, hyperbolic equation systems described by Eq. (1.2), the presence
of imaginary eigenvalues in the source Jacobian results in an equation system that con-
tains dispersive sources. The two-fluid plasma model is a system of inhomogeneous, hy-
perbolic equations containing dispersive source terms. The dispersive source terms arise
from the physical properties of the plasma medium. Dispersive source terms present
a unique challenge for numerical algorithms because low-order, explicit-time-stepping
schemes can be unstable when applied to the wave equation leading to numerical disper-
sion [4]. The physical dispersion can be difficult for numerical schemes to capture and
can be difficult to distinguish from the numerical dispersion or ”noise”. In this paper, nu-
merical methods for solving inhomogeneous, hyperbolic equations containing dispersive
source terms are investigated for accuracy and computational effort.

Hyperbolic conservation laws can have discontinuous solutions even if the initial con-
ditions are smooth, and this makes the approximation of the solution difficult. First order
upwind methods are needed to effectively capture such discontinuities. However, first
order methods are highly diffusive in smooth regions. Second order extensions can be
constructed which both resolve the discontinuities and provide better accuracy in smooth
regions. Smooth nonlinear solutions can achieve second order accuracy when using Go-
dunov’s method with second order corrections [5] even though the method is formally
first order accurate, e.g., in Section 15.6 of [2]. [5] provides proof of second order accu-
racy for smooth problems including the case with source terms (Section 7 of [5]). For
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a certain class of finite volume methods such as the high-resolution wave propagation
method, the solution can be diffusive when eigenvalues of the flux Jacobian have a sig-
nificant spread. Higher than second order extensions are thus needed. In this paper a
higher-order (>O(1)) finite volume method [2,5] and a spectrally accurate finite element
method [6] are applied to the plasma fluid equations.

The wave propagation method belongs to the class of finite volume methods. The do-
main is discretized into cells and the cell averages of the conserved variables are evolved.
A Riemann problem is solved at each cell edge and is used to compute the numerical
fluxes. Using these computed fluxes, the solution is then updated in the cells connected
to that edge. To achieve higher than first order accuracy a linear reconstruction of the
waves is performed at the edge which allows up to a second order accurate solution.
Limiters are applied to reduce the spatial order in the regions of large gradients whereas
regions of small gradients maintain higher-order. For simulations with strong shocks,
limiters often reduce the solution to first order around the shocks.

The Runge-Kutta discontinuous Galerkin (RKDG) method is a finite element method.
While the wave propagation method is second order, the discontinuous Galerkin method
achieves higher spatial order accuracy by expanding the solution in basis functions de-
fined locally in each cell. The order of the polynomial determines the spatial order of the
method. As in the case of the wave propagation method, Riemann problems are solved
at the cell edge. The data for the Riemann problem are computed using the basis function
expansion. A Runge-Kutta time stepping method is used to advance the solution in time.

An overview of the development of discontinuous Galerkin (DG) methods is pro-
vided by Cockburn, Karniadakis and Shu in [7]. DG methods were originally devel-
oped in the framework of neutron transport equations by Reed and Hill [8] for solving
linear hyperbolic equations. The DG method was then applied to non-linear advection-
dominated hyperbolic systems by Cockburn and Shu [9] who used the high-order TVD
Runge-Kutta time integration that was developed by Shu [10] with DG and developed
local projection slope-limiters to balance the spurious oscillations in regions of sharp gra-
dients. This was extended to higher spatial orders and multiple dimensions for applica-
tions to non-linear systems such as the Euler equations.

Next came the evolution of the DG method for applications to advection-diffusion
equation systems [6, 11, 12], such as the Navier-Stokes equations. The DG method has
also been applied to Maxwell’s equations [13, 14] where the electromagnetic oscillations
need to be appropriately resolved and to single-fluid MHD equations [15] where the
plasma waves need to be appropriately resolved. The application of DG methods to
nonlinear dispersive equations, specifically the Korteweg-de Vries equation, is explored
in [16] where DG methods are shown to be advantageous in the presence of rapid oscilla-
tions and are capable of simultaneously capturing oscillations and discontinuous fronts
in the solution. Zhang and Shu have compared the discontinuous Galerkin method to
spectral finite volume methods in [17] for linear one-dimensional hyperbolic equations
and state that the spectral finite volume method has larger errors than the DG method on
the same mesh.
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The plasma fluid equations studied in this paper differ from previously published
work because the dispersive nature of the non-linear balance laws originates from the
purely dispersive source terms. The appropriate treatment of advection and disper-
sion terms and the complications that arise from the presence of significant dispersion
in plasma models provide a unique set of comparisons between the wave propagation
and the RKDG methods. There is very little literature regarding the numerical solution
of hyperbolic equation systems that contain dispersive source terms without the pres-
ence of any explicit dissipation [4, 18]. Hakim, Loverich and Shumlak [4] implement the
high-resolution wave propagation method for the two-fluid plasma model studied in this
paper. Loverich and Shumlak [18] implement the Runge-Kutta discontinuous Galerkin
method for the two-fluid plasma model. Neither of these references address the effect of
the physical dispersive source terms of the two-fluid plasma model on the accuracy of
the numerical methods.

The two-fluid equations describe the self-consistent evolution of electron and ion flu-
ids in the presence of electromagnetic fields. The two-fluid plasma equation system is
different from Euler equations or Navier-Stokes equations that have been previously
studied with the discontinuous Galerkin method. The two-fluid plasma equations are
dispersive and not dissipative. The dispersion is not a numerical artifact. The dispersive
nature is a physical effect that leads to the wide variety of plasma waves. The plasma
waves in this paper are fast MHD waves that result from resolving the ion and electron
plasma frequencies in the presence of electromagnetic waves. Mathematically, the dis-
persive effects are generated from the source terms of the two-fluid plasma equations
described in Section 2.2. The dispersive nature of these equation systems sets them apart
from previous publications. The study of the appropriateness of the wave propagation
and the discontinuous Galerkin methods to accurately capture these physical dispersive
effects is a main point of the manuscript.

Section 2 describes the full two-fluid plasma model showing the basic equations and
performing a source term analysis to highlight the physically expected dispersion brought
about by the sources. Section 3 briefly describes the high-resolution wave propagation
method and Section 4 briefly describes the RKDG method. Section 5 presents a conver-
gence study using a linear advection equation to quantify the spatial order for the RKDG
and wave propagation methods. Section 6 explores a benchmark problem that uses the
wave propagation method and the RKDG method. The benchmark problem uses the Eu-
ler equations with the addition of dispersive source terms. This provides a model equa-
tion system for the two-fluid plasma model. Following a study of the wave propagation
and RKDG methods for the benchmark problem, the numerical methods are applied to
the two-fluid plasma problems in Section 7.

The simulations are performed using the WARPX (Washington Approximate Rie-
mann Plasma) code developed at the University of Washington. WARPX is written in
C++ and provides a general framework for developing parallel computational physics al-
gorithms. The wave propagation and the RKDG methods are implemented for arbitrary
hyperbolic conservation laws and use the same underlying approximate Riemann solvers
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and flux calculation methods wherever appropriate. This allows a fair comparison of the
methods since they both use the same optimized framework to solve the equations. All
simulations presented in this paper are performed on rectangular, regular meshes.

2 Full two-fluid plasma model

The full two-fluid plasma model [19] used in this section is derived by taking moments
of the Boltzmann equation and treating the electrons and ions as two separate fluids. The
resulting Euler equations are used to evolve the electron and ion fluids while Maxwell’s
equations are used to evolve the electromagnetic terms. The equations that result have
homogeneous, hyperbolic parts and inhomogeneous source terms.

