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Abstract. This paper is concerned with a new version of the Osher-Solomon Riemann
solver and is based on a numerical integration of the path-dependent dissipation ma-
trix. The resulting scheme is much simpler than the original one and is applicable to
general hyperbolic conservation laws, while retaining the attractive features of the orig-
inal solver: the method is entropy-satisfying, differentiable and complete in the sense
that it attributes a different numerical viscosity to each characteristic field, in particular
to the intermediate ones, since the full eigenstructure of the underlying hyperbolic sys-
tem is used. To illustrate the potential of the proposed scheme we show applications
to the following hyperbolic conservation laws: Euler equations of compressible gas-
dynamics with ideal gas and real gas equation of state, classical and relativistic MHD
equations as well as the equations of nonlinear elasticity. To the knowledge of the au-
thors, apart from the Euler equations with ideal gas, an Osher-type scheme has never
been devised before for any of these complicated PDE systems. Since our new general
Riemann solver can be directly used as a building block of high order finite volume
and discontinuous Galerkin schemes we also show the extension to higher order of
accuracy and multiple space dimensions in the new framework of PNPM schemes on
unstructured meshes recently proposed in [9].
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1 Introduction

Finite volume and discontinuous Galerkin methods for hyperbolic conservation laws re-
quire a numerical flux. There are essentially two approaches to obtain the flux, the cen-
tered or symmetric approach and the upwind or Godunov approach. Schemes derived
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from the centered approach do not explicitly use wave propagation information and are
much simpler and general than schemes derived from the upwind approach. Among the
centered schemes we have for example the original Lax-Friedrichs scheme [29] as well as
the FORCE scheme of Billet and Toro [44] and its multi-dimensional extensions [3,12,45].
An exhaustive overview of existing Riemann solvers can be found in [43], for example.
The upwind methods use explicitly wave propagation information via the solution of
the local Riemann problem, solved exactly or approximately, resulting in more complex
schemes and restricted to systems for which the Riemann problem can be solved. How-
ever, upwind schemes are more accurate than centered schemes and are to be preferred
when the appropriate upwind information is available. This is patently evident when
attempting to capture waves associated with linearly degenerated fields, such as slip
surfaces and material interfaces. This is much more challenging than resolving non-
linear waves such as shock waves. The numerical diffusion of centered schemes, even
if high-order extensions are used, can become unacceptable as time evolves. However it
is important to clarify that not all upwind methods will resolve waves associated with
linearly degenerated fields equally well. It rather depends on the particular Riemann
solver used. This calls for a distinction between complete Riemann solvers and incomplete
Riemann solvers. Solvers in the first class have an underlying wave model that contains
all the characteristic fields of the exact Riemann solver of Godunov [20]. Incomplete
solvers adopt reduced wave models and are usually based on the largest signal speeds
present in the system. Classical examples of incomplete Riemann solvers are the Ru-
sanov scheme [37], which has a one-wave model, and the HLL solver [25], which has a
two-wave model, and its extensions [17, 46]. Another useful distinction is a linear solver
and a nonlinear solver. Linearized solvers [35] require explicit entropy fixes and fail for
low density flows. Thus the ideal Riemann solver is non-linear and complete.

The Osher-Solomon scheme [31] is a non-linear and complete Riemann solver. Ad-
ditional attractive features of the scheme are robustness, entropy satisfaction, good be-
havior for slowly-moving shocks and smoothness (differentiability with respect to its
arguments); properties that make it very attractive to the aeronautical community. The
Osher-Solomon method begins from the assumption that the flux can be split into a posi-
tive part and a negative part, and that both components are associated with correspond-
ing Jacobian matrices with positive or zero eigenvalues and negative or zero eigenvalues,
respectively. The proposed numerical flux then involves computing path dependent in-
tegrals in phase-space. In order to evaluate the integrals analytically Osher and Solomon
consider a path that is a union of disjoint local paths k, assumed to be tangential to a
corresponding eigenvector. Then the approach also requires intermediate states k−1 and
k which are joined by the partial path k. Moreover, for a genuinely non-linear field one
generally requires, in addition, a local sonic state. To find the correct intermediate states
and potential sonic states one would effectively have to solve the Riemann problem an-
alytically with an exact Riemann solver, which would make the approach unfeasible in
practice, since with the exact Riemann solver at hand, one could directly apply the Go-
dunov flux [20]. For this purpose Osher and Solomon assume a reduced solver composed
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of simple waves for which Riemann invariants are applicable. Thus, for a system of m
equations one needs to compute m−1 intermediate states and one sonic state for each
genuinely non-linear field. Then, exact integration is performed for each characteristic
field using the partial paths. For the Euler equations for ideal gases one ends up with
16 cases. As indicated earlier, the Osher-Solomon scheme has several very attractive
features. However, the solver is indeed very complex and computationally expensive.
Probably for this reason it has remained rather unattractive to the numerical community,
and particularly to the engineering and scientific community interested in applications
involving very complex hyperbolic systems.

In this paper we present a new version of the Osher-Solomon Riemann solver. The
new scheme is based on the numerical integration of a path-dependent dissipation ma-
trix. The resulting scheme is much simpler than the original one and is applicable in a
straightforward manner to any hyperbolic system for which the eigenstructure is ana-
lytically available. However, our approach is also applicable to systems for which the
eigenstructure is not available analytically since in this case the eigenstructure is simply
computed numerically using standard linear algebra packages, such as the subroutine
RG from the EISPACK package. In this way the new Osher-Solomon solver can thus
also be implemented for very complex hyperbolic PDE. The proposed scheme retains all
the attractive features of the original solver; it is non-linear, complete, entropy satisfying,
differentiable with respect to its arguments and very robust. To illustrate the potential
of the proposed scheme we show applications to the Euler equations for ideal and real
gases, the classical and relativistic MHD equations as well as the equations of non-linear
elasticity. We also report the extension of the scheme to high order of accuracy in space
and time on general unstructured meshes in multiple space dimensions.

The outline of this paper is as follows: in Section 2 we briefly review the original
Osher-Solomon scheme. In Section 3 we present a new generalized version of the Osher-
Solomon solver for one-dimensional hyperbolic systems. The proposed approach to gen-
eralized the Osher-Solomon scheme naturally leads to an analogous formulation for the
Riemann solver of Roe [35] in its weak form, as first introduced by Toumi in [48]. In Sec-
tion 4 we show first order results of our schemes for a large set of complicated hyperbolic
systems and in Section 5 we then present the extension to multiple space dimensions and
higher order of accuracy. Conclusions are drawn in Section 6.

2 Brief review of Osher’s solver

In this section we briefly review the Osher-Solomon Riemann solver and introduce ap-
propriate notation.

2.1 Notation and basic definitions

Consider a general m×m hyperbolic system of conservation laws

∂tQ+∂xF(Q)=0, (2.1)
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with the vectors of conserved variables and fluxes respectively denoted as

Q=[q1,q2,··· ,qm]T ∈Ωq, F(Q)= [ f1, f2,··· , fm]T . (2.2)

Here, Ωq is the so-called domain of definition of PDE (2.1) and is supposed to be a convex
set. The system is supposed to be hyperbolic for all Q∈Ωq. The real eigenvalues, written
in increasing order, are denoted by λi(Q) and the corresponding right eigenvectors by
Ri(Q), for i = 1,2,··· ,m. Hyperbolicity of system (2.1) is equivalent to saying that the
Jacobian matrix A(Q) of the flux F(Q) is diagonalizable, that is

A(Q)=R(Q)Λ(Q)R−1(Q), (2.3)

where R(Q) is the matrix formed by the right eigenvectors, R−1(Q) is its inverse and
Λ(Q) is the diagonal matrix whose diagonal entries are the eigenvalues λi.

