Commun. Comput. Phys. Vol. 10, No. 4, pp. 867-881
doi: 10.4208/ cicp.050510.031210a October 2011

Transition of Liesegang Precipitation Systems:
Simulations with an Adaptive Grid PDE Method

Paul A. Zegeling!, Istvan Lagzi? and Ferenc Izsak34*

1 Department of Mathematics, Utrecht University, P.O. Box 80010, 3508 TA Utrecht,
The Netherlands.

2 Department of Meteorology, Eotvds University, H-1117 Budapest, Pazmdny sétiny
1/A, Hungary.

3 Department of Applied Analysis and Computational Mathematics, Eotvds
University, H-1117 Budapest, Pdzmdny sétdny 1/C, Hungary.

4 Department of Applied Mathematics, University of Twente, P.O. Box 217,

7500 AE Enschede, The Netherlands.

Received 5 May 2010; Accepted (in revised version) 3 December 2010
Available online 13 June 2011

Abstract. The dynamics of the Liesegang type pattern formation is investigated in a
centrally symmetric two-dimensional setup. According to the observations in real ex-
periments, the qualitative change of the dynamics is exhibited for slightly different
initial conditions. Two kinds of chemical mechanisms are studied; in both cases the
pattern formation is described using a phase separation model including the Cahn-
Hilliard equations. For the numerical simulations we make use of an adaptive grid
PDE method, which successfully deals with the computationally critical cases such as
steep gradients in the concentration distribution and investigation of long time behav-
ior. The numerical simulations show a good agreement with the real experiments.

AMS subject classifications: 65N50, 65M50, 35B36
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1 Introduction

It is more than 110 years that Liesegang observed and reported an interesting phe-
nomenon [23]: the precipitate in some simple chemical reactions may not homogeneously
distribute. In the typical experimental setup, one chemical reagent is uniformly dis-
tributed in a gelled medium (called inner electrolyte), while the other one (called outer

*Corresponding author. Email addresses: p.a.zegeling@uu.nl (P. A. Zegeling), lagzi@nimbus.elte.hu (L.
Lagzi), izsakf@cs.elte.hu (F Izsak)

http:/ /www.global-sci.com/ 867 (©2011 Global-Science Press



868 P. A. Zegeling, I. Lagzi and F. Izsdk / Commun. Comput. Phys., 10 (2011), pp. 867-881

electrolyte) diffuses from outside. The initial concentration of the outer (invading) is cho-
sen to be much larger than that of inner one. This condition ensures the higher diffusion
flux of the outer electrolyte into the gel. In some circumstances, in the wake of the chem-
ical front some precipitation bands are formed, following each other. In 1D the distances
between the bands are determined by the geometrical law [19], see Fig. 1. For the de-
scription of this phenomenon many models have been proposed such as models based
on simple supersaturation [20] or competitive particle growth [8, 15] and models based
on phase separation [2,3,27]. A general framework for the different models in 1D has
been recently published [30]

As the pattern formation in 2D has recently gained a great interest in the engi-
neering of microsystems [17], a number of experimental studies have been performed.
Interestingly, different dynamics have been reported for similar-centrally symmetric-
experimental setups: in many cases a regular Liesegang pattern evolved [21,22], in other
experiments only one moving precipitation layer was detected [28,31].

Our aim is to exhibit and reproduce this phenomenon with numerical simulations
and to point out that this can happen using the same material coefficients with a slight
modification of initial conditions.

For a successful simulation procedure we have to choose

¢ an adequate model of the underlying chemical mechanism;

e an effective numerical method for solving the PDE for the evolution.

Among the possibilities mentioned above, we have chosen the phase separation
model proposed in [2], where the time evolution of the precipitate is described with the
Cahn-Hilliard equations, which was originally proposed in [7].