2.1 Governing equations for the full, two-fluid plasma model

The equations described here are the five-moment equations that result from taking the
zeroth, first and second moments of the Boltzmann equation. These moment equations
are closed with an equation of state. Assumptions used are isotropic pressure, no heat
flux and no frictional forces. The electrons and ions are each described by the Euler
equations with source terms coupling the fluids and the fields. In balance law form, the
fluid equations are

∂ρs

∂t
+∇·(ρsus)=0, (2.1a)

∂ρsus

∂t
+∇·(ρsusus+psI)=

ρsqs

ms
(E+us×B), (2.1b)

∂ǫs

∂t
+∇·

(

(ǫs +ps)us

)

=
ρsqs

ms
us ·E, (2.1c)

where subscript, s, denotes electron or ion species. qs is the species charge, ms is the
species mass, ρ is the mass density, u is the velocity, E is the electric field, B is the magnetic
field, p is the pressure and ǫ is the total energy. The energy is defined as

ǫs ≡
ps

γ−1
+

1

2
ρsu

2
s . (2.2)

Maxwell’s equations are used to evolve the electric and magnetic fields.

∂B

∂t
+∇×E=0, (2.3a)

1

c2

∂E

∂t
−∇×B=−µ0J, (2.3b)

∇·E=
̺c

ε0
, (2.3c)

∇·B=0, (2.3d)
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where ̺c and J are the charge density and the current density defined by

̺c ≡∑
s

qs

ms
ρs, (2.4a)

J≡∑
s

qs

ms
ρsus. (2.4b)

The source terms of Eq. (2.1b) contain the Lorentz forces on the electrons and ions.
These source terms couple the fluid equations to the electromagnetic fields. The Lorentz
forces act as body forces on the electrons and ions. The evolving electromagnetic source
terms can make the equation set and the solutions rather complicated. The full two-fluid
equations are applied to the one- and two-dimensional Z-pinch equilibrium. Applica-
tions and results of the two-fluid plasma model are presented in Sections 7.3, 7.4, and 7.5.

2.2 Source terms of the two-fluid plasma model

The two-fluid plasma model has physical dispersion that comes about from the presence
of dispersive source terms. The source Jacobian for Eq. (1.2) is JS = ∂S/∂Q. The first
three eigenvalues of the source Jacobian are 0,±iωp, where ω2

p = ω2
pe+ω2

pi. The plasma

frequency is defined as

ωps =

√

nsq2
s

ε0ms
, (2.5)

where subscript s represents each species (electrons and ions). The remaining six eigen-
values are roots of the polynomial with respect to λ,

1

M2
λ
(

λ2+ω2
pe+ω2

pi

)

[

B4λ2r4
i +M2λ2(λ2+ω2

pe+ω2
pi)

2+B2r2
i

(

M2λ4

+λ4+2M2ω2
peλ

2+M2ω4
pe+ω4

pi+2(λ2−Mω2
pe)ω2

pi

)]

=0, (2.6)

where M is the electron-to-ion mass ratio, ri is the ion charge-to-mass ratio, and B is the
magnitude of the magnetic field. All non-zero eigenvalues, λ, are imaginary.

Since the source Jacobian has only imaginary eigenvalues, the waves of the two-fluid
model are not damped. This plasma model is not diffusive but instead is dispersive with
undamped oscillations similar to the model equation system using Euler equations with
dispersive source terms explored in Section 6. This dispersive nature of the two-fluid
plasma model sets the work in this paper apart from previous publications. The wave
propagation and RKDG methods are studied for their abilities to capture these physi-
cal dispersions accurately. Explicit methods are often unstable when such oscillations
are present because refining the grid can excite waves of smaller wavelengths making it
difficult to capture the dispersions accurately. The regime of applicability of the wave
propagation and RKDG methods is explored in the presence of such dispersions.
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3 High resolution wave propagation method

The high resolution wave propagation method can be applied to balance laws of the
form Eq. (1.2). This method is described in detail for two-fluid plasma equations in [4].
The wave propagation method belongs to the class of Godunov methods which rely on the
solution of Riemann problems. The essential idea is as follows. The domain is discretized
into cells and the solution in each cell is assumed to be represented by averages. At each
cell interface the solution is reconstructed and will, in general, be discontinuous. This
discontinuity is used as an initial condition for a Riemann problem. The solution of the
Riemann problem gives the conserved variables at the interface which are then used to
compute numerical fluxes. Once the fluxes are known the solution in each cell is updated
by tallying how much flux flows into the cell.

In one dimension, up to second order accuracy can be achieved by performing a linear
reconstruction of the waves needed to compute the numerical fluxes at the cell interface.
In multiple dimensions high resolution transverse corrections are included which account
for flow that is transverse to the coordinate axes. After solving the Riemann problem at
each cell interface to determine the positive- and negative-going fluctuations, a second
transverse Riemann problem is solved to compute the transverse fluctuations as detailed
in [2]. With these transverse corrections, the method is formally second order accurate
and is stable to CFL number of unity even when using Godunov splitting, as described
in Section 17.5 of [2]. The wave propagation update formula in 1-dimension is given by

Qn+1
i =Qn

i −
∆t

∆x

[

A+∆Qi− 1
2
+A−∆Qi+ 1

2

]

− ∆t

∆x

(

[F̃]i+ 1
2
−[F̃]i− 1

2

)

, (3.1)

where A+∆Qi−1/2 and A−∆Qi+1/2 are the positive- and negative-going fluctuations, and
[F̃], is the correction flux described in [2].

The source terms for the wave propagation method are handled using source split-
ting. A Godunov splitting is used here as detailed in [2] where the homogeneous hyper-
bolic equation is solved first to update the conserved quantities, followed by a Runge-
Kutta update to advance the solution with the source terms.

The source terms of the two-fluid system are particularly challenging as they repre-
sent undamped oscillations, i.e., the Jacobian of the source terms has purely imaginary
eigenvalues. Such sources add physical dispersion to the system which can be difficult
to resolve. For a discussion relevant to the two-fluid system, see [4].

4 Discontinuous Galerkin method

The RKDG method is a finite element method. The RKDG method achieves higher spa-
tial order by expanding the solution in polynomial basis functions. The balance law
described in Eq. (1.2) is multiplied by a set of basis functions and is integrated over the
element. The conserved variable is defined as a linear combination of the basis functions.
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In this paper tensor products of the Legendre polynomials are chosen as basis functions.
This allows the construction of methods of arbitrary spatial order. Riemann problems are
solved at each interface to compute the interface fluxes needed in the algorithm. In gen-
eral, simple approximate solvers can be used with the RKDG method when using high
spatial orders since local fluctuations are accurately represented by the high-order basis-
functions [6]. In contrast, the wave propagation method needs a more accurate Riemann
solver to avoid diffusive errors. The RKDG method update formula in 1-dimension is
given by

dQr

dt
=−

Fi+ 1
2
vr

(

xi+ 1
2

)

−Fi− 1
2
vr

(

xi− 1
2

)

∆x
+

1

∆x

∫

Ii

dvr(x)

dx
Fdx+

1

∆x

∫

Ii

vr(x)Sdx, (4.1)

where Qr represents the expansion coefficients and vr represents the polynomial basis
functions described in [6].

A 3rd order total variation diminishing (TVD) Runge-Kutta method is used for the
time integration as discussed in [6]. This makes the RKDG method an explicit finite ele-
ment method. When the temporal order is greater than the spatial order, r, the time step
is restricted for numerical stability using CFL≤ 1/(2r−1). When the temporal order is
smaller than r, the CFL number depends on the accuracy of the Runge-Kutta method [6]
and can be more restrictive. Strong stability preserving Runge-Kutta (SSPRK) meth-
ods have been explored in recent years and optimal high-order SSP methods have been
shown to provide higher temporal accuracy for linear and nonlinear problems with the
ability to use larger time steps [20, 21]. While higher-order SSP time integration schemes
could be easily extended for use with the DG method used in this paper, there is no
benefit gained by using the higher temporal accuracy for the plasma problems explored
here because of the relatively smooth temporal evolution. This is verified by exploring
the two-fluid model with the 2-dimensional axisymmetric Z-pinch in Section 7.5 using
high-order SSPRK methods to show no qualitative differences from the 3rd order TVD
RK scheme or even the 2nd order TVB RK scheme. A 3rd order TVD Runge-Kutta method
is well suited for time integration for the problems explored in this paper in terms of both
accuracy and computational effort.