We now introduce the definitions

λ+
i (Q)=max{λi(Q),0}, λ−

i (Q)=min{λi(Q),0} (2.4)

and the associated diagonal matrices Λ
+(Q), Λ

−(Q) and |Λ(Q)|, whose diagonal entries
are λ+

i (Q), λ−
i (Q) and |λi(Q)| respectively. Note that

|λi(Q)|=λ+
i (Q)−λ−

i (Q) (2.5)

and hence

|Λ(Q)|=Λ
+(Q)−Λ

−(Q). (2.6)

It is also convenient to introduce

|A(Q)|=R(Q)|Λ(Q)|R−1(Q). (2.7)

Then the diagonalization process is extended as

A+(Q)=R(Q)Λ
+(Q)R−1(Q), A−(Q)=R(Q)Λ

−(Q)R−1(Q). (2.8)

It follows that

A(Q)=A+(Q)+A−(Q), (2.9)

where A+(Q) has positive or zero eigenvalues and A−(Q) has negative or zero eigen-
values. This is a direct generalization to non-linear systems of the Jacobian splitting for
linear systems with constant coefficients. Note that we can also write

|A(Q)|=A+(Q)−A−(Q). (2.10)

The computational domain Ω is now discretized with equidistant elements Ti =
[xi−1/2;xi+1/2] of mesh size ∆x = xi+1/2−xi−1/2 and the time step is denoted by ∆t =
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tn+1−tn. Then a finite volume scheme can be obtained for (2.1) by integration over the
space-time control volume [xi−1/2;xi+1/2]×[tn;tn+1] as

Qn+1
i =Qn

i −
∆t

∆x

(

Fi+ 1
2
−Fi− 1

2

)

, (2.11)

where Fi+1/2 is the numerical flux. Upwind methods define a numerical flux by solving
the local Riemann problem for (2.1) with initial condition

Q(x,0)=

{

Q0, if x≤0,

Q1, if x>0.
(2.12)

At present there are several ways of solving (2.1), (2.12) and computing Fi+1/2. For back-
ground see [43] and references therein, for example.

2.2 The classical Osher-Solomon solver

The Osher-Solomon numerical flux [31] is obtained by first assuming the flux splitting

F(Q)=F+(Q)+F−(Q), (2.13)

with corresponding Jacobians

A+(Q)=
∂F+(Q)

∂Q
, A−(Q)=

∂F−(Q)

∂Q
. (2.14)

The Osher-Solomon flux is defined as

Fi+ 1
2
(Q0,Q1)=F+(Q0)+F−(Q1). (2.15)

In general it is not possible to find functions satisfying (2.13)-(2.14). Nevertheless, for
the Euler equations of gas dynamics with ideal equation of state Osher and Solomon
proposed expressions involving path dependent integrals in phase-space, as seen below.

From (2.14) we may write the integral relations

∫ Q1

Q0

A−(Q)dQ=F−(Q1)−F−(Q0) (2.16)

and
∫ Q1

Q0

A+(Q)dQ=F+(Q1)−F+(Q0). (2.17)

Then we can express (2.15) in three different forms, namely

Fi+ 1
2
=F(Q0)+

∫ Q1

Q0

A−(Q)dQ, (2.18a)

Fi+ 1
2
=F(Q1)−

∫ Q1

Q0

A+(Q)dQ, (2.18b)
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and

Fi+ 1
2
=

1

2

(

F(Q0)+F(Q1)
)

− 1

2

∫ Q1

Q0

|A(Q)|dQ. (2.19)

To obtain (2.18a), for example, we use (2.13) to write

F(Q0)=F+(Q0)+F−(Q0).

Then, writing (2.15) as

Fi+ 1
2
=F+(Q0)+F−(Q1)+F(Q0)−F(Q0)

and using (2.17) expression (2.18a) follows.
To obtain the numerical flux from any of the formulae (2.18a)-(2.19) requires the eval-

uation of the integrals in phase-space. However these integrals depend on the integration
path chosen. The Osher-Solomon approach is to select particular integration paths so as
to make the actual integration tractable.

A distinguishing feature of the Osher-Solomon solver results from choosing a path
I(Q) connecting Q0 to Q1 as the union of disjoint partial paths Ik(Q), for k=1,··· ,m. One
way to do this is to associate Ik(Q) to the characteristic field with eigenvalue λk(Q) and
right eigenvector Rk(Q). Ik(Q) is chosen to connect the states Q(k−1)/m and Qk/m and to
be tangential to Rk(Q). Using the parametrization q(ξ) we write

dq(ξ)

dξ
=Rk(q(ξ)),

q(0)=Q (k−1)
m

, q(ξk)=Q k
m

.











(2.20)

The second feature of the Osher-Solomon scheme is that the states Qk/m are assumed to
be known. Osher and Solomon find these states by solving the conventional Riemann
problem approximately under the assumption of an all-simple wave pattern in the solu-
tion. Under such assumption the integration is performed exactly. Applying a change of
variables we may then write

∫ Q k
m

Q (k−1)
m

A−(Q)dQ=
∫ ξk

0

∂F(q(ξ))

∂q

dq(ξ)

dξ
dξ =

∫ ξk

0
λ−

k (q)Rk(q)dξ. (2.21)

If for example, λ−
k (q) is constant along Ik(q), as for a contact discontinuity, then

∫ Q k
m

Q (k−1)
m

A−(Q)dQ=

{

0, if λk(q)>0,

F
(

Q k
m

)

−F
(

Q (k−1)
m

)

, if λk(q)<0.
(2.22)

If the path is associated with a genuinely non-linear field then care is required in splitting
the path in two parts by a sonic point. This implies the additional burden of finding the
corresponding sonic state Qsk. In the Osher-Solomon approach this task is performed in a
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similar manner to that for finding the intermediate states Qk/m. For the one-dimensional
Euler equations the complete scheme results in 16 cases, usually displayed in a 4×4 ta-
ble. For the compressible Euler equations for ideal gases see [43] for full details, for the
shallow water equations see [42].

As seen in this section, the Osher-Solomon approximate solver is rather cumbersome
and computationally expensive. This, in spite of its attractive features, has prevented
its application to a wider variety of hyperbolic systems. In the next section we describe
a fully numerical version of the Osher-Solomon scheme that overcomes its complexity,
retains its good features and makes it applicable to any hyperbolic system.

3 Towards universal Osher-Type methods

As detailed in the previous section, the original Riemann solver of Osher-Solomon [31] is
constructed on the basis of the general definition (2.19), where we now explicitly intro-
duce the integration path in phase-space:

Fi+ 1
2
=

1

2

(

F(Q0)+F(Q1)
)

− 1

2

(

∫ 1

0

∣

∣A(Ψ(s))
∣

∣

∂Ψ

∂s
ds

)

, (3.1)

where Ψ(s) is the path that links the left state Q0 and the right state Q1 in phase-space.
Ψ(s) is a Lipschitz continuous function with Ψ(0)=Q0 and Ψ(1)=Q1. Throughout this
entire article we will always choose the simple straight-line segment path

Ψ(s)=Q0+s
(

Q1−Q0

)

, with 0≤ s≤1, (3.2)

to connect the two states. With this path the Osher interface flux according to (3.1) is
defined by

Fi+ 1
2
=

1

2

(

F(Q0)+F(Q1)
)

− 1

2

(

∫ 1

0

∣

∣A(Ψ(s))
∣

∣ds
)

(Q1−Q0), (3.3)

which makes it very similar to the Roe method [35], that can be also defined in a weak,
integral manner according to [5, 32, 48] and that with the use of the segment path (3.2)
finally becomes

Fi+ 1
2
=

1

2

(

F(Q0)+F(Q1)
)

− 1

2

∣

∣

∣

∫ 1

0
A(Ψ(s))ds

∣

∣

∣

(

Q1−Q0

)

. (3.4)

Note that the only difference between (3.3) and (3.4) is that the matrix absolute value
operator and the integration operator are exchanged. It also follows trivially that for
linear hyperbolic systems with constant coefficient matrix A both schemes are identical
and also coincide with the Godunov flux based on the exact Riemann solver.