According to this model, the precipitate segregates into the low and high density
phases if its local concentration reaches a critical threshold (“spinodal point”). The cor-
responding fourth order PDE serves as an accurate model: the empirical laws for the
Liesegang patterns have been verified by numerical simulations [2] in a one dimensional
setup. The dynamics driven by the Cahn-Hilliard equations have been analyzed in a se-
ries of studies, see, e.g., [1,4,5] and is still in the focus of theoretical investigations. Note
that we investigate the Cahn-Hilliard equation within a reaction-diffusion system.

In the real applications, the regions which are used as a source of one of the reactants
are small compared to the scale of the computational domain. This results in difficul-
ties in the traditional numerical simulations due to the high concentration gradient of
the outer (invading) electrolyte and precipitate. On the other hand, frequently, pattern
formation phenomena have to be simulated over a relatively long time period. In this
way, an overly accurate space discretization or too short time steps can easily result in
very time consuming simulations. Therefore, it is important to apply an accurate and
fast numerical solver, which successfully deals with the above difficulties. Several tech-
niques can improve the computational procedures such as (i) using appropriate numer-
ical integrators; (ii) using parallel program environment (supercomputer, cluster, GRID
systems [24] or video card using specially designed program environment (CUDA) [29]),
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(iii) using appropriate spatial discretization strategies. Moreover, splitting methods [13]
and nonconforming Galerkin methods [14, 35] have been utilized for the numerical ap-
proximation.

A promising alternative is provided by the moving grid (adaptive mesh) methods
which have been applied for the numerical solution of a series of PDEs in the computa-
tional physics [6]. Typical examples are provided by phase field models describing the
dynamics of moving interfaces [16, 33], hyperbolic conservation laws [34], accurate ap-
proximation for convection dominated nonlinear problems [38] and reaction-diffusion
systems involving pattern formation [26]. Motivated by its success, in the present work,
we apply a recent adaptive numerical solver based on a moving grid technique, which
deals effectively with all of the difficulties arising in the modeling of Liesegang phenom-
ena.

2 The model

The basic chemical reaction which results in the pattern formation phenomenon can be
described by the simple equation
A+B—C , (21)

where A and B yield the inner and the outer electrolyte, respectively and C denotes the
precipitate. For some species, the precipitate C can react with the excess of A (called
redissolution) such that the product S (soluble complex) is formed:

A+C—S. (2.2)
As an interesting example we mention the reaction, where
A=NH,;OH, B=Co*", C=Co(OH), and S=Co(NH,)",

and, indeed, further species form as well; for a detailed study, see [32]. According to the
phase separation model [2,27]:
C— Chigh + Clow, (23)

where Chigh and Cj,y denote the high and the low density fragment of the precipitate,
respectively. Practically, pattern formation means in this case that we detect the regions
with high density and call them precipitation zones, see Fig. 1. The constants k., k; and A
describe the reaction rate in (2.1), (2.2) and (2.3), respectively.

In mathematical terms, we denote the concentrations of A, B and C with a, b and ¢
respectively, depending on time ¢ and spatial variables (x,y). In all of the consecutive
equations, variables in the subscript denote partial derivatives. The above chemical reac-
tions (2.1)-(2.3) correspond to the following system of partial differential equations

at(t,x,y) =DyAa(t,x,y) —R,, (2.4a)
bi(t,x,y) =DpAb(t,x,y) —R,, (2.4b)
ct(t,x,y)=—AA (ec(t,x,y) —c (t,x,y) -I-cTAc(t,x,y)) +R, (2.40)
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Figure 1: The silver dichromate Liesegang pattern in a test tube. The outer electrolyte invades from the left
end of the tube; the dark regions correspond yield the precipitate. The concentration of the inner (potassium
dichromate) and outer (silver nitrate) electrolyte are 0.01 mol/L and 1.00 mol/L, respectively.

which describe the time evolution of 4,b and ¢, respectively. D, and D; denote the diffu-
sion coefficients of A and B, respectively. The operator A refers to the space coordinates
x and y and the terms R,,R;, and R, correspond to the chemical reactions: either to (2.1)
or to (2.1)-(2.2). The choice of the functions R;, R, and R, will be specified in Section 4.