An effective resolution is introduced to provide a fair comparison metric among the
numerical methods. The effective resolution takes into account the number of degrees of
freedom, i.e., the number of equations being solved for a given spatial order. The wave
propagation method solves m equations in Ng cells, where m refers to the number of
conserved variables in a given equation system. The degrees of freedom for the wave
propagation method is therefore Ng for each variable. The RKDG method solves mrd

equations in Ng cells, where d is the number of dimensions. The RKDG method has Ngr
degrees of freedom for each variable, m, in each dimension, d. Therefore, for the RKDG
method, the effective resolution is defined as Ngr.

The RKDG method can produce large oscillations in the solution when sharp gradi-
ents are present. As in the case of the wave propagation method, limiters are applied.
For the wave propagation method the limiters are applied to the waves, however, for the
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RKDG method limiters are applied directly to the conserved variables or the characteris-
tic variables. A modified minmod limiter is used here where the linear terms are checked
for oscillations and the high order terms are set to zero if the linear terms need to be lim-
ited [22]. Developing high-order limiters is a challenging research problem for the DG
method. Some prospective high-order limiters are explored in [23, 24].

5 Convergence study

The linear advection of a one-dimensional Gaussian pulse q(x,0)= e−10(x−1.5)2
is used to

numerically determine the spatial order for the wave propagation and RKDG methods.
This benchmark problem does not contain any source terms and is included to demon-
strate the order of accuracy and convergence for the wave propagation and RKDG meth-
ods. The linear advection equation is

∂q

∂t
+

∂q

∂x
=0. (5.1)

Periodic boundary conditions on a domain 1 < x < 5 are used. After propagating the
pulse one period through the domain, the l2 norm of the error is computed by comparing
to the exact solution. The spatial order of the method is computed by measuring the
dependence of the l2-norm on the grid spacing.

Table 1: Slopes of l2-norm vs ∆x to determine the order of accuracy of the methods for the linear advection
equation. Column 2 shows that the observed spatial order for this problem exceeds the formal order of the
methods when using a fixed time-step for all spatial orders. However, column 3 shows the actual order obtained
when using the variable time-step with the maximum allowable CFL number (based on the spatial and temporal
accuracy of the scheme). The observed temporal order for the higher order RKDG methods is limited by the
third-order, time-integration method used for all RKDG solutions.

Method Order Order CFL
(fixed ∆t) (maximum ∆t) (maximum ∆t)

WAVE 1.9 1.9 1.0

RKDG 2nd order 2.7 2.0 0.33

RKDG 3rd order 3.4 3.2 0.21

RKDG 4th order 4.2 3.0 0.13

RKDG 8th order 8.0 3.1 0.04

Fig. 1 shows the measured l2-norms of the solutions obtained for different grid resolu-
tions with a fixed time step that is stable for all the numerical methods tested (∆t=0.0003).
The slopes measured from the linear regions of the plot are listed in the second column of
Table 1. The 8th order RKDG solution converges to the analytical solution rapidly so the
linear behavior is only observed at lower resolutions. The table shows that the computed
order of convergence exceeds the formal order of the methods for this linear problem
with a fixed ∆t. The fixed time step isolates the effect of the spatial order. Fig. 2 shows the
l2-norms of the solutions obtained for different grid resolutions with a variable time step
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Figure 1: Log-log plot of l2-norms of solution as a function of ∆x for the linear advection problem using a fixed
time step to isolate the effect of the spatial order for all the numerical methods - wave propagation, 2nd, 3rd,
4th, and 8th order RKDG. The slopes of the lines are tabulated in Table 1.
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Figure 2: Log-log plot of l2-norms of solution as a function of ∆x for the linear advection problem using the
maximum allowable CFL number to set the time step for each of the numerical methods - the wave propagation,
2nd, 3rd, 4th, and 8th order RKDG. The slopes of the lines are tabulated in Table 1.

that is chosen based on the maximum allowable CFL number for each method at each
resolution. The maximum CFL number for each method is shown in the 4th column on
Table 1 based on the spatial and temporal orders [6]. The slopes measured from the linear
regions of the plot are listed in the third column of Table 1. For variable ∆t, the computed
order of convergence for the higher-order RKDG methods is limited to approximately 3
due to the third-order time-integration method used with the RKDG method.

6 Euler equations with dispersive source terms

Due to the complexity of the full two-fluid plasma system it is difficult to investigate the
effects of dispersion on the full non-linear physics. In this section a simpler model is
introduced that allows for dispersion to be included with the Euler equations in the form
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of dispersive source terms. This provides a model equation system for the two-fluid
plasma equations because it generates physical dispersions but has simpler source terms
and a closed-form analytical solution exists for the linear case. This equation system
models the quasineutral ion cyclotron waves, which are dispersive waves, in a uniform
plasma with a magnetic field that is constant in space and time. The momentum equation
includes the force from a uniform transverse magnetic field, which produces dispersive
effects. The momentum equation (2.1b), simplifies to

ρ
(∂u

∂t
+u

∂

∂x
u
)

+
∂p

∂x
=nqu×B=ρωcu×b̂, (6.1)

where ρ = min is the ion mass density, u = (u,v) is the fluid velocity, p is the pressure,
B is a uniform magnetic field, b̂ is the unit vector of B and ωc = qB/mi is the cyclotron
frequency. The Euler equations of gas dynamics with dispersive source terms are written
in one dimensional non-conservative form as

∂

∂t









ρ
u
v
p









+









u ρ 0 0
0 u 0 1/ρ
0 0 u 0
0 γp 0 u









∂

∂x









ρ
u
v
p









=









0
vωc

−uωc

0









, (6.2)

where γ is the adiabatic index. The eigenvalues of the source Jacobian are 0,0,±iωc.
These compare well with the purely imaginary eigenvalues of the source Jacobian of the
two-fluid plasma model described in Section 2.2, the first three of which are 0,±iωp.
The undamped oscillations represented by the presence of the cyclotron frequency in the
dispersive Euler equations provide a suitable benchmark model for the undamped os-
cillations of the two-fluid plasma model. The non-zero imaginary eigenvalues indicates
that the system has undamped, non-propagating oscillations which combined with the
sound wave leads to dispersive waves

ωn =±(k2
nc2

s +ω2
c )

1
2 , (6.3)

where cs ≡
√

γp0/ρ0 is the speed of sound and kn is the wave number.
To study the ability of the methods to capture the dispersion correctly, a problem in

the linear regime is solved. The equations are linearized about a static uniform equi-
librium with density ρ0 and pressure p0. Assuming a perturbed solution of the form
f = f0+ f1, where f ∈{ρ,u,v,p}, and where f1(x,t) is of the form

f1(x,t)=
∞

∑
n=1

f̂nei(kn x+ωnt), (6.4)

linearized equations are obtained








iωn iknρ0 0 0
0 iωn −ωc ikn/ρ0

0 ωc iωn 0
0 iknγp0 0 iωn

















ρ1

u1

v1

p1









=0, (6.5)
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Figure 3: Initial condition with N = 9 that is used to approximate the step function. This initial condition is
used for all the results obtained in this section.

where ρ1, u1, v1, and p1 depend on n. This system of linear algebraic equations has non-
trivial solutions only if ωn and kn satisfy the dispersion relation given by Eq. (6.3). The
dispersion relation is nonlinear in kn leading to the dispersion of waves as they propagate
through the fluid.