The main problem with the general definitions (3.3) and (3.4) is actually to compute
these integrals for a given hyperbolic system, where the absolute value operator of the
Jacobian may lead to very complicated expressions that are either very difficult or even
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impossible to integrate analytically. We note that even for the rather simple system of
the Euler equations of compressible gas dynamics with ideal equation of state, the Osher
flux based on the original definition (3.1) leads to a very cumbersome numerical scheme,
see [43] for details and problems. To avoid this cumbersome analytical integration com-
pletely, we propose to evaluate the integral (3.3) numerically along the segment path with
a Gauss-Legendre quadrature rule of sufficient accuracy. Given such a Gaussian rule
with G points sj and associated weights ωj in the unit interval I =[0;1], we obtain for our
generalized Osher flux the following expression:

Fi+ 1
2
=

1

2

(

F(Q0)+F(Q1)
)

− 1

2

( G

∑
j=1

ωj

∣

∣A(Ψ(sj))
∣

∣

)

(

Q1−Q0

)

. (3.5)

Since the domain of definition Ωq is supposed to be convex and the path is a straight line
segment, it is guaranteed that all the intermediate states on the path, Ψ(sj), also lie in the
domain of definition Ωq. Furthermore, the system is hyperbolic for all states Q∈Ωq and
thus also the matrix A(Ψ(sj)) is always hyperbolic for all intermediate points. This is a
very important property of the scheme (3.5). For the Roe scheme (3.6) we get with the
same strategy

Fi+ 1
2
=

1

2

(

F(Q0)+F(Q1)
)

− 1

2

∣

∣

∣

( G

∑
j=1

ωjA(Ψ(sj))
)∣

∣

∣

(

Q1−Q0

)

. (3.6)

Here, in contrast to the generalized Osher flux (3.5), it is not automatically guaranteed
that the matrix (∑

G
j=1 ωjA(Ψ(sj))) that results from the numerical quadrature process

is always hyperbolic. Furthermore, the computation of the eigenstructure is in general
more complicated for (3.6) than for (3.5) since in the case of the Osher scheme one can
directly use the (known) eigenstructure of the underlying hyperbolic system in each
Gaussian quadrature point, whereas for the Roe-type scheme (3.6) one has to compute
the eigenstructure of the matrix resulting from the integration process, which is not nec-
essarily similar to the original Jacobian matrix A(Q) of the governing PDE (2.1). On
the other hand, the Roe-type scheme (3.6) requires the computation of an eigenstructure
only once, whereas the Osher scheme (3.5) requires the eigenstructure in each Gaussian
quadrature point. In those rare cases where complex eigenvalues and eigenvectors are
encountered in the matrix (∑

G
j=1 ωjA(Ψ(sj))) of the Roe-type scheme (3.6), we locally re-

duce the scheme to the classical Rusanov flux at the affected element interface. Note that
if we use the midpoint rule (s1 =0.5, ω1 =1), both schemes (3.5) and (3.6) are identical.

Finally, we would like to remark that in contrast to the original Osher flux [31], our
new generalized formulation (3.5) is very simple to implement and yet completely general. It
works for any general nonlinear hyperbolic system. It only requires the choice of an ap-
propriate Gaussian quadrature rule (or an even more sophisticated adaptive numerical
integration technique if thought to be necessary) and the knowledge of the full eigen-
structure of A. If the eigenstructure is not known analytically, we compute it numerically
using, for example, the RG subroutine of the EISPACK package.
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4 First order results

In this section we present some results obtained with the first order version of our gen-
eralized Osher scheme (3.5). The thorough validation of the first order flux is a very
important step to assess the accuracy of the new method, before using it as a building
block in high order finite volume and discontinuous Galerkin finite element schemes.
For comparison, also some results obtained with the generalized Roe method (3.6) are
presented. For the Gaussian quadrature, a three-point Gauss-Legendre rule is used, with
points sj and weights ωj given by

s1,3 =
1

2
∓
√

15

10
, s2 =

1

2
, ω1,3 =

5

18
, ω2 =

8

18
. (4.1)

If not stated otherwise, the Courant number is set in all computations of this section to
CFL=0.9.

4.1 Burgers equation

In this subsection we solve the well-known Burgers equation

ut+
(1

2
u2

)

x
=0, (4.2)

with initial condition

u(x,0)=

{

−1, if x<0,

1, if x≥0.
(4.3)

The exact solution of the problem is a sonic rarefaction fan

u(x,t)=







sign(t), if |x|> t,
x

t
, if |x|≤ t,

(4.4)

i.e., a continuous function, for which Roe’s method is known to produce a steady rarefac-
tion shock, which in fact is a weak solution of (4.2) according to the Rankine-Hugoniot
conditions, but that violates the second principle of thermodynamics. In contrast, the
Osher scheme is known to be entropy-satisfying and therefore should converge towards
the correct entropy solution of the conservation law. The computational results obtained
at time t=0.25 on a mesh with 100 elements are depicted in Fig. 1, together with the exact
solution of the problem. We clearly see how the Roe scheme produces, as expected, an
entropy-violating rarefaction shock that is exactly resolved between two grid cells. The
original Osher scheme as well as our new Osher-type scheme are entropy satisfying and
therefore match very well with the exact solution. Note that a small glitch (in literature
also called the sonic glitch) is visible for Osher’s scheme. However, it gradually disap-
pears with mesh refinement, whereas the rarefaction shock in Roe’s scheme does not.
For an algebraic proof of the entropy condition for our new Osher-type scheme applied
to Burgers equation see Appendix B.
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Figure 1: Burgers equation. First order solutions obtained at t=0.25 with the generalized Osher scheme (3.5)
and Roe’s method [35]. The exact solution is also shown.

4.2 Euler equations of compressible gas dynamics

In this section we solve the Euler equations of compressible gasdynamics

∂

∂t





ρ
ρu
ρE



+
∂

∂x





ρu
ρu2+p

u(ρE+p)



=0, (4.5)

closed by the ideal gas equation of state (EOS)

p=(γ−1)
(

ρE− 1

2
ρu2

)

, (4.6)

where γ is the ratio of specific heats and is set to γ =1.4 in this section. Here, ρ denotes
the density, u the velocity, ρE the total energy and p the pressure. We solve a well-known
set of shock-tube problems given and explained in detail in [43]. The initial conditions of
the shock tube problems are all of the type

Q(x,0)=

{

QL, if x< xd,

QR, if x≥ xd,
(4.7)

and the initial states left and right are summarized in Table 1. The computational do-
main is Ω=[−1/2,1/2] and is discretized with 100 equidistant cells. In Fig. 2 we present
the exact solution of Riemann problems RP1-RP6 together with the computational re-
sults obtained with the new generalized Osher flux (3.5). For comparison, we also plot
the numerical solution obtained with the generalized Roe flux (3.6) based on numerical
quadrature of the path-integral as well as the standard Rusanov flux

Fi+ 1
2
=

1

2

(

F(Q1)+F(Q0)
)

− 1

2
smax

(

Q1−Q0

)

, (4.8a)

smax =max
{

|λi((Q1))|,|λi((Q0))|
}

, (4.8b)
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Table 1: Initial states left and right for the density ρ, velocity u and the pressure p for the compressible Euler
equations. The final output times, (tend) and the initial position of the discontinuity (xd) are also given.

Case ρL uL pL ρR uR pR tend xd

RP1 1.0 0.0 1.0 0.1 0.0 1.0 0.2 0.0
RP2 1.0 0.75 1.0 0.125 0.0 0.1 0.2 -0.1
RP3 1.0 0.0 1000 1.0 0.0 0.01 0.012 0.1
RP4 5.99924 19.5975 460.894 5.99242 -6.19633 46.095 0.035 -0.2
RP5 1.0 -19.59745 1000.0 1.0 -19.59745 0.01 0.012 0.3
RP6 1.0 2.0 0.1 1.0 -2.0 0.1 0.8 0.0

where smax denotes the maximum of the signal speeds encountered in the left and right
states, respectively. In literature, the Rusanov flux (4.8) is also frequently called the lo-
cal Lax-Friedrichs flux. For all test cases we note that the new generalized Osher flux
is robust, even for RP5, where the original method of Osher fails, see [43] for a detailed
discussion. As expected, Roe’s method produces a significant sonic glitch for RP2, which
does not disappear with mesh refinement. In contrast, the small glitch present in the
Osher method (and that would be even present in the Godunov flux based on the exact
Riemann solver) disappears with mesh refinement. Without showing detailed results to
save space we would like to note that for the Euler equations of compressible gas dy-
namics, the results obtained with the HLLC solver [46] and the HLLEM solver [17] are
very similar to the ones obtained with the new Osher-type scheme, since for this partic-
ular PDE system all of these Riemann solvers are complete. However, it is important to
underline that for more general and for more complex PDE systems it is not straightfor-
ward to construct HLLC or HLLEM type schemes, while our new Osher-type Riemann
solver always takes into account all intermediate waves and extends to any system of
hyperbolic conservation laws in a straightforward manner.

4.3 Ideal classical MHD equations

In this section we solve the equations of classical, ideal magnetohydrodynamics (MHD).
The augmented PDE system including the hyperbolic divergence-correction term pro-
posed by Dedner et al. [6] reads

∂

∂t













ρ
ρ~v
ρE
~B
ψ













+∇·

















ρ~v

ρ~v~v+pmI− 1
4π

~B~B

~v(ρE+pm)− 1
4π

~B(~v·~B)

~v~B−~B~v+ψI

c2
h
~B

















=0, (4.9)

with

p=(γ−1)
(

ρE− 1

2
ρ~v2− 1

8π
~B2

)

, pm = p+
1

8π
~B2. (4.10)
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Figure 2: Riemann problems RP1-RP6 for the Euler equations of compressible gas dynamics. First order results
for the density ρ, obtained on 100 equidistant cells, are shown.