The differential operator on the right hand side of (2.4c) describes the dynamics of the
phase separation given in (2.3) by the Cahn-Hilliard equation. For an explanation of the
material coefficients A, €, ¥ and ¢ we refer to [2]. In the numerical simulations, we take
all these four constants equal to one. For a discussion on the choice of realistic parameters
we refer to [27].

In the mathematical analysis of the Cahn-Hilliard equations on a domain () the
Ljapunov functional

Lo 2.7 2
£()(D) _/Qz(c ~1%+2|VePdo
plays a crucial role. From the point of view of physics it can be recognized as free energy.
In the absence of source term, i.e., for R.=0in (2.4c), we have 9;£(c)(t) <0, which deter-
mines the evolution of c. This case has been extensively studied in [1,4,5]. In our case,
however, a nontrivial source term R, gives rise to an interesting dynamics.

We simulate the reaction in a radially symmetric setup, in a ring with an inner radius
ro and outer radius Ro, where the unknown concentrations depend only on the distance
r = +/x2+y* measured from the origin. According to the radial symmetry, a(t,x,y) =
a(t,r,®)=a(t,r) gives the spatial dependence of a. Using the identity

1 1 1
Aa(x,y)= - [[Tar]r+ ;acpcp} = artap,

and a similar, slightly more complicated, one for the operator A2 in PDE (2.4c) we can
rewrite the equations in (2.4a)-(2.4c)

D
ay= 7“ [ar+ra,]—R,, (2.5a)
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D
b= [br+7br] Ry, (2.5b)
1 1 3 1 2
Ct= [_ ; - 1’_3 + ;Cz] Cr+ [_ 1+ T_z] Crr+ [C3]rr - ;Crrr —Crrr+Re, (2.5¢)

which are investigated in the interval (r9,Ro) for 0<t<T and all of the unknown concen-
trations depend on t and r.

In the experimental setup, initially, the species A is placed into a small disk Dy with
radius r9, while a homogeneous solution containing the species B is placed into the ring
outside of Dy. The constants —1 and 1 refers to the low and the high density phase of
the precipitate, respectively. Indeed, this corresponds to the deviation from the mean
concentration, see [27]. Accordingly, we equip (2.5a)-(2.5c) with the initial conditions

a(0,7r)=0, b(0,r)=1 and ¢(0,r)=-1, for r&(ry,Ro).

In the real experiments, the continuous inflow of A is ensured at the boundary 0Dy such
that here the concentration of A is fixed and is one magnitude larger than that of B. It is
assumed that the invading species A turns into precipitate such that no outflow occurs
at the other boundary of the ring. In practice, the species B is often placed into a gel such
that it can not leave this region. The same is valid for the precipitate C such that we apply
mixed boundary condition for A and homogeneous Neumann boundary conditions for
B and C as follows:

a(t,ro)=100, a,(t,Ry)=0, for t€(0,T),
b,(t,r0) =b,(t,Rp) =0, for t€(0,T),
cr(t,r0) =cr(t,Ro) =0, for t€(0,T),
dy(t,r0)=d,(t,79) =0, for te(0,T),

where d = ¢, is an "artificial” PDE variable denoting the second derivative of the pre-
cipitate concentration c¢(f,r). Introduction of the function d makes the PDE system better
balanced for the numerical formulation as described in the next section, since we now
have four PDEs of second-order, instead of two PDEs of second and one of fourth order.
Imposing the last condition means that we take, in fact, the third derivative of c zero at
the two boundaries. A natural and consistent initial condition for d(t,r) is: d(0,r) =0.