To initialize the simulation the fluid is perturbed with a velocity

u1(x)=u0
1

N

∑
n=0

i

2n+1
eikn x (6.6)

with kn = 2π(2n+1) and ωn computed from Eq. (6.3) and u0
1 is a constant. As N → ∞,

Eq. (6.6) represents a step function for the interval [0,1]. With the perturbation of Eq. (6.6),
the exact solution for the linearized velocity u(x,t) is given by

ũ(x,t)=−
N

∑
n=0

u0
1

2n+1
sin(knx+ωnt). (6.7)

The test problem is initialized using the exact solution for all perturbed variables with
the velocity given by Eq. (6.7). Fig. 3 shows the initial condition for u0

1=10−8, N=9 using

γ = 2, ωc = 10 and ρ0 = p0 = 1. For these values the sound speed is given by cs =
√

2.
Periodic boundary conditions are applied on a domain 0 < x < 1. A CFL number of 1
is used for the wave propagation method and 1/(2r−1) is used for the RKDG method.
The temporal order of the RKDG method is 3rd order for this problem. Limiters are not
applied in either method and the solutions at t=3 are compared to the exact solution.

Figs. 4 and 5 compare the analytical solution to the wave propagation method and to
the RKDG method. The number of grid elements, Ng, is adjusted with the spatial order,
r, of the RKDG method so the effective resolution, Ngr, remains constant. Accuracy is
measured by taking an l2-norm. These figures along with Table 2 show that the wave
propagation method is more accurate than the 2nd, 3rd and 5th order RKDG methods
while all methods have the same effective resolution. The 8th order RKDG solution with
only 12 cells, however, is more accurate than the wave propagation method.

The computational time required to advance the solution from t = 0 to t = 1 for each
method is presented in Table 2. Each method has different CFL stability limit as shown in
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Figure 4: Velocity at t=3 for an effective resolution
of 100 cells for the wave propagation and RKDG
methods, i.e., 100 cells for wave propagation, 50 for
2nd order RKDG and 33 for 3rd order RKDG. cs =√

2 and ωc =10. The bottom plot has an expanded
scale to show the details of the solution.
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Figure 5: Velocity at t = 3 with 100 cells for wave
propagation, 20 for 5th order RKDG and 12 for 8th

order RKDG. cs =
√

2 and ωc = 10. The bottom
plot has an expanded scale to show the details of
the solution.

Table 2: l2-norm of velocity to quantify accuracy for each method, and computational time required to advance
the solution to t=1 to quantify computational effort for the dispersive Euler system using ωc =10.

Method l2-norm Computational time CFL
to t=1

WAVE 100 2.6×10−10 0.02 1.0
RKDG2 50 2.2×10−9 0.03 0.33
RKDG3 33 1.2×10−9 0.04 0.21
RKDG5 20 6.9×10−10 0.07 0.089
RKDG8 12 2.3×10−10 0.19 0.04

the 4th column of Table 2 based on Table 2.2 in [6] where the spatial and temporal orders
are taken into account to determine the maximum CFL value. The solution of the wave
propagation method is more accurate as compared to the RKDG solutions while using
less computational effort for low ωc. However, when ωc is increased, the wave propaga-
tion method exhibits phase errors in the solution. Fig. 6 shows that the 3rd order RKDG
solution using 33 cells is more diffusive than the wave propagation solution at 100 cells,
but the RKDG solutions do not have phase errors even at lower orders. Fig. 7 displays
results for the wave propagation method with 100 cells, the 8th order RKDG with 12 cells
and the 16th order RKDG with 6 cells. Increasing the grid resolution of the wave propa-
gation method from 100 cells to 500 cells reduces the phase error, as shown in Fig. 8, and
going to even higher resolution eliminates it.

The computational time required to advance the solution from t = 0 to t = 1 for each
method for ωc =50 is presented in Table 3. Table 3 shows that the 16th order RKDG solu-
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Figure 6: Velocity at t = 3 with 100 cells for wave
propagation and 33 for 3rd order RKDG. These are
for cs =

√
2 and ωc =50. Using a larger ωc leads to

phase errors for the wave propagation method while
the lower order RKDG method for the same effec-
tive resolution is diffusive but has no phase error.
The bottom plot has an expanded scale to show the
details of the solution.
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Figure 7: Velocity at t = 3 with 100 cells for wave
propagation, 12 for 8th order RKDG and 6 for 16th

order RKDG. These are for cs =
√

2 and ωc = 50.
Using a larger ωc leads to phase errors for the wave
propagation method. The bottom plot has an ex-
panded scale to show the details of the solution.
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Figure 8: Velocity at t = 3 with 100 cells as com-
pared to 500 cells for the wave propagation method.
These are for cs=

√
2 and ωc=50. The bottom plot

has an expanded scale to highlight the small phase
error that is present even with 500 cells when a
higher cyclotron frequency is used.
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Table 3: l2-norm of velocity to quantify accuracy for each method, and computational time required to advance
the solution to t=1 to quantify computational effort for the dispersive Euler system using ωc =50.

Method l2-norm Computational time CFL
to t=1

WAVE 100 2.2×10−9 0.02 1.0
WAVE 500 1.0×10−10 0.30 1.0
RKDG3 33 1.3×10−9 0.04 0.21
RKDG8 12 2.3×10−10 0.19 0.04
RKDG16 6 6.6×10−11 0.30 0.015

Table 4: l2-norm of velocity to quantify accuracy for each method, and computational time required to advance
the solution to t=1 to quantify computational effort for the dispersive Euler system using ωc =100.

Method l2-norm Computational time CFL
to t=1

WAVE 100 2.7×10−9 0.1 1.0
WAVE 500 1.0×10−9 0.4 1.0
RKDG10 10 3.5×10−10 0.18 0.028

tion with only 6 cells is more accurate than the 500 cell wave propagation method. The
16th order RKDG method with only 6 cells uses the same computational effort as the wave
propagation method with 500 cells. For large ωc, the RKDG method provides a more ac-
curate solution even when it is run at a lower effective resolution using high spatial order.
For comparable accuracy with large ωc, the RKDG method uses less computational effort
as compared to the wave propagation method. The phase errors in the wave propagation
method are caused by the large source terms compared to the advection terms that result
from increasing ωc. This hypothesis is supported by measuring larger phase errors when
the source term is increased by setting ωc = 100 as compared to the ωc = 50 solution in
Fig. 8. The ωc =100 results are shown in Fig. 9 and Table 4. In particular, the error for the
500 cell solution is larger for the ωc = 100 solution than for the ωc = 50 solution. When
the magnitude of the source term becomes large compared to the advection terms in the
equation system, the wave propagation method produces phase errors. Increasing the
source term strength for a given resolution increases the error. Table 4 shows that a 10th

order RKDG method with 10 cells has higher accuracy and uses less computational effort
than a 500 cell wave propagation method when ωc =100. Hence, the proper handling of
source terms becomes critical.

The wave propagation method uses the source term splitting described in Section 3,
and this splitting leads to the phase errors. The characteristic oscillation period caused
by the source terms is τc=2π/ωc for the solution. The characteristic time for information
to propagate is τs =∆x/cs . For the oscillation to be well resolved, τc must be sufficiently
larger than τs. For the case of the wave propagation method with 100 cells, this require-
ment is violated because τc = 0.126 while τs = 0.071, which is not sufficient to resolve τs.
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Figure 10: Velocity at t=3 with 100 cells for the wave propagation method using source splitting versus using an

unsplit implicit source term update. These are for cs =
√

2 and ωc =50. The implicit source update is included
to prove that source splitting is responsible for the phase errors. However, the implicit solution is subject to
severe diffusion.

The lack of proper sampling leads to the phase error seen in Figs. 7 and 9. The characteris-
tic frequency of the sources introduces ω−1

c time-scales that must be resolved in addition
to the other time-scales in the system. The explicit time-step must be sufficiently small
for proper sampling of the source frequency such that ∆t<ω−1

c . To further support that
the source splitting causes the phase errors, an unsplit implicit source term update is im-
plemented for the wave propagation method using 100 cells with ωc = 50. The implicit
source term update is described by

Q(t+∆t)=
(

I−∆t

2
JS

)−1[

Q(t)−∆tL(Q(t))+
∆t

2
JSQ(t)

]

, (6.8)

where L represents the flux update. Fig. 10 shows that while the implicit source term
solution is more diffusive, the phase errors are eliminated. Exploring unsplit source term
handling for the wave propagation method for equation systems with purely dispersive
source terms, without the diffusive nature of an implicit source term update, could make
the wave propagation method more robust to such phase error problems.