Here, ρ is the gas density, ~v = (u,v,w) is the velocity vector, ~B = (Bx,By,Bz) is the vector
of the magnetic field, p is the gas pressure, pm is the sum of the gas and the magnetic
pressure, ρE is the total energy and γ is the ratio of specific heats. I is the unit matrix and
the notation ~x1~x2 denotes the dyadic product of two vectors ~x1 and ~x2. The scalar ψ is
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Figure 3: Riemann problems RP1-RP4 for the ideal classical MHD equations.
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Figure 4: Riemann problems RP5-RP7 for the ideal classical MHD equations.

used for divergence cleaning, see [6], to satisfy the constraint ∇·~B = 0 in multiple space
dimensions. In one dimension, this constraint simply reduces to ∂Bx/∂x=0.

To our knowledge, an Osher-Solomon-type flux has never been devised before in
literature for the system of MHD equations (4.9). With our general formulation (3.5),
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Table 2: Initial states left and right for the density ρ, velocity vector ~v = (u,v,w), the pressure p and the

magnetic field vector ~B=(Bx,By,Bz) for the ideal classical MHD equations. The final output times, (tend) and
the initial position of the discontinuity (xd) are also given.

Case ρ u v w p Bx By Bz tend, xd

RP1a L: 1.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.1
R: 0.1 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0

RP1b L: 1
4π 1.0 -1.0 0.0 1.0 1.0 -1.0 0.0 0.1

R: 1
4π 1.0 1.0 0.0 1.0 1.0 1.0 0.0 0.0

RP2 L: 1.0 0.0 0.0 0.0 1.0 3
4

√
4π

√
4π 0.0 0.1

R: 0.125 0.0 0.0 0.0 0.1 3
4

√
4π −

√
4π 0.0 0.0

RP3 L: 1.08 1.2 0.01 0.5 0.95 2.0 3.6 2.0 0.2
R: 0.9891 -0.0131 0.0269 0.010037 0.97159 2.0 4.0244 2.0026 -0.1
RP4 L: 0.15 21.55 1.0 1.0 0.28 0.05 -2.0 -1.0 0.04
R: 0.1 -26.45 0.0 0.0 0.1 0.05 2.0 1.0 0.0

RP5 L: 1.0 0.0 0.0 0.0 1.0 1.3
√

4π
√

4π 0.0 0.16

R: 0.4 0.0 0.0 0.0 0.4 1.3
√

4π −
√

4π 0.0 0.0
RP6 L: 1.0 36.87 -0.115 -0.0386 1.0 4.0 4.0 1.0 0.03
R: 1.0 -36.87 0.0 0.0 1.0 4.0 4.0 1.0 0.0
RP7 L: 1.7 0.0 0.0 0.0 1.7 3.899398 3.544908 0.0 0.15
R: 0.2 0.0 0.0 -1.496891 0.2 3.899398 2.785898 2.192064 -0.1

however, the flux follows very naturally once the eigenstructure of the system is known.
For the MHD equations, the analytical eigenstructure has been published in the semi-
nal paper of Balsara and Roe [36], hence our generalized Osher flux formulation (3.5)
is immediately available for this system. The initial conditions for the shock tube prob-
lems are listed in Table 2 and the ratio of specific heats is γ = 5/3 for all cases apart for
RP1a, RP1b and RP2, where it is γ = 1.4. We solve all shock-tube problems on a mesh
of 200 equidistant cells. The computational results obtained with the first order version
of our generalized Osher flux (3.5) and the Roe flux (3.6) based on numerical quadrature
of the path integral are depicted in Figs. 3 and 4, together with the exact solution. The
Riemann problem RP1a consists in a steady contact wave and problem RP1b consists of
an isolated steady Alfvén wave, which is almost perfectly well captured with both, the
generalized Osher scheme (3.5) and the Roe-type flux (3.6). This result is expected, since
both methods are complete Riemann solvers that take into account all the waves present
in the PDE system. The exact Riemann solver for MHD has kindly been provided by
S.A.E.G. Falle [18]. For an alternative exact Riemann solver of the MHD equations, see
also [47]. For comparison purposes, we also show the results obtained by the classical
Rusanov (local Lax-Friedrichs) flux (4.8). As expected, the resolution of the wave struc-
ture obtained with the generalized Osher flux (3.5) and the Roe-type scheme (3.6) is far
superior to the one obtained with the simple Rusanov flux. However, only very little dif-
ferences are visible between the solutions obtained with the generalized Osher scheme
(3.5) and the Roe-type flux (3.6), since both methods are complete Riemann solvers that
account for all the waves present in the Riemann problem.
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4.4 Ideal relativistic MHD equations (RMHD)

The ideal relativistic MHD equations (RMHD) form a particularly challenging nonlin-
ear hyperbolic PDE system, since they have the additional difficulty with respect to the
previous PDE that the primitive variables needed for expressing the flux F(Q) can not
be expressed analytically in terms of the conserved quantities Q. Instead, iterative pro-
cedures are necessary to compute F(Q) for a given state vector Q. The RMHD system
reads

∂Q

∂t
+∇·F(Q)=0, (4.11)

with the vector of conserved quantities

Q=













D
~M
E
~B
ψ













=

















γρ

γwtot~v−b0~b

γ2wtot−b0b0−ptot

~B

ψ

















, (4.12)

and the flux tensor

F(Q)=



















γρ~v

γ2wtot~v~v−~v~b+ptotI

γ2wtot~v−b0~b

~v~B−~B~v+ψI

c2
h
~B



















. (4.13)

The equation of state is

e=ρ+
p

Γ−1
, (4.14)

the Lorentz factor, denoted as γ in this section, is defined by

γ=
1√

1−~v2
, (4.15)

further quantities appearing in (4.12) and (4.13) are given by

b0 =γ~v·~B, ~b=
~B

γ
+γ~v, |b|2 =

~B2

γ2
+(vkBk)

2, (4.16)

from which total enthalpy and total pressure are then finally defined as

wtot = e+p+|b|2, ptot = p+
1

2
|b|2. (4.17)
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Figure 5: Riemann problem RP0a (steady contact wave, left) and Riemann problem RP0b (steady Alfvén wave,
right) for the relativistic MHD equations (RMHD).

In this entire section, the speed of light is supposed to be set to unity. The computation
of the primitive variables ρ, ~v and p from the vector Q of conserved quantities is very
complicated. It can not be done analytically but requires necessarily the use of an iter-
ative technique, such as Newton’s method. A very elegant, robust and efficient way of
transforming the conservative variables to primitive variables using the analytic inver-
sion of a third degree polynomial together with the solution of a single nonlinear scalar
equation is given in [51]. More details about this very interesting hyperbolic system can
be found in [1, 9, 19, 26, 34, 51]. The exact solution of the Riemann problem has been
published in [19, 34] and the eigenstructure has been made available in [1]. This allows
us immediately to apply the generalized Osher flux (3.5) to the rather complicated sys-
tem (4.11)-(4.13). We start with the assessment of the ability of the two Riemann solvers
(3.5) and (3.6) whether they conserve exactly stationary contact (RP0a) and Alfvén (RP0b)
waves. The results are depicted in Fig. 5 and we find that both schemes preserve steady
contact waves for this system but that only the generalized Roe flux (3.6) is able to con-
serve the steady Alfvén wave exactly, whereas the generalized Osher flux adds a signifi-
cant amount of spurious numerical diffusion. This diffusive behavior is still present even
when using more accurate and more sophisticated quadrature rules. The RMHD equa-
tions are the only system found so far by the authors that poses serious problems in the
conservation of steady intermediate waves for the generalized Osher flux in the formu-
lation (3.5) used in this paper. Since our flux is based on the numerical quadrature along
the segment path, further investigations about the choice of a more appropriate path will
be the topic of future research.

We then solve a series of classical shock tube problems proposed in [1] using both, the
generalized Osher flux (3.5) as well as the Roe-type flux (3.6). The exact solution has been
very kindly provided by [19, 34]. The results are depicted in 6, where in both cases we
note a remarkable improvement with respect to the simple Rusanov flux. In RP2, which
contains a sonic rarefaction we see that the generalized Osher scheme (3.5) behaves better
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Figure 6: Riemann problems RP1-RP4 for the relativistic MHD (RMHD) equations.
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Table 3: Initial states left (L) and right (R) for the relativistic RMHD shock tube problems and final times te.