3 An adaptive moving grid technique

In the simulations, the concentration gradient is high near those locations, where the
high concentration phase can be observed. For an accurate numerical approximation,
therefore one has to apply a very fine spatial grid. On the other hand, at those locations,
where the concentration of A is low or the low density of C does not result in phase
separation, a coarse grid would be satisfactory. The locations with high density of C are
moving as the precipitation system evolves such that a proper solver should operate with
an adaptive moving grid.
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3.1 Transformation of the PDE system to new coordinates

The adaptive moving grid is based on an additional coordinate transformation of the
form r=r(6,p), t=0, with Jacobian J =T,, to obtain the following PDE system in the new
coordinates, i.e., a, b, c and r depend now on the variables 6 and p:

jag—apr(;:Du(aTP-i-(a?p))p—jRu, (3.1a)
jbg—bprgsz(bTP—i- (b—;))p—ij, (3.1b)
Jco—Coro= [—%—%Hé] cp—jd+rlch+3(§cp)p— %dp— (%)ﬁm, (3.10)
0— (%")p—jd. (3.1d)

The transformation 7(6,p) : [0,T] x [0,1] — [0,T] X [ro,Ro] is defined in the next section as
a solution of a so-called adaptive grid PDE. Note that in the transformed coordinates, in
which the PDE solution is expected to behave “mildly” compared to the original coordi-
nates, a uniform grid with Ap=constant=C is chosen.

3.2 The adaptive grid PDE method

To obtain a smooth spatial grid distribution and also smooth grid trajectories in the time
direction, we let the adaptive grid transformation r(6,p) satisfy the following PDE [37]:

%[ Jow]p+[S(T)w], =0, (3.2)

with 7(6,0) =ro, 7,(0,0) =0, 7(6,1) =Ry, ,(6,1) =0 and initial condition 7(0,0) =79+ (Ro—
10)p, i.e., a uniform starting grid. Here, the spatial smoothing operator S is defined by
_, 02

S=I—-o0(c+1)C 32

with Z the identity operator and ¢ > 0 a spatial smoothing constant. Further, 7; in (3.2)
represents a temporal smoothing constant, which may be taken ~1073x the “critical”
time-scale in the simulation (small enough to capture rapid solution changes in the time-
direction). Finally, the function w is a monitor function given by

Ro
w(6,0)=a(0)+|c/|, oc(G):/yO |cy|dr. (3.3)

Remark 3.1. For ;=0 =0 (i.e., switching off all smoothing), the adaptive grid PDE (3.2)
reduces to a boundary-value representation of the well-known equidistribution principle

(Jw)p=0% (rpw),=0, (3.4)
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with boundary conditions r(6,0) =ro, (6,1) = Ry and initial condition r(0,0) =79+ (Ro—
ro)p- A discretization of (3.4) gives the equidistribution relation

Ar;w; = constant,

where Ar; denotes distance of the ith and (i+1)th grid points.
It can be proved that for the non-uniform grid arising from the discretization of the
adaptive grid PDE (3.2), the following properties hold:

1. J >0, V0 >0 (monotonicity of the grid points is preserved),
2. 0(1) =35 <5 <2 = 0(1), Viand V6> 0.

However, taking too large values for 7; or ¢ results in an unwanted situation namely:
3. ;= 00=ry—0, V>0 (a non-moving grid),

4. 0 —oc0o=J —1, V8>0 (a uniform grid).

The time-dependent adaptivity parameter a(0) serves to smoothly distribute the grid-
points between parts of the domain with high spatial activity (|c,| > 1) and low spatial
activity (|c,| < 1). In fact, the choice for a(f) in (3.3) gives a grid distribution for which
approximately 50% of the grid points positioned in the region where the first spatial
derivative of the precipitate c(t,r) is large and the other half in the remaining part of the
domain. Property 2 in (3.1) with o= (1), is of importance to keep the non-uniform grid
”quasi-uniform”, i.e., the same formula, Ar; 1 /Ar;j=1+O(Ar;) for each point of time dur-
ing the simulation. For details on the theoretical background of these properties and the
importance of the additional smoothing, we refer to [9,11,36] and the references therein.
The PDE system in Eq. (3.1) in combination with (3.2) is semi-discretized with central
finite differences in the p-coordinate. This results in a large nonlinear system of 5N or-
dinary differential equations (ODEs), where N denotes the number of spatial gridpoints:
N=1/Ap. For the efficient and stable numerical time-integration in the 6-direction BDF-
methods are used with variable stepsize and variable order (DASSL, see [25]). In all
numerical experiments we took, unless otherwise specified, the following values for the
numerical parameters: 7, =0.1, c =2, N =400 and the time-tolerance in DASSL = 107°.
For the derivation of (3.2) and the proof of the statements in (3.1) see [37].