A von Neumann analysis is performed to specifically quantify the stability condition
for the source term update for the wave propagation method. It is noted that as long as
the condition

∆t≤ 2
√

2

ωc
(6.9)

is satisfied, the wave propagation method with a Runge-Kutta source advance is stable
in the presence of large ωc. If a ∆t is chosen such that the stability condition in Eq. (6.9) is
satisfied, and the time-step accounts for the additional ω−1

c time-scale, the wave propaga-
tion solution with 100 cells becomes diffusive. The wave propagation method generally
becomes diffusive with CFL numbers less than 1. This presents a numerical difficulty
in resolving the physical dispersions accurately while minimizing diffusive errors and
requires a higher grid resolution for the wave propagation method. Using higher order
spatial representations with the RKDG method solves this problem with less computa-
tional effort and greater accuracy in the presence of large source terms.
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7 Two-fluid plasma simulations

The two-fluid plasma model described in Section 2 is investigated using the wave prop-
agation and RKDG methods. The two-fluid plasma model contains 18 equations when
using the error correction potentials for the purely hyperbolic Maxwell’s equations [25].
The error correction potentials provide 2 additional conserved variables to the full two-
fluid equation system. They are included as a modification to Maxwell’s equations and
allow divergence errors to be advected out of the domain at a specified characteristic
speed. The challenge with this model lies in resolving all the waves propagating through
the domain with speeds ranging from the speed of sound to the speed of light. The error
correction speed for the purely hyperbolic Maxwell’s equations can be even larger than
the speed of light. This section contains four applications of the two-fluid plasma model-
a 1-dimensional soliton propagation, an axisymmetric two-fluid pulse in 1-dimension,
an axisymmetric Z-pinch equilibrium in 1-dimension and a perturbed axisymmetric Z-
pinch equilibrium in 2-dimensions.

7.1 Boundary conditions for axisymmetric problems

Ghost cells are used to specify the boundary conditions for both the wave propagation
and the RKDG methods. Using ghost cells allows for the application of Dirichlet bound-
ary conditions where the variables carry a fixed edge value and Neumann boundary
condition where the gradient at the boundary is specified.

For axisymmetric problems, the axis boundary condition is implemented at r = 0.
Appropriate boundary conditions at the axis are found by assuming the variables are
analytical about the axis and performing a series expansion about r = 0. Radial and az-
imuthal vector components are set to zero at the axis. Scalar variables and axial vector
components have no gradient normal to the axis. To implement the axis boundary con-
dition using ghost cells, the scalar variables and axial vector components are copied into
the ghost cells while the radial and azimuthal vector components are copied over to the
ghost cells with a negative sign. The problem of singularities at the axis does not arise
here because a modal implementation of the DG method is used instead of a nodal im-
plementation.

For problems with conducting wall boundary conditions, the normal velocity, the
normal magnetic field, and the tangential electric fields go to 0 at a conducting wall. To
implement this boundary condition using ghost cells, all variables are copied from the
adjacent domain cells to the ghost cells while reversing the signs of the normal velocity,
normal magnetic field and tangential electric fields. The remaining variables are extrap-
olated from the domain.

The coefficients of the RKDG method must be treated appropriately at the boundaries.
As mentioned in Section 4, Legendre polynomials are chosen as the basis functions. The
physical boundary conditions are implemented with consideration to the polynomial ba-
sis functions of the RKDG method. For example, to implement a Dirichlet boundary
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value of zero, the coefficients of all even basis functions in the ghost cells are set to the
negative of the adjacent domain cells, and the coefficients of all odd basis functions in the
ghost cells are set to the same values as the adjacent domain cells. To make the average
value at the boundary zero, the sign is flipped in the ghost cell for all the coefficients
of the Legendre polynomial that have even exponents of x since these polynomials are
the even basis functions. The polynomials with odd exponents of x are the odd basis
functions and do not require a change in sign in the ghost cells. The implementation of
the zero gradient at the boundary uses the same procedure with opposite signs for the
coefficients of the even and odd basis functions.

7.2 Two-fluid plasma soliton in 1-dimension

The two-fluid plasma model, Eqs. (2.1a)-(2.4b), is applied to one-dimensional soliton
propagation [26] where a pulse is initialized in the ion and electron densities and pres-
sures as shown in Fig. 11. The fluid pressures are initialized using fluid temperatures
such that Ti = Te = 0.01, and Bz = 1. All other fluid and field variables are initialized to
zero. The ion-to-electron mass ratio is 25. The ratio of the speed of light to the elec-
tron sound speed, c/cse = 2, and the ratio of the speed of light to the ion sound speed,
c/csi = 10. The speed of light is chosen such that it is the fastest speed in the system.
Periodic boundary conditions are used.
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Figure 11: Initial ion mass density for the two-fluid plasma soliton. Ion pressure, electron mass density, and
electron pressure have the same profile.

The wave propagation solution at a resolution of 5000 cells is chosen as the converged
solution and is used to compare the wave propagation method to the RKDG method.
This converged solution is compared to the 3rd order RKDG using 1000 cells to verify that
both methods converge to the same solution. Simulations are run to t=40 where time is
normalized by the speed of light transit time across the domain. One full period of the ion
soliton occurs at t = 100. Fig. 12 and Table 5 show that for the same effective resolution
of 512 cells, i.e., wave propagation with 512 cells, 2nd order RKDG with 256 cells and
4th order RKDG with 128 cells, the RKDG method provides a more accurate solution
than the wave propagation method. Fig. 13 shows that even when the resolution of the
wave propagation method is doubled to 1024 cells, the solution is less accurate than the
approximate effective resolution of 512 cells using 3rd, 4th, and 5th order RKDG methods.



B. Srinivasan, A. Hakim and U. Shumlak / Commun. Comput. Phys., 10 (2011), pp. 183-215 201

0 2 4 6 8 10 12
x

0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8ρi Converged

wave_512

rkdg2_256

rkdg4_128

0.5 1.0 1.5 2.0 2.5
x

0.96

0.98

1.00

1.02

1.04ρi

Figure 12: The ion mass density, ρi, is compared for
the two-fluid plasma soliton using wave propagation
and RKDG methods. The solution is shown at t=40
with c=1. The wave propagation method uses 512
cells, RKDG 2nd order uses 256 cells, and RKDG
4th order uses 128 cells so all methods have the
same effective resolution. The bottom plot has an
expanded scale to show the details of the solution.
The wave propagation method has the largest phase
errors.
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Figure 13: The ion mass density, ρi, is compared for
the two-fluid plasma soliton using wave propagation
and RKDG methods. The solution is shown at t=40
with c=1. The RKDG 3rd order solution with 171
cells and the RKDG 5th order solution with 100 cells
provide a more accurate solution than the 1024 cell
wave propagation method at double the effective
resolution. The bottom plot has an expanded scale
to show the details of the solution.

Phase errors in the wave propagation method solution are evident in the expanded scale
plots of Figs. 12 and 13. These phase errors occur in the waves that are propagating away
from the initial pulse and result from source splitting just as with the quasineutral ion
cyclotron waves explored in Section 6.

Table 5: l2-norm of ion mass density to quantify accuracy for each method and computational time required to
advance the solution to t=40 to quantify computational effort for the two-fluid soliton.