Case ρ p u v w By Bz Bx te

RP0a L: 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2
RP0a R: 0.125 1.0 0.0 0.0 0.0 0.0 0.0 0.0
RP0b L: 1.0 1.0 -0.5 0.5 0.0 -1.58113883 0.0 1.58113883 0.2
RP0b R: 1.0 1.0 -0.5 -0.5 0.0 1.58113883 0.0 1.58113883
RP1 L: 1.0 30.0 0.0 0.0 0.0 6.0 6.0 5.0 0.4
RP1 R: 1.0 1.0 0.0 0.0 0.0 0.7 0.7 5.0
RP2 L: 1.0 1000.0 0.0 0.0 0.0 7.0 7.0 10.0 0.4
RP2 R: 1.0 0.1 0.0 0.0 0.0 0.7 0.7 10.0
RP3 L: 1.0 0.1 0.999 0.0 0.0 7.0 7.0 10.0 0.4
RP3 R: 1.0 0.1 -0.999 0.0 0.0 -7.0 -7.0 10.0
RP4 L: 1.08 0.95 0.4 0.3 0.2 0.3 0.3 2.0 0.55
RP4 R: 1.0 1.0 -0.45 -0.2 0.2 -0.7 0.5 2.0

than the Roe-type method (3.6) and produces a much less pronounced sonic glitch, see
zoom in Fig. 6.

4.5 The equations of nonlinear elasticity

Here, we consider the equations of nonlinear elasticity (NLE) as derived by Godunov
and Romenski in Eulerian coordinates in [21–23]. This very interesting system has been
studied numerically for example in [9, 39], where rather simple centered-type numerical
fluxes have been used. Exact solutions for the Riemann problem of the nonlinear elas-
ticity equations have first been presented in [2, 39]. In this article we will apply for the
first time a complete Riemann solver to these complex equations. We mostly follow the
notation given in [39], except for the deformation gradient that we call cij instead of Fij,
thus avoiding confusion with the flux tensor of the hyperbolic system. The vector of
conservative variables is then Q=(ρ,ρ~v,ρcij,ρE)T and the flux tensor is defined as

F(Q)=











ρ~v

ρ~v~v−σij

ρcij~v−ρcij~v

~vρE−σik~v











. (4.18)

Note that according to [39] the equation for density replaces one equation for the defor-
mation gradient, say c11. The total energy is defined as usual as ρE = ρ(e+~v2/2). The
stress tensor σij is a complicated nonlinear function of the deformation gradient cij and
depends on the equation of state (EOS) that is needed to close the system. The EOS de-
fines the internal energy e as a function of the deformation gradient cij and entropy S as
e=e(cij,S). Then, the following definitions for density ρ, strain tensor gij, stress tensor σij



654 M. Dumbser and E. F. Toro / Commun. Comput. Phys., 10 (2011), pp. 635-671

and temperature T hold:

ρ=
ρ0

det cij
, gij = c−1

ji c−1
jk , σik =ρcij

∂e

∂ckj
=−2ρgij

∂e

∂gjk
, T =

∂e

∂S
, (4.19)

where ρ0 is the constant density in the reference state. In an isotropic medium, the inter-
nal energy e is a function of three invariants of the strain tensor gij:

e(I1, I2, I3)=
K0

2α2

(

I
α
2
3 −1

)2
+cV T0 I

γ
2

3

(

e
S

cV −1
)

+
B0

2
I

β
2

3

(1

3
I2
1 − I2

)

, (4.20)

with the invariants

I1 = tr(gij)= g11+g22+g33, I3 =det(gij)=
( ρ

ρ0

)2
, (4.21a)

I2 =(g11g22−g12g21)+(g22g33−g23g32)+(g33g11−g31g13). (4.21b)

According to [39], K0 and B0 are the squared speed of the pressure and the shear wave, re-
spectively, cV is the heat capacity at constant volume, T0 is the reference temperature and
α, β and γ are constants characterizing the non-linearities in the EOS. We solve two of the
one-dimensional shock tube problems proposed in [39] using the new generalized Osher
flux (3.5). The material properties for copper are chosen as in [39], i.e., we use ρ0 = 8.9,
K0 = c2

0−4b2
0/3, B0 =b2

0, c0 =4.6, b0 =2.1, T0 =300 and cv =0.4×10−3. We use furthermore
α=1, β=3 and γ=2. The shock tube problems are solved on the domain Ω=[0;1] using
only 100 cells. Transmissive boundaries are imposed in x-direction. For this system, we
compute the eigenstructure in a fully numerical way using the RG subroutine of the EIS-
PACK package. The initial condition consists of two piecewise constant states, separated
by a discontinuity at x = 0.5. The initial states for all test cases are given in terms of the
primitive variables in Table 4. The first problem RP0 consists of an isolated, steady con-
tact discontinuity. The complete Riemann solver should conserve it exactly. We note, that
in practice this is not the case, due to the errors introduced in the numerical integration
process and most likely also due to the errors introduced by the numerical computation
of the eigenstructure. However, the resolution is much better than the one obtained with
an incomplete Riemann solver. RP1 corresponds to the three-wave shock tube problem

Table 4: Initial states left (L) and right (R) for the shock tube problems solved for the equations of nonlinear
elasticity and final output times te.

Case u v c11 c12 c21 c22 S te

RP0 L: 0.0 0.0 1.156276 0.034688 0.093191 1.002196 0.001 0.2
RP0 R: 0.0 0.0 1.0 0.03 0.02 1.0 0.0
RP1 L: 0.0 0.0 0.95 0.0 0.0 1.0 0.001 0.06
RP1 R: 0.0 0.0 1.0 0.0 0.0 1.0 0.0
RP2 L: 0.0 1.0 0.95 0.0 0.05 1.0 0.001 0.06
RP2 R: 0.0 0.0 1.0 0.0 0.0 1.0 0.0
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Figure 7: Riemann problems RP0-RP2 for the equations of nonlinear elasticity (top to bottom). RP0 is the
stationary contact wave, RP1 contains only three waves and RP2 contains all five waves.

and test case RP2 corresponds to the five-wave shock tube problem described in [39].
The second test case consists of two pieces of material that have been subject to differ-
ent strain conditions and that are afterwards attached to each other. Dr. Titarev kindly
provided us with the exact solution of the three-wave shock tube problem and with the
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numerical reference solution of the five-wave shock tube problem, as published in [39].
Our numerical results for all test cases are shown in Fig. 7. As expected, the complete
Riemann solver behaves much better than the simple Rusanov flux.

5 Extension to higher order and multiple space dimensions

In this section we use the new Osher flux (3.5) as a building block of high order finite
volume and discontinuous Galerkin schemes on unstructured meshes in multiple space
dimensions. For this purpose, we use the general framework of PN PM method proposed
by Dumbser et al. in [9]. To save space, we only recall the basic concept of the PN PM

method here and refer the interested reader to [7–10,12] for more details. The hyperbolic
conservation laws under consideration here have all the form

∂Q

∂t
+∇·F(Q)=0. (5.1)

The computational domain Ω is discretized by a set of conforming elements Ti, for exam-
ple triangles in 2D and tetrahedrons in 3D. The numerical solution of (5.1) at the current
time tn is denoted by un

h∈Vh, where Vh is the space of piecewise polynomials of degree N.
Then, we apply a reconstruction procedure to get another numerical approximation for
(5.1) that is denoted by wn

h∈Wh, where Wh is the space of piecewise polynomials of degree
M≥N. The reconstruction is done by defining a stencil Si containing the element Ti and
an appropriate set of neighbors of Ti. Before describing the reconstruction procedure, we
introduce the following operators:

〈 f ,g〉Ti
=

∫ tn+1

tn

∫

Ti

(

f (~x,t)·g(~x,t)
)

d~xdt, (5.2a)

[ f ,g]tTi
=

∫

Ti

(

f (~x,t)·g(~x,t)
)

d~x, (5.2b)

{ f ,g}∂Ti
=

∫ tn+1

tn

∫

∂Ti

(

f (~x,t)·g(~x,t)
)

dSdt, (5.2c)

which are the scalar products of two functions f and g over the space-time element
Ti×[tn;tn+1], the spatial element Ti, and the space-time boundary element ∂Ti×[tn;tn+1]
respectively.