Remark 3.2. Note that the grid redistribution algorithms used in [33,34] can be applied
in higher dimensions as well, while the procedure used in the present paper is restricted
to space dimension one but deals with a system of fully coupled PDE’s. Accordingly,
the assumption on the radially symmetric setup results in a spatially one-dimensional
system of PDEs. At the same time, the method is sophisticated and provides a guarantee
that a smooth grid will be obtained with the properties as mentioned in (3.1). A possible
extension of the present method is discussed in [10] using interpolation and filtering. The
applicability of the present method extends to systems of PDEs including higher order
derivatives.
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4 Simulation results

We perform the simulations for different values rq of the initial radius, focussing to the
case, when this is small compared to the scale of the ring corresponding to an initial point
source. This results in large coefficients in (2.5a)-(2.5c), which can affect the accuracy of
the computations. Also, the structure of the formed precipitate can highly depend on the
value of rg [22,28].

4.1 Simulation based on the reaction (2.1)

First we investigate the reaction-diffusion system in absence of the redissolution step
(2.2):
Ra - Rb - RC - kcab,

with k. =1. In the following simulations, computations have been performed on the in-
terval (r,70+300) in the time range t € [0,6000]. The results for various initial radii o at
the final stage t=6000 are shown in Fig. 2. Comparing the results in Fig. 3 one can see that
for r9 =0.01 a single thick precipitation zone evolves. A qualitatively similar evolution
can be observed for rp=0.1. At the same time, for rp =1 and ¢y =10 consecutive precip-
itation zones appear with an increasing thickness similarly to a regular one dimensional
Liesegang pattern. This corresponds to the experimental observations, see Fig. 1.

15 15

0.5
—~
=
e
@]

-0.5

-15 -15

0 50 150 250 350 0 50 150 250 350
R R

15 15

0.5 0.5
e e
& &
O O

-0.5 -05

—
-15 -15
0 50 150 250 350 0 50 150 250 350
R R

Figure 2: The precipitation pattern in the simulations for ry =10, rg=1, rg =0.1 and rg =0.01, respectively
at t=6000. x axis: distance from the initial interface of the reactants, y axis: scaled concentration of the

precipitate.
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Figure 3: Concentration of the reactants A (left) and B (right) for ro =10, ro=1, r9 =0.1 and ry =0.01,
respectively at t=6000. x axis: distance from the initial interface of the reactants, y axis: scaled concentration
of the reactants.

Note that indeed, we consider a two-dimensional setup such that the classical empir-
ical laws [12,18,27] describing the Liesegang patterns are not valid any more.

For a complete description of the reaction, we have also depicted the concentration
of the species A and B at the final stage, shown in Fig. 3. One can see that the species
B is depleted in the region where the phase separation occurred and a relatively small
concentration of A can evoke the reaction.

The sharp boundary of the precipitation zone is characterized by the second deriva-
tive of the concentration of the precipitate, which are shown in Fig. 4 for various values
of the initial radius 7. The time evolution of the precipitate system and the performance
of the adaptive moving grid technique can be seen in Fig. 5. Here, at time ¢, the horizon-
tal sections indicate the grid points in the tessellation of the interval (rp,7o+300). As the
system evolves, the regions with the fine grid move such that they are always present
at the interface of the precipitation zones. These zones become dark in the subfigures.
Initially, it takes some time until the grid system is built such that an unstructured dark
zone can be observed. During the reaction some precipitation zones can form (see the
second subfigure in Fig. 5 at time ~ 4100) and can disappear (see the first and the second
subfigure in Fig. 5 at time ~ 5200).