Method l2-norm Computational time CFL
to t=40

WAVE 512 1.0×10−2 19.6 1.0
WAVE 1024 3.6×10−3 43.2 1.0
RKDG2 256 4.5×10−3 20.8 0.33
RKDG3 171 8.3×10−4 9.96 0.21
RKDG4 128 4.6×10−4 19.5 0.13
RKDG5 100 3.5×10−4 10.3 0.089

The computational time required to advance the solution from t=0 to t=40 for each
method is presented in Table 5. Each method has different CFL stability limit as shown in
the 4th column of Table 5 based on Table 2.2 in [6] where the spatial and temporal orders
are taken into account to determine the maximum CFL value. When using 1024 cells, the
wave propagation method takes 2 times the computational effort as compared to the 4th
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order RKDG method using 128 cells, and 4 times the computational effort as compared
to the 5th order RKDG method using 100 cells. There does not seem to be an obvious
trend in the CPU times for the RKDG method. This nonmonotonic variability in the
CPU times is attributed to the stability condition for the RKDG methods described in [6].
CFL≤ 1/(2r−1) is valid for spatial order, r, as long as the temporal order is r+1. For
all DG spatial orders presented here, a 3rd order Runge-Kutta time integration scheme is
used because 2nd order Runge-Kutta time integration is unstable for DG when r > 2. In
order to use 3rd order Runge-Kutta time integration with r >2, the maximum allowable
CFL number is more restrictive as described in [6]. For this problem, the RKDG method
provides a more efficient solution when computational effort is taken into account as
shown in Table 5. While increasing the grid resolution eliminates the phase errors in the
wave propagation method, the RKDG method is more computationally efficient for this
problem. Two-dimensional applications of a two-fluid soliton produce similar results.

7.3 Axisymmetric two-fluid plasma pulse in 1-dimension

Following a soliton propagation application, the two-fluid plasma model, Eqs. (2.1a)-
(2.4b), is applied to an axisymmetric one-dimensional problem where a pulse is initial-
ized in the axial magnetic field, Bz, as shown in Fig. 14. The electron and ion densities
and pressures are initially constant throughout the domain with all other fluid and elec-
tromagnetic terms initialized to 0. The ion-to-electron mass ratio is 2.5 to minimize neg-
ative pressure errors and allow for faster evolution. The ratio of the speed of light to the
electron sound speed, c/cse=35, and the ratio of the speed of light to the ion sound speed,
c/csi =55. Axis boundary conditions are used on the left edge of the domain while con-
ducting wall boundary conditions are used on the right edge. The boundary conditions
are treated in the manner described in Section 7.1.
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Figure 14: Initial condition for axial magnetic field for the axisymmetric two-fluid plasma pulse.

The wave propagation solution at a resolution of 10,000 cells is chosen as the con-
verged solution and is used to compare the wave propagation method to the RKDG
method. This converged solution is compared to the 3rd order RKDG using 1000 cells
and it is verified that both methods converge to the same solution. The fluid azimuthal
velocity, vφ, shows the largest variation among the methods. For this reason, the electron
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Figure 15: The electron fluid azimuthal velocity, vφ,
is compared for the axisymmetric two-fluid plasma
pulse using wave propagation and RKDG methods.
The solution is shown at t=0.8 with c=1. The wave
propagation method uses 100 cells, RKDG 3rd order
uses 33 cells and RKDG 5th order uses 20 cells so
all methods have approximately the same effective
resolution. The bottom plot has an expanded scale
to show the details of the solution. At the same
effective resolution, the wave propagation method
performs poorest.
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Figure 16: The electron fluid azimuthal velocity, vφ,
is compared for the axisymmetric two-fluid plasma
pulse using wave propagation and RKDG methods.
The solution is shown at t = 0.8 with c = 1. The
RKDG 5th order solution uses 10 cells with an ef-
fective resolution that is 1/4 that of the wave prop-
agation method which uses 200 cells. The bottom
plot has an expanded scale to show the details of the
solution. Even with a lower effective grid resolution
that is 1/4 the resolution of the wave propagation
method, the RKDG method provides a more accu-
rate solution than the wave propagation method.

azimuthal velocity is chosen for the comparisons. Simulations are run to t = 0.8 where
time is normalized by the speed of light transit time across the domain. Fig. 15 and Table 6
show that for the same effective resolution of 100 cells, i.e., wave propagation with 100
cells, 3rd order RKDG with 33 cells and 5th order RKDG with 20 cells, the RKDG method
provides a more accurate solution than the wave propagation method. Fig. 16 shows
that even when the resolution of the wave propagation method is doubled to 200 cells,
the solution is less accurate than the effective resolution of 100 cells using 3rd and 5th or-
der RKDG methods. Even the 5th order RKDG method using only 10 cells, i.e., 1/4 the

Table 6: l2-norm of electron azimuthal velocity to quantify accuracy for each method, and computational time
required to advance the solution to t=0.4 to quantify computational effort for the two-fluid pulse.

Method l2-norm Computational time CFL
to t=0.4

WAVE 100 3.3×10−3 0.04 1.0
WAVE 200 1.7×10−3 0.14 1.0
RKDG3 33 4.2×10−5 0.07 0.21
RKDG5 20 3.6×10−5 0.09 0.089
RKDG5 10 9.9×10−5 0.03 0.089
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Figure 17: Initial conditions for the Z-pinch two-fluid equilibrium normalized to the peak values.

effective resolution of the 200 cell wave propagation method, provides a more accurate
solution than the wave propagation method with 200 cells as is seen from Table 6. The
computational time required to advance the solution from t=0 to t=0.4 for each method
is presented in Table 6. Each method has different CFL stability limit as shown in the
4th column of Table 6 based on Table 2.2 in [6] where the spatial and temporal orders
are taken into account to determine the maximum CFL value. When using 200 cells, the
wave propagation method takes 2 times the computational effort as compared to the 3rd

order RKDG method using 33 cells, and 1.6 times the computational effort as compared
to the 5th order RKDG method using 20 cells. The 5th order RKDG method using only 10
cells uses approximately 1/5 the computational effort of the 200 cell wave propagation
method and still provides a more accurate solution.

For this problem, the RKDG method provides a more efficient solution when compu-
tational effort is taken into account as shown in Table 6. It is seen that the wave prop-
agation solutions are slightly diffusive for the fluid variables. This can be attributed to
the two-fluid plasma model containing disparate wave speeds in the system, namely the
fluid speeds of sound and the speed of light. As a result, information propagating at
slower characteristic speeds in the system can be diffused. Such diffusion is not seen in
the RKDG solutions because the higher spatial and temporal order of the RKDG method
provides more accurate solutions even at lower grid resolutions.

7.4 Axisymmetric Z-pinch equilibrium in 1-dimension

The numerical methods are applied to a steady-state problem using the two-fluid plasma
model, Eqs. (2.1a)-(2.4b). A one-dimensional, axisymmetric Z-pinch equilibrium is ini-
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tialized as shown in Fig. 17.

p0 =
J2
0

1−α

(1

4
R2

p−12R4
p+

4

3
128R6

p

)

, (7.1a)

Jzi =0, (7.1b)

Jze =

{

J0(1−64r2), if r< Rp,

0, otherwise,
(7.1c)

Bφ =

{

J0

(

1
2r−16r3

)

, if r< Rp,

J0

(

1
2 Rp−16R3

p

) Rp

r , otherwise,
(7.1d)

p=

{

p0− J2
0

(

1
4r2−12r4+ 4

3128r6
)

, if r< Rp,

p0− J2
0

(

1
4 R2

p−12R4
p+ 4

3128R6
p

)

, otherwise,
(7.1e)

where Rp is the pinch radius, ρi =(mi/me)ρe =mi p/p0 and pi = pe = p/2. In these simula-
tions, Rp=1/8, α=1/10 and J0=1/10. The ion-to-electron mass ratio is 25. All remaining
variables are initialized to 0. The electron and ion density profiles shift radially a small
amount to produce a radial electric field as the initialization adjusts to find an equilib-
rium.

Axis boundary conditions are used on the left edge of the domain, and conducting
wall boundary conditions are used on the right edge.

The wave propagation method is compared to the 2nd, 3rd, 5th and 8th order RKDG
methods. The methods are compared for their abilities to maintain equilibrium. The
results shown in Fig. 18 are at a characteristic transit time of 20 on a domain r = 0 to
r =1=16rLi with a conducting wall on the right boundary. rLi is the ion Larmor radius.
The parameters used here are γ =5/3, speed of light c =1.0, ion and electron charge-to-
mass ratios of qi/mi=10, qe/me=250, ion-to-electron mass ratio of mi/me=25, ion Larmor
radius-to-domain length of rLi/x0=1/16, and ion skin depth-to-domain length of δi/x0=
1/10. At a characteristic transit time of 20, the 2nd order RKDG and wave propagation
solutions are diffusive while the 3rd order RKDG solution maintains equilibrium.