For the reconstruction step we require a weak identity between the reconstructed
solution wh and the original numerical solution uh for all elements in the stencil, i.e.,

[φk,wn
h ]Tj

=[φk,un
h ]Tj

, ∀Tj∈Si, φk ∈Vh. (5.3)

Here, φk is a test function from the space Vh. The reconstruction equations (5.3) are solved
using the constrained least-squares method presented in [13], where the linear constraint
is given by

[φk,wn
h ]Ti

=[φk,un
h ]Ti

, φk∈Vh, (5.4)
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i.e., Eq. (5.3) must hold at least exactly in the element Ti under consideration. To en-
force monotonicity, we use the WENO scheme proposed in [13, 14]. The reconstruction
polynomials wn

h are now evolved locally inside each element using the local space-time
discontinuous Galerkin approach introduced in [11] and extended to multiple space di-
mensions in [10, 16]. Multiplying the PDE (5.1) with a test function θk = θk(~x,t) from the
space Zh of space-time polynomials of degree M, integrating the first term with the time
derivative by parts in time and introducing the initial condition wn

h , we get an element-
local system for the element-local predictor solution qh in space-time as follows:

(

[θk,qh]
tn+1

Ti
−

〈 ∂

∂t
θk,qh

〉

Ti

)

+
〈

θk,∇·F(qh)
〉

Ti
=[θk,wn

h ]
tn

Ti
. (5.5)

The resulting element-local nonlinear algebraic system (5.5) can be solved very efficiently
using the fixed-point iteration scheme proposed in [7, 9, 16]. The final PNPM scheme for
the update of the numerical solution un+1

h to the new time level tn+1 reads

[Φk,un+1
h ]t

n+1

Ti
−[Φk,un

h ]
tn

Ti
−〈∇Φk,F(qh)〉Ti

+
{

Φk,Gi+ 1
2
(q−h ,q+

h )·~n
}

∂Ti

=0, (5.6)

where q−h and q+
h denote the predictor solution from within the element Ti and from the

neighbor element of Ti, respectively. Gi+1/2 ·~n is the numerical flux in normal direction,
so we can solve local Riemann problems in normal direction and hence use the same
expression (3.5) as in the one-dimensional case, where the Jacobian A is understood as
the Jacobian of the flux in normal direction, i.e., A = (∂F/∂Q)·~n. The PN PM method is
a fully-discrete one-step scheme that can be summarized in the following three simple
steps:

1. At the current time level tn compute the piecewise reconstruction polynomials wn
h∈Wh of degree

M from the original numerical solution un
h ∈Vh represented by piecewise polynomials of degree

N using the reconstruction equations (5.3). We thus have wn
h =R(un

h), where R is a shorthand

notation for the reconstruction operator.

2. Evolve the reconstruction polynomials wn
h in time for each element, without taking into account

any neighbor information, using the local space-time DG scheme (5.5). The solution is an

element-local space-time polynomial qh = qh(~x,t)∈Zh, defined on each element Ti for all times

t∈ [tn;tn+1]. In short notation we have qh =E (wn
h), where E is an abbreviation for the element-

local evolution operator.

3. Update the numerical solution un
h to the new time level tn+1 using the fully-discrete one-step

PNPM scheme (5.6), denoted with un+1
h =un

h +PM
N (qh), where the PNPM scheme is abbreviated

with PM
N . This yields the numerical solution un+1

h at the new time level and the algorithm starts

again with Step 1.

We note that the PNPM scheme (5.6) reduces to the classical finite volume method for
N = 0 and to the standard discontinuous Galerkin scheme for N = M. A new class of
methods is obtained for N 6=0 and M>N. The one-step time integration procedure using
the local space-time DG scheme (5.5) can been seen as a direct extension to higher order of
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accuracy of the time-evolution procedure in the MUSCL method of van Leer [50]. It can
further be interpreted also as a weak formulation of the Cauchy-Kovalewski procedure
used in the original ENO method of Harten et al. [24], in the ADER schemes of Titarev
and Toro [40, 41] and in the ADER-DG & LW-DG approaches presented in [15, 33].

5.1 Numerical convergence study

The convergence studies of the two-dimensional version of our PNPM schemes are carried
out solving the Euler equations of compressible gas dynamics,

∂

∂t





ρ
ρ~v
ρE



+∇·





ρ~v
ρ~v~v+pI

~v(ρE+p)



=0, (5.7)

closed again by the ideal gas EOS

p=(γ−1)
[

ρE− 1

2
ρ(u2+v2)

]

. (5.8)

We consider the smooth two-dimensional example of a convected isentropic vortex given
for example by Hu and Shu in [27]. The initial condition is a linear superposition of a
homogeneous background field and some perturbations δ:

(

ρ,u,v,p
)

=
(

1+δρ,1+δu,1+δv,1+δp
)

. (5.9)

The perturbations of the velocity components u and v as well as the perturbations of
entropy S= p/ργ and temperature T of the vortex are given by

(

δu
δv

)

=
ǫ

2π
e

1−r2

2

(

−(y−5)
(x−5)

)

, δS=0, δT =− (γ−1)ǫ2

8γπ2
e1−r2

, (5.10)

with r2 = (x−5)2+(y−5)2, the vortex strength ǫ = 5 and the ratio of specific heats γ =
1.4. If we define the relationship between density, pressure and static temperature in a
nondimensional fashion so that the gas constant becomes equal to unity, we obtain the
following perturbations of the primitive variables density and pressure:

δρ=(1+δT)
1

γ−1 −1, δp=(1+δT)
γ

γ−1 −1. (5.11)

The computational domain is Ω = [0;10]×[0;10] and four periodic boundary conditions
are imposed. After one period of t=10, the exact solution is given by the initial condition
(5.9). For measuring the error between the numerical solution uh and the exact solution
ue, we first apply the reconstruction operator in order to get wh =R(uh) and then we use
the continuous L2-norm

‖wh−uh‖=
(

∫

Ω
|wh−ue|2dV

)
1
2
, (5.12)
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Figure 8: Sequence of triangular meshes used for the numerical convergence studies.

in which the integration is approximated using Gaussian integration formulae with ap-
propriate order of accuracy. We use the sequence of irregular triangular meshes shown
in Fig. 8 and apply both, the new generalized Osher flux (3.5) as well as a standard Ru-
sanov method (4.8) for a third order finite volume scheme, that would be a P0P2 scheme
in the more general PN PM framework. The results obtained with the Osher flux and
the Rusanov flux are summarized in Table 5 and clearly underline that even for smooth
solutions and a third order finite volume scheme, the choice of the numerical flux has
still a significant influence. We also report the absolute CPU times in seconds using one
CPU core of an Intel Core 2 CPU with 2.5 GHz. We find that on the finest meshes the
scheme based on the Osher-type flux is about 60 % slower with about 2.4 times smaller er-
rors compared to the Rusanov-based method. Further convergence results for a selected
fourth and sixth order PNPM scheme with the generalized Osher flux (3.5) are presented
in Table 6, which shows that the designed order of accuracy has been reached very well
even for very high order PNPM schemes.

Table 5: Convergence results and CPU times for third order finite volume schemes (P0P2). The standard
Rusanov flux (left) and the new generalized Osher scheme (right). Errors refer to the variable ρ (density).

NG L2 O(L2) CPU [s] L2 O(L2) CPU [s]
P0P2 Rusanov Generalized Osher
24 1.93E-01 10 9.28E-02 19
32 9.82E-02 2.3 25 4.68E-02 2.4 46
64 1.89E-02 2.4 263 8.41E-03 2.5 385

128 2.79E-03 2.8 2654 1.16E-03 2.9 4233

Table 6: Convergence results for two selected fourth and sixth order PNPM schemes using the new generalized
Osher scheme. Errors refer to the variable ρ (density).

NG L2 O(L2) L2 O(L2)
P2P3 P3P5

16 3.79E-03 8.43E-03
24 7.73E-04 3.9 2.11E-04 5.3
32 2.15E-04 4.4 1.79E-05 6.1
64 1.32E-05 4.0 3.00E-06 6.2
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5.2 Euler equations with real gas EOS

In the last section of this paper we show that the generalized Osher flux (3.5) can be even
applied to the multi-dimensional Euler equations (5.7) with real gas equation of state.
Here, we use the very well-known van der Waals model [49] given by

(p+αρ2)(1−ρβ)=ρRT, e= cvT−αρ, (5.13)

that reduces to the ideal gas EOS for α = β = 0. e is the specific internal energy that is
linked to the total energy as usual by ρE = ρe+ρ~v2/2. The eigenstructure for the Euler
equations (5.7) with general EOS can still be computed analytically, so the generalized
Osher flux (3.5) can be applied directly.