In the adaptation procedure, the grid transformation r(6,p) is highly influenced by
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Figure 5: Time variation of the computational grid during the simulation between ¢ € [0,6000] for rg=10, ro=1,
ro=0.1 and 9 =0.01, respectively.
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Figure 6: Time variation of the adaptive parameter (@) on the time interval [0,6000] for rg=10, ry=1, rp=0.1
and rg=0.01, respectively.

the monitor function w, which depends on the adaptive parameter «(6). This function is
plotted for the different initial radii in Fig. 6. Comparing with Fig. 5 one can observe that
the parameter is increasing when a new precipitation zone forms and decreasing when a
zone disappears.

Another point in favor of the adaptive moving grid technique are the relatively low
computational costs compared with a uniform (fixed in time) grid. For a comparison
in terms of efficiency and accuracy, we refer to the figures in Table 1. There, we have
displayed for different numbers of grid points N (both for the adaptive grid and the

Table 1: A comparison of the accuracy and efficiency between adaptive moving grid and uniform grid results
for one of the described cases.

N Method | CPU time | Overshoot | Width | Position
400 | Adaptive 3m 21s 0.0109 16 572
600 | Adaptive | 4m 50s 0.0036 24 562
800 | Adaptive | 6m 32s 0.0017 22 565
1200 | Uniform 2m 24s XXX XXX XXX
1800 | Uniform 3m 55s 0.0098 112 598
2400 | Uniform 5m 52s 0.0057 118 586
3000 | Uniform 7m 44s 0.0038 20 578
6000 | Uniform 17m Os 0.0011 21 568
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uniform grid case) not only the CPU time, but also a series of characteristic values of
a typical numerical experiment. In the last three columns, respectively, the overshoot
(above the value of 1), the width of a typical zone and the position on the r-axis of this
zone are shown. To have a regular pattern structure, we took ro =200, R = 1200 and
point of time t = 60000. We can see that for N = 600 the adaptive results correspond
approximately with the uniform results for N =3000. For this case, the adaptive run was
almost twice as fast. The uniform grid case with N = 1200 resulted in very inaccurate
solutions which we did not evaluate. These are denoted by the symbol XXX in Table 1.

4.2 Modeling of redissolution scenario

For a more detailed model, we incorporate also reaction step (2.2) corresponding to the
redissolution of the precipitate. It can occur in the excess of the outer electrolyte. Accord-
ingly, the reaction terms in (2.5a)-(2.5¢c) are

Ry=keab—ksa(c+1), Ry=kab and R.=kcab—ksa(c+1).

In the corresponding simulations (see Figs. 7 and 8), we have used k. =1 and different
parameters k; =0, ks = 0.005, ks =0.0001, corresponding to the reaction rate in (2.2). One
can observe that the precipitation zones will move during the reaction. To keep track the
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corresponding dynamics precisely, it is essential to apply a moving grid, which becomes
dense only at the interface of the low and high phase regions of the precipitate.

5 Discussion

In this paper, we exhibited the dependence of the dynamics of Liesegang type precipita-
tion systems on the initial condition: in some cases a regular precipitation system evolves
in other cases only one moving precipitation front emerges. This is possible in case of the
same material coefficients with an appropriate choice of the radius of the region where
one of the reactants is placed. To our best knowledge this transition could not yet been
reproduced numerically. The simulations need a special care: steep concentration gradi-
ents require locally an accurate spatial discretization and these regions has to be shifted
or even canceled as the system evolves. The method presented here is able to deal with
different chemical mechanism as the redissolution scenario and has a clear advantage in
terms of the computation costs.
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