Running the solutions out to a characteristic transit time of 50 gives the results shown
in Fig. 19. The higher-order RKDG solutions, i.e., solutions greater than 2nd order, hold
equilibrium better than the wave propagation method for the same effective resolution.

When the grid resolution of the wave propagation method is doubled from 128 cells
to 256 cells, it requires more computational effort than the 3rd order RKDG method with
40 cells while still being more diffusive than the 3rd order RKDG solution. Investigating
this further in Fig. 20 with 5th order RKDG using only 15 cells and 8th order RKDG using
only 8 cells it is seen that even at a resolution of 256 cells, the wave propagation method is
diffusive as compared to the higher-order RKDG solutions with 1/3 and 1/4 the effective
grid resolution. The RKDG method at higher spatial orders holds equilibrium better
than the wave propagation method. The 3rd order RKDG solution provides the most
accurate solution for the same effective grid resolution as the 128 cell wave propagation
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Figure 18: Electron number density and azimuthal magnetic field as functions of radius after 20 characteristic
transit times are shown for the two-fluid axisymmetric Z-pinch equilibrium. The wave propagation method uses
128 cells, RKDG 2nd order uses 64 cells and RKDG 3rd order uses 40 cells so all methods have approximately
the same effective resolution. The solutions of the wave propagation method and 2nd order RKDG are diffusive.
All values normalized to the initial peak values. Lower plots have an expanded scale to show the details of the
solution.
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Figure 19: Electron number density and azimuthal magnetic field as functions of radius after 50 characteristic
transit times are shown for the two-fluid axisymmetric Z-pinch equilibrium. The wave propagation method uses
128 cells, RKDG 2nd order uses 64 cells and RKDG 3rd order uses 40 cells so all methods have approximately
the same effective resolution. The solution of the wave propagation method is diffusive compared to the 3rd

order RKDG and the 2nd order RKDG is even more diffusive. All values normalized to the initial peak values.
Lower plots have an expanded scale to show the details of the solution.
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Figure 20: Electron number density and azimuthal magnetic field as functions of radius after 50 characteristic
transit times are shown for the two-fluid axisymmetric Z-pinch equilibrium. The wave propagation method uses
256 cells, RKDG 5th order uses 15 cells and RKDG 8th order uses 8 cells so the effective resolutions of the
RKDG solutions are about 1/3 and 1/4 that of the wave propagation solution. The low resolution, high spatial
order RKDG solution holds equilibrium better than the wave propagation at 256 cells. All values normalized to
the initial peak values. Lower plots have an expanded scale to show the details of the solution.

method, as seen in Table 7. The computational time required to advance the solution for
50 characteristic transit times for each method is also presented in Table 7. Each method
has different CFL stability limit as shown in the 4th column of Table 7 based on Table
2.2 in [6] where the spatial and temporal orders are taken into account to determine the
maximum CFL value.

Table 7: l2-norm of electron number density to quantify accuracy for each method, and computational time
required to advance the solution to 50 characteristic transit times to quantify computational effort for the
two-fluid 1-dimensional Z-pinch.

Method l2-norm Computational time CFL
to t=50

WAVE 128 7.8×10−3 3.7 1.0
WAVE 256 1.5×10−3 13.8 1.0
RKDG2 64 1.3×10−2 3.8 0.33
RKDG3 40 4.4×10−4 5.4 0.21
RKDG5 15 1.7×10−3 6.7 0.089
RKDG8 8 1.9×10−3 5.7 0.04

The full two-fluid plasma model has imaginary eigenvalues for the source terms. Per-
forming a source splitting for the wave propagation method causes the equilibrium de-
cay. Bale et al. [5] discuss this problem and the treatment of the source terms. They deter-
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mine that the source term handling through the process of splitting that has been applied
to the wave propagation method might not work well for solutions close to steady-state.
At equilibrium, the variation in fluxes must balance the source terms exactly and using
split methods when the fluxes and sources are significant can introduce errors in the solu-
tion. Bale et al. suggest an alternate solution which involves only splitting the deviation
from steady-state into waves. This is done by a process of distribution of the eigen-
decomposition of the source terms into the neighboring cells based on the sign of the
corresponding eigenvalues. This, however, is not applicable to the case of the two-fluid
plasma model. The source Jacobian for this equation system has all imaginary eigenval-
ues, so this unsplit method is not suitable here.

7.5 Axisymmetric Z-pinch equilibrium in 2-dimensions

A two-dimensional Z-pinch problem is investigated using the two-fluid plasma model. A
perturbation is specified and evolved in time to see the resulting evolution of a two-fluid
drift turbulence instability. The wave propagation and RKDG methods are compared for
their abilities to capture the physics appropriately. The computational expense is also
compared for the two methods.

The axisymmetric Z-pinch simulations use the same initial conditions and perturba-
tions as in [27].

Jzi =0, (7.2a)

Jze =

{

J0, if r< Rp,

0, otherwise,
(7.2b)

Bφ =

{

1
2rµ0 J0[1+ǫsin(2πkz)], if r< Rp,

1
2

R2
p

r µ0 J0[1+ǫsin(2πkz)], otherwise,
(7.2c)

p=

{

p0− 1
4 µ0 J2

0 r2, if r< Rp,

αµ0 J2
0 R2

p, otherwise,
(7.2d)

where Rp is the pinch radius, p0=(1+α)µ0 J2
0 R2

p/4, ρi=(mi/me)ρe=p/p0 and pi=pe=p/2.
In these simulations, Rp=1/4, α=1/10, J0=1, ǫ=1/100 and k denotes the wave number.
The ion-to-electron mass ratio is 25. In two-dimensions, the initial ion density profile is
shown in Fig. 21.

Axis boundary conditions are implemented on the left edge and conducting wall
boundary conditions are implemented on the right edge, just like the one-dimensional
case. For the RKDG method, the axis and conducting wall boundary conditions are
treated in the manner described in Section 7.1. Periodic boundary conditions are im-
plemented on the top and bottom edges.

Due to the presence of large numerical dispersion in this problem, Lax-Friedrich
fluxes are used with the RKDG method instead of Roe fluxes that are used for the wave
propagation method.
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Figure 21: Initial conditions for ion density for a
two-fluid Z-pinch equilibrium in 2-dimensions.

Figure 22: Ion density after 2 Alfven transit
times for the two-fluid axisymmetric Z-pinch in
2-dimensions using the wave propagation method
with a grid resolution of 1000×1000 cells. This
high resolution solution is used as a benchmark.

Figure 23: Ion density after 2 Alfven transit times for the two-fluid axisymmetric Z-pinch in 2-dimensions using
the wave propagation method with a grid resolution of 128×128 (left plot) and 256×256 (right plot).

A sinusoidal perturbation as shown in Eq. (7.2c) with k=8 is applied to the azimuthal
magnetic field, Bφ. The solution is then allowed to evolve for the wave propagation
method with resolutions of 128×128 and 256×256 as shown in Fig. 23. This is compared
to a 2nd order RKDG solution with resolutions of 64×64 and 128×128 and a 3rd order
RKDG solution with a resolution of 128×128 as shown in Fig. 24. The plots shown are
after 2 Alfven transit times.