5.3 Shock-tube problems

We first solve three shock-tube problems on the domain Ω = [0;1]×[0;0.1] with the ini-
tial discontinuity located at x = 0.5 and the initial left and right states given in Table 7.
The constants in the van der Waals EOS (5.13) are chosen as α = 0.138, β = 3.258×10−5,
R=231.11 and cv =577.8. The computations are carried out with a P0P2 WENO finite vol-
ume scheme on an unstructured triangular mesh of characteristic mesh size h = 1/100.
The results are depicted in Figs. 9-11. The results obtained with the generalized Osher
flux (3.5) inside the third order WENO finite volume scheme are more accurate compared
to the ones obtained with the Rusanov flux (4.8). The exact solution of the Riemann prob-
lem has been kindly provided by Dr. C. E. Castro, who intensively studied approximate
solvers for the generalized or high-order Riemann problem, see [4].

Table 7: Initial states left and right for the temperature T, velocity ~v = (u,v) and the pressure p for the
compressible Euler equations with van der Waals EOS. The final output times, (tend) are also given.

Case TL uL vL pL TR uR vR pR tend

RP0 4.0 0.0 0.1 1.0 0.4 0.0 -0.1 1.0 0.01
RP1 0.004439155 -0.6 0.0 1.5 0.01357751 -0.4 0.0 3.0 0.2
RP2 0.004923902 0.0 0.0 1.0 0.00353618 0.0 0.0 0.1 0.2

5.4 Explosion problem

Finally, we solve a circular explosion problem with the initial condition given by

Q(~x,0)=

{

QL, if r< R,

QR, if r≥R,
(5.14)

with r2 = x2+y2, and the left and right states are taken from the previous Riemann prob-
lem RP2. The discontinuity is located at a radius of R=0.5 and the computational domain
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Figure 9: Riemann problem RP0 for the compressible Euler equations with van der Waals EOS. Stationary
contact and shear wave.

x

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

y 0
0.1

T

0

0.005

0.01

0.015

0.02

XY

Z

x

p

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

Exact solution
Generalized Osher (P0P2)

x

T

0 0.2 0.4 0.6 0.8 1
0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Exact solution
Generalized Osher (P0P2)

x

u

0 0.2 0.4 0.6 0.8 1
-0.95

-0.9

-0.85

-0.8

-0.75

-0.7

-0.65

-0.6

-0.55

-0.5

-0.45

-0.4

-0.35

Exact solution
Generalized Osher (P0P2)

Figure 10: Riemann problem RP1 for the Euler equations with van der Waals EOS.

Ω is a circle with radius one. The triangular mesh used for this computation has a charac-
teristic mesh spacing of h=1/100. Since the test case is symmetric in angular direction, a
reliable reference solution can be obtained by solving the Euler equations with geometric
reaction source terms in one space dimension with a classical second order TVD scheme
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Figure 11: Riemann problem RP2 for the Euler equations with van der Waals EOS.

on a fine mesh with 25000 cells, see [43] for more details. The results are shown in Fig. 12
and we note an excellent agreement between the numerical solution obtained with the
new Osher flux and the third order WENO finite volume scheme on the two-dimensional
unstructured mesh and the one-dimensional reference solution.

6 Conclusions

We have presented a simple and efficient generalization of the Osher-Solomon flux [31]
to general nonlinear hyperbolic systems by evaluating the path integral along a straight
line segment in phase-space in a purely numerical way with a simple Gauss-Legendre
quadrature formula. The only requirement for the application of our formulation (3.5)
is the knowledge of the full eigenstructure of the system. If it is not known analytically,
it can also be computed numerically. We have shown first order results for the Euler
equations of compressible gas dynamics, the classical and relativistic MHD equations as
well as for the equations of nonlinear elasticity. Our scheme is a complete Riemann solver
that takes into account all the waves, but it is nevertheless very simple to implement.

It can also be directly used as a building block for high order finite volume and dis-
continuous Galerkin finite element schemes in multiple space dimensions, as shown in
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Figure 12: Two-dimensional explosion problem (EP) for the Euler equations with van der Waals EOS.

Section 5, where we have presented numerical convergence studies up to sixth order in
space and time. Finally, we presented some test problems for the Euler equations with
real gas EOS. To our knowledge, this is the first time that an Osher-type flux has been
constructed for such complicated systems as MHD, RMHD, nonlinear elasticity and Eu-
ler equations with real gas EOS.

Summarizing, the main advantages of the Osher method over other Riemann solvers
are the following: first, it is a complete Riemann solver, i.e., it contains all the characteris-
tic fields of the Riemann problem. This is a major advantage over the simpler centered
schemes or incomplete Riemann solvers. Then, the Osher method does not need an en-
tropy fix, in contrast to the Riemann solver of Roe [35] or other linearized Riemann solvers.
Moreover, the Osher scheme is differentiable with respect to the left and the right state,
which makes it particularly well-suited for implicit time-stepping schemes that need the
Jacobian of the space discretization operator with respect to the numerical solution.

Further work will be carried out to extend our new approach to more complicated
equations of state, that are given, for example, only in tabulated form, or in terms of
more complicated analytical expressions, such as for example the Redlich-Kwong-Soave
EOS. Future research will also concern the implementation of the new Osher-type flux in
implicit time-stepping schemes, where the differentiability of the numerical flux should
be of great use when used within a Newton-Krylov technique.



664 M. Dumbser and E. F. Toro / Commun. Comput. Phys., 10 (2011), pp. 635-671

Acknowledgments

The research presented in this article was financed by the Italian Ministry of Research
(MIUR) under the project PRIN 2007 and by MIUR and the British Council under the
project British-Italian Partnership Programme for young researchers 2008-2009. The authors
especially would like to thank S.A.E.G. Falle, B. Giacomazzo, O. Zanotti, V. A. Titarev and
C. Castro for providing the exact Riemann solvers for the MHD and RMHD equations,
as well as for the equations of nonlinear elasticity and the Euler equations with general
EOS, respectively. The authors would also like to thank D. S. Balsara for providing the
eigenvectors and eigenvalues of the classical and relativistic MHD equations.

A FORTRAN 95 sample code

The simplicity and generality of the new Osher-type scheme presented in this article is
best illustrated in the following with a few lines of FORTRAN 95 sample code. All the
first order one-dimensional examples presented in this article have all been run with
the same computer code, where only the fluxes and eigenvectors of the PDE have been
exchanged. For systems where the eigenstructure is not available analytically, it has been
computed with the RG subroutine of the EISPACK linear algebra package.

A.1 Computation of the Osher-Type dissipation matrix

SUBROUTINE OsherMatrix(absA,QL,QR,nVar)

IMPLICIT NONE
INTEGER, PARAMETER :: nGP = 3 ! no. of Gauss-Legendre points

INTEGER :: i,nVar ! nVar = no. of variables in the PDE

REAL :: absA(nVar,nVar),QL(nVar),QR(nVar)

REAL :: sGP(nGP), wGP(nGP)

REAL :: A(nVar,nVar), Q(nVar)

REAL :: R(nVar,nVar), iR(nVar,nVar), L(nVar,nVar)

INTENT(OUT) :: absA

INTENT(IN) :: QL,QR,nVar

! Definition of the Gauss-Legendre quadrature rule

sGP = (/ 0.5-sqrt(15.)/10., 0.5, 0.5+sqrt(15.)/10. /)

wGP = (/ 5./18., 8./18., 5./18. /)

! Initialize matrix with zero

absA = 0.

! Numerical computation of the path integral along segment path

DO i = 1, nGP

Q = QL + sGP(i)*(QR-QL)

CALL PDEEigenvectors(A,R,L,iR,Q,nVar)

absA = absA + wGP(i)*MATMUL(R,MATMUL(ABS(L),iR))

ENDDO
END SUBROUTINE OsherMatrix
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Here, PDEEigenvectors is a subroutine that returns for each state Q at the current Gaus-
sian quadrature point i the Jacobian matrix A of the PDE, the associated right eigenvector
matrix R and its inverse iR as well as the corresponding diagonal eigenvalue matrix L.
Even if the eigenstructure is not known analytically, it can be computed in a fully numer-
ical way by standard linear algebra software. The subroutine computes the path-integral
of the absolute value of A along the segment path according Eq. (3.5) using the three
Gaussian quadrature points given in (4.1). This subroutine is then called from the finite
volume scheme sketched in the next subsection. If higher accuracy of the integration is
required, one could either resort to even higher order Gaussian quadrature rules [38] or
use some adaptive integration strategy, such as for example Romberg integration.