The drift parameter for this system is ve/vsi ≈ 8, where ve is the electron drift ve-
locity and vsi is the ion sound speed. The ratio of the pinch radius to the ion Larmor
radius, rp/rLi, is approximately 3. A high resolution solution using a 1000×1000 cell
wave propagation method is shown in Fig. 22 as a benchmark for the wave propagation
and RKDG solutions. This solution is compared to a 2nd order RKDG solution using
500×500 cells and it is verified that both methods converge to the same solution. Com-
paring Figs. 23 and 24 it is seen that both the wave propagation method and the RKDG
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(a) (b)

(c)

Figure 24: Ion density after 2 Alfven transit
times for the two-fluid axisymmetric Z-pinch
in 2-dimensions using the 2nd order RKDG
method with a grid resolution of 64×64 (a),

2nd order RKDG with 128×128 cells (b), and

3rd order RKDG with 128×128 cells (c). It is

seen that while the 3rd order RKDG solution
is closer to the converged solution, it is not
significantly different from the 2nd order solu-
tion with 128×128 cells to justify 10 times the
computational cost.

method (at 2nd and 3rd order) capture 8 wavelengths of the short-wavelength instability.
This is better seen from the instability growth rates of Fig. 25 where the perturbation in
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Figure 25: Growth rates for the perturbation in the magnetic field as a function of the time, t/τa, where τa is
the Alfven transit time. It is observed that increasing the resolution makes the instability growth rates approach
that of the high resolution solution.
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magnetic field is measured against an unperturbed solution [27]. The growth rate of the
instability is computed using

γgr =
∫∫

|∆B|2πrdrdz, (7.3)

where ∆B refers to the difference in magnetic field between the solutions of a perturbed
equilibrium and an unperturbed equilibrium. The unperturbed equilibrium solution is
needed to account for oscillations that occur in the system since the equilibrium is not a
true two-fluid equilibrium initially.

A five stage 4th order SSPRK time integration scheme [21] for the 2nd spatial order
DG solution with 128×128 cells gives the same result as the middle plot in Fig. 24. Even
though the SSP methods allow larger time steps, the physics of the two-fluid system,
specially in highly nonlinear instability problems, like the Z-pinch, does not benefit from
the increased accuracy. In fact a 2nd order TVB method gives almost exactly the same
result as a 4th order SSP method. The presence of a large number of shocks in this prob-
lem requires limiting which reduces the accuracy of the overall solution. As a result,
there appears to be no significant benefit in going to higher temporal orders in terms of
computational effort or solution characteristics.

Fig. 25 shows that increasing the resolution causes the instability to set in sooner in
time and have a greater slope. An increase in the resolution shows convergence towards
the high resolution solution. The growth rates show that the 64×64 cell RKDG solution
has the largest variation from the high resolution solution, while the 128×128 cell RKDG
solution has the least. The instability is least to best resolved in the following order -
64×64 cell 2nd order RKDG solution, 128×128 cell wave propagation solution, 256×256
cell wave propagation solution, 128×128 cell 2nd order RKDG solution, 128×128 cell 3rd

order RKDG solution. For the same effective resolution of 256×256, the 2nd order RKDG
method takes about 1.3 times the computational effort of the wave propagation method.
The wave propagation solution at a resolution of 256×256 takes about 9 times the com-
putational effort of the 128×128 cell wave propagation solution. The 2nd order RKDG
solution at a resolution of 128×128 takes about 7 times the computational effort of the
64×64 cell RKDG solution. At the same effective resolution of 256×256, the growth rates
of the RKDG and wave propagation solutions are comparable. The short wavelength
instability is better resolved at higher grid resolutions.

Comparing the 2nd and 3rd order RKDG solutions at a resolution of 128×128 in Fig. 24,
it is seen that while the 3rd order solution is closer to the converged solution, using the 3rd

order method instead of the 2nd order method may not be justified when taking the com-
putational cost into account. The 3rd order solution uses the high-order limiters from [23].
The computational effort of the 3rd order solution is about 10 times that of the 2nd order
solution for this resolution. The high-order limiters do not add significant computational
cost as compared to the simple TVB minmod limiters. Most of the computational cost
comes from solutions of the Riemann problem for each expansion coefficient at each cell
interface, where the number of expansion coefficients for each conserved variable in-
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creases substantially when the spatial order is increased. Doubling the grid resolution
while using 2nd order for the RKDG method provides a more converged solution and
only uses about 7 times greater computational effort. There might not be an advantage
of going to higher-order RKDG solutions for this problem because the application of
limiters locally reduces the solution to 1st order when sharp gradients are present. The
solutions clearly have sharp gradients throughout the domain.

8 Conclusions

The wave propagation method and the Runge-Kutta Discontinuous Galerkin (RKDG)
method are explored for equation systems with dispersive source terms. When the wave
propagation method is run with a Courant number of 1 for equation systems that only
have one characteristic speed of disturbance propagation, the solution obtained is close
to the analytical or converged solution without significant dispersive or diffusive errors.

For the ion cyclotron waves in the dispersive Euler equation system, the presence of
dispersive source terms causes phase errors when using the wave propagation method
with large source terms. This results when a characteristic frequency is high compared
to the frequency of information propagation. These errors occur due to the source term
splitting employed in the wave propagation method. The RKDG method is not a split
method and therefore does not produce such phase errors. Even using a low resolu-
tion grid and a high spatial order, the RKDG method provides an accurate solution for
dispersive equations. Using higher grid resolutions for the wave propagation method
eliminates these phase errors; however, it is more computationally expensive than a
lower-resolution, higher-order RKDG solution which provides a comparable solution.
In plasma physics, it is important to study equation systems that have source terms with
imaginary eigenvalues such as the dispersive Euler equations and the two-fluid plasma
model where the dispersive effects of the source terms need to be handled accurately to
capture the physics correctly.

The two-fluid plasma model is explored for a one-dimensional soliton propagation,
an axisymmetric one-dimensional pulse problem and a one- and two-dimensional Z-
pinch equilibrium. For the soliton propagation, it is observed that the RKDG method
with higher order is more computationally efficient than the wave propagation method
which is subject to phase errors in the propagating pulses similar to the ion cyclotron
waves in the dispersive Euler equation system. For the one-dimensional two-fluid pulse
problem, it is seen that the RKDG method performs better than the wave propagation
method when computational effort and convergence are taken into account. The solu-
tion using the wave propagation method is more diffusive for the fluid variables. This
is due to the disparate characteristic speeds in the two-fluid plasma model, namely the
fluid speeds of sound and the speed of light. The wave propagation method is run us-
ing a maximum Courant number of 1 for one-dimensional problems. The time step is
calculated based on the fastest characteristic speed in the system as a result of which
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the information propagating at slower speeds can be diffused away. This is not the case
for the RKDG method because it uses higher spatial and temporal orders of accuracy to
provide more accurate solutions. For the one-dimensional Z-pinch problem, the RKDG
method holds equilibrium better than the wave propagation method. This is attributed
to the source term splitting in the wave propagation method as discussed previously.
This is a problem with equilibrium applications of the wave propagation method and
has been studied by Bale et al. [5] Unsplit methods are not applicable to the two-fluid
plasma model because the source Jacobian in this equation system has imaginary eigen-
values. For the same computational expense, RKDG holds equilibrium better even when
using a lower resolution with higher order as compared to the wave propagation method
with higher resolution.

It is important to study dynamic solutions such as a two-fluid Z-pinch problem in
two-dimensions with a small initial perturbation applied to the equilibrium. It is seen
that both the wave propagation and the RKDG methods are able to capture the small-
scale two-fluid drift turbulence instability. Increasing the grid resolution causes the in-
stability growth rates to approach that of the converged solution. The RKDG method
takes 1.3 times more computational effort to provide a solution for the same effective
grid resolution as compared to the wave propagation method. Comparing the 2nd order
RKDG method and the wave propagation method at the same effective grid resolution
of 256×256, the growth rates are comparable. Whereas, at a lower effective resolution of
128×128 cells, the wave propagation better captures the instability as compared to the
2nd order RKDG method with 64×64 cells. Using higher orders for the RKDG solution
does not seem to be advantageous for this problem as the limiters reduce regions of sharp
gradients to first order accuracy even when high-order limiters are used. When using the
RKDG method for problems with shocks, increasing the grid resolution while using 2nd

spatial order provides a more converged solution and uses less computational effort than
increasing the spatial order.
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