A.2 Sketch of a first order finite volume scheme based on the new general
Osher-Type Riemann solver

The following sample code of the main loop of a first order finite volume scheme based
on the new general Osher-type Riemann solver makes use of the subroutine OsherMatrix
presented in the previous subsection. It furthermore uses a subroutine called PDEFlux

that is supposed to return the physical flux F(Q).

q1 = q

DO n = 1, NMAX

! Computation of the physical fluxes for all cells

DO i = 1, IMAX

CALL PDEFlux(f(:,i),q(:,i))

ENDDO
! First order FV scheme using the new general Osher-type flux

DO i = 2, IMAX-1

CALL OsherMatrix(absA,q(:,i),q(:,i+1),nVar)

fp = 0.5*(f(:,i+1)+f(:,i))-0.5*MATMUL(absA,q(:,i+1)-q(:,i))

CALL OsherMatrix(absA,q(:,i-1),q(:,i),nVar )

fm = 0.5*(f(:,i)+f(:,i-1))-0.5*MATMUL(absA,q(:,i)-q(:,i-1))

q1(:,i) = q(:,i)-dt/dx*(fp-fm)

ENDDO
! Advance time and write solution back

time = time + dt

q = q1

ENDDO

Here, IMAX is the number of cells in x-direction, NMAX is the number of time steps and dt

and dx denote the time step and the mesh spacing, respectively. The variables f, q and
q1 have dimension (1:nVar,1:IMAX), where nVar is the number of variables of the PDE,
as in the previous subsection. The boundary conditions in the above code sample are
supposed to be Dirichlet boundaries, consistent with the initial condition of the problem,
which is appropriate for all shock tube problems presented in this paper.
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B Verification of the entropy condition for Burgers equation

In this appendix, we prove that for particular quadrature rules our new generalized
Osher-type scheme is entropy satisfying for the nonlinear Burgers equation

∂u

∂t
+

∂

∂x

(1

2
u2

)

=0, f (u)=
1

2
u2, A(u)=

∂ f

∂u
=u. (B.1)

According to [28, 30] a monotone, entropy-satisfying numerical flux (e-flux) must satisfy
the relation

E(u0,u1)=
∫ u1

u0

(

f (u)− fi+ 1
2
(u0,u1)

)

du≥0, (B.2)

where E(u0,u1) is the entropy production, u0 and u1 are the left and right states, respec-
tively, and fi+1/2 is the numerical flux function. For fluxes fi+1/2 satisfying (B.2), Jiang
and Shu were able to prove a cell-entropy-inequality and hence nonlinear stability of DG
finite element schemes in L2-norm, see [28] for details of the proof.

For the case of Burger’s equation, our new Osher-type flux (3.5) becomes

fi+ 1
2
(u0,u1)=

1

4
(u2

0+u2
1)−

1

2 ∑
j

(

ωj|u0+sj(u1−u0)|
)

(u1−u0). (B.3)

Inserting the expression of the flux (B.3) into the entropy production function E(u0,u1)
and application of some basic algebraic manipulations yields the following result:

E(u0,u1)=
(1

2 ∑
j

(

ωj|u0+sj(u1−u0)|
)

− 1

12
(u1−u0)

)

(u1−u0)
2 :=E1(u0,u1)(u1−u0)

2. (B.4)

Since the second term is quadratic, it is always greater or equal zero. It is therefore suf-
ficient to show that the first term in brackets, abbreviated by E1(u0,u1), is not negative.
In the following, we prove that condition (B.2) is verified for three particular quadrature
rules, namely for the trapezoidal rule and Gauss-Legendre quadrature rules using two
and three quadrature points. We furthermore show that the entropy condition is not
satisfied for the midpoint rule, which is the quadrature rule for which the Osher-type
scheme (3.5) coincides with the Roe-type scheme (3.6).

B.1 Trapezoidal rule

For the trapezoidal rule we have s1 =0, s2 =1 and ω1 =ω2 =1/2. Hence, the crucial term
E1(u0,u1) in the entropy production function becomes

E1(u0,u1)=
1

12

(

3(|u0|+|u1|)−(u1−u0)
)

≥0, ∀u0,u1∈R. (B.5)

Clearly, the term E1(u0,u1) is larger than zero for all combinations of left and right states
u0 and u1.
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B.2 Midpoint rule

For the midpoint rule we have s1=1/2 and ω1=1. In this case the term E1(u0,u1) reduces
to

E1(u0,u1)=
(1

4
|(u0+u1)|−

1

12
(u1−u0)

)

. (B.6)

It is evident that the term E1 can also become negative, for example whenever u1 >0 and
−2u1 <u0 <−u1/2.

B.3 Gauss-Legendre rules

Any general Gauss-Legendre quadrature rule must satisfy at least two consistency con-
ditions that correspond to an exact integration of polynomials of up to degree one:

∑
j

ωj =1 and ∑
j

ωjsj =
1

2
. (B.7)

For the case u1≤u0 (shock wave), the term (u1−u0)/12 in (B.4) is less or equal zero, hence
the relevant term E1 for the entropy production is trivially greater or equal zero. If u1>u0

and u0≥0, u1≥0 we obtain

E1(u0,u1)=
1

2 ∑
j

(

ωj(u0+sj(u1−u0))
)

− 1

12
(u1−u0), (B.8)

and with the consistency conditions of the quadrature rules (B.7) we get

E1(u0,u1)=
1

6
(2u0+u1)≥0. (B.9)

In a similar way one can prove for all u1 >u0 with u0 <0, u1 <0 that

E1(u0,u1)=−1

6
(u0+2u1)>0. (B.10)

What remains at the end is to analyze the important last case u1 > u0 with u0 < 0 and
u1 >0, i.e., the sonic rarefaction where the Jacobian crosses zero and which is exactly the
case where the simple midpoint rule fails. We give results for the case u1 >u0, u0 <0 and
u1 >0 for two particular quadrature rules in what follows:

B.3.1 Two quadrature points

For the particular two-point Gauss-Legendre rule we have s1,2=1/2∓
√

3/6 and ω1=ω2=
1/2. In this case the crucial term E1(u0,u1) in the entropy production function becomes

E1(u0,u1)=
1

2

[(1

2
|u0+s1(u1−u0)|+

1

2
|u0+s2(u1−u0)|

)

− 1

12
(u1−u0)

]

. (B.11)
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If the terms under the absolute value operators are both positive or zero, we immediately
get the result (B.9) and in a similar way we obtain (B.10) if both terms are negative. The
only open case is now if the term under the first absolute value operator is negative and
the term under the second one is positive, i.e.,

u0+s1(u1−u0)<0 and u0+s2(u1−u0)>0. (B.12)

In this case we get after some algebraic manipulations

E1(u0,u1)=

√
3−1

12
(u1−u0)>0, (B.13)

hence for all possible cases the entropy production function E(u0,u1) ≥ 0 is greater or
equal zero when a two-point Gauss-Legendre quadrature rule is used.

B.3.2 Three quadrature points

For the three-point Gauss-Legendre rule we have s1,3 =1/2∓
√

15/10, s2 =1/2, ω1=ω3=
5/18 and ω2 = 8/18. In this case the term E1(u0,u1) in the entropy production function
becomes

E1(u0,u1)=
1

2

( 5

18
|ψ(s1)|+

8

18
|ψ(s2)|+

5

18
|ψ(s3)|−

1

12
(u1−u0)

)

, (B.14)

with ψ(s)=u0+s(u1−u0). If the terms ψ(si) under the absolute value operators are either
all positive or all negative, we obtain immediately the results given in (B.9) and (B.10),
respectively. Otherwise, we have the following three cases:

• ψ(s1)<0, ψ(s2)>0, ψ(s3)>0, which requires u0 >−u1 and thus leads for this case
to

E1(u0,u1)=0.08686u0 +0.13536u1 >0. (B.15)

• ψ(s1)<0, ψ(s2)=0, ψ(s3)>0, leading to

E1(u0,u1)=0.02425(u1−u0)>0. (B.16)

• ψ(s1)<0, ψ(s2)<0, ψ(s3)>0, which requires u0 <−u1 and thus leads to

E1(u0,u1)=−0.13536u0−0.08686u1 >0. (B.17)

We therefore have shown that also when using the three-point Gauss-Legendre quadra-
ture rule our generalized Osher-type scheme satisfies the entropy condition.

In a very similar manner it is also possible to show that the four-point Gauss-Legendre
rule leads to an entropy satisfying Osher-type scheme (3.5). We conjecture that this holds
for any Gauss-Legendre rule with more than one point.
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