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Abstract. Efficient algorithms for the simulation of strained heteroepitaxial growth
with intermixing in 2+1 dimensions are presented. The first of these algorithms is an
extension of the energy localization method [T. P. Schulze and P. Smereka, An energy
localization principle and its application to fast kinetic Monte Carlo simulation of het-
eroepitaxial growth, J. Mech. Phys. Sol., 3 (2009), 521–538] from 1+1 to 2+1 dimensions.
Two approximations of this basic algorithm are then introduced, one of which treats
adatoms in a more efficient manner, while the other makes use of an approximation
of the change in elastic energy in terms of local elastic energy density. In both cases,
it is demonstrated that a reasonable level of fidelity is achieved. Results are presented
showing how the film morphology is affected by misfit and deposition rate. In addi-
tion, simulations of stacked quantum dots are also presented.
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1 Introduction

The computational cost of simulating heteroepitaxial growth with misfit strain using ki-
netic Monte Carlo (KMC) is orders of magnitude greater than that for strain-free growth
due to the need to update the long-range elastic deformation of the film as the simula-
tion proceeds. Until recently, this has prevented the widespread use of KMC for such
simulations, especially in 2+1 dimensions. In this paper, we extend, from 1+1 to 2+1 di-
mensions, methods introduced in earlier work [1,22], refine somewhat a key result upon
which those methods are based, and introduce new approximations to further enhance
computational performance.
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The rationale for KMC simulations aimed at understanding the growth and relaxation
of crystals is based on molecular dynamics (MD) simulations and transition state theory.
The essence of this model is that the system spends most of its time randomly oscillating
within the N-particle configuration space about a local minimizer xm ∈R

3N of the sys-
tem potential energy, U(x), with rare transitions between these basins of attraction. The
harmonic approximation to transition state theory estimates the rate ra→b at which the
transition occurs as

ra→b =Kexp
(

−
∆U

kBT

)

, (1.1)

where ∆U is the minimum energy barrier that must be overcome in moving from the
initial, locally minimizing configuration, xa, to a neighboring one, xb, in configuration
space, K is a weakly temperature-dependent oscillation ”frequency” and kBT is an energy
scale defined by the temperature of the film.

These observations suggest an alternative model where the Newtonian dynamics is
replaced by a continuous time Markov-chain, with the system making relatively rare,
random transitions between states that represent local minimizers, xa, in the system’s
configuration space at rates ra→b calculated from (1.1). More specifically, the energy bar-
rier

∆U =U(xs)−U(xa), (1.2)

requires locating both the initial local minimum, xa, and the saddle point, xs (where
∇U =0 and all but one of the principal curvatures are positive), separating the basins of
attraction. Note that these local minima and saddle points are, in principle, determined
by the motion of all of the particles simultaneously within the configuration space. When
this sort of scheme is carried out in detail, it is referred to as off-lattice KMC or on-the-
fly KMC [2, 6, 7]. While this is much faster than the corresponding MD simulation, or
even accelerated MD simulations based on similar considerations [21, 24], it is still pro-
hibitively expensive in that one could not hope to simulate the growth of a crystal on
physically relevant space and time scales.

For single-crystal, homoepitaxial systems, an often-used and greatly simplified model
immediately suggests itself. In the simplified approach, the states are approximated us-
ing occupation arrays structured in the form of a perfect lattice-most often simple cubic,
but face centered cubic and other lattices are also used; the allowed transitions are re-
stricted to a limited catalog of characteristic events (e.g., single particle moves to neigh-
boring sites); and the transition rates are parameterized based on the local lattice config-
uration. Indeed, it is this type of model that people generally refer to when they speak of
KMC.

A well known example is nearest-neighbor, bond-counting KMC. In this model, atoms
are restricted to positions on a simple cubic lattice, and the surface of the film, hij ∈Z, is
often assumed single valued (the solid-on-solid assumption). Only surface atoms can
move, and they move by hopping to a randomly chosen neighboring site in one of the
four orthogonal directions. The hopping rate for the surface atom at site (i, j) is taken to
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be

rij =Kexp
(

−
γnij

kBT

)

, (1.3)

where nij is the number of bonds this atom has with its nearest neighbors and γ is the
bond energy. While this model is idealized, it captures the essential physical effects of
homoepitaxial growth, such as surface diffusion and nucleation. Furthermore, the model
satisfies detailed balance, which implies that, in the absence of deposition, the model
will approach an equilibrium solution (in a statistical sense). Notice that the rates for
this model are independent of the particle’s destination; there exist many variations on
this model that account for such non-nearest neighbor effects. Finally, it is important to
realize that bond-counting KMC is orders of magnitude faster than off-lattice KMC, a gap
in performance we seek to bridge by introducing intermediate approximations.

Bond counting models are inappropriate when the basins of attraction are modified
by long-range elastic deformation. In particular, the misfit strain in heteroepitaxy falls
into this latter category. Our approach will be similar to that proposed by Orr et al. [16],
in which they modify (1.3) to

rij =Kexp
[ (−γnij+∆W)

kBT

]

, (1.4)

where W is the total elastic energy of the system in mechanical equilibrium and

∆W =W(with surface atom (i, j))−W(without surface atom (i, j)). (1.5)

In this way the contribution of the long-range, elastic interactions is included in the hop-
ping rates. It is not hard to verify that this model also satisfies detailed balance. This for-
mulation has been the basis of KMC models used for simulating heteroepitaxial growth
in a number of studies [1, 9, 12, 19, 22].

In this paper, we extend to three dimensions a modification of (1.4) proposed by
Baskaran et al. [1] to account for intermixing of the film and substrate material. We shall
consider two species of atoms denoted type 1 and type 2. For most of our simulations
we will consider the situation in which atoms of type 2 are deposited on a substrate of
type 1. We will let γαβ denote the bond strength between atoms of type α and type β. The
hopping rate of a surface atom at site (i, j) is given by

rij =Kexp
[ (−ED−B+∆W)

kBT

]

, (1.6)

where

B= B11+B22+B12−(a+4b)γ12, with Bαβ =
(

aN
(1)
αβ +bN

(2)
αβ

)

γαβ.

We will let N
(1)
αβ denote the total number of bonds of type α and β connecting the atom

at site (i, j) and its nearest neighbors. N
(2)
αβ is analogously defined but for next-to-nearest
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neighbors instead. We observe for an isolated atom of type 2 on a substrate of type 1 that
B = 0. This implies that ED is the energy barrier for the diffusion of a type 2 adatom on
a type 1 substrate in the absence of elastic strain. The parameters a and b allow one to
change the shape of the islands. For all our simulations we take a=0.5 and b=1.8.

The elastic interactions are accounted for using a ball and spring model with longi-
tudinal and diagonal springs having spring constants kL and kD respectively. The elastic
effects arise because the natural bond length of materials 1 and 2 are different. We will
denote these lengths as a1 and a2. The misfit is then µ =(a2−a1)/a1. The details of this
model can be found in Russo and Smereka [19] and Baskaran et al. [1]

In the next section, we review the energy localization method for fast simulation of
KMC with strain developed in [1, 22]. We present results of this method extended to 2+1
dimensions along with some convergence checks. We then introduce two approximations
of this method which have the advantage of being faster and reasonably accurate. Finally,
we present several examples of heteroepitaxial growth. A sequence of simulations is
displayed which shows the effect of increasing the lattice misfit, followed by another one
showing the effect of the deposition rate over the range from 0.01 monolayers/second
to 10.0 monolyaers/second. We also present a series of annealing studies in which a
single three dimensional island is annealed. It is shown that as the volume of the island
increases one observes a transition not unlike the pyramid-to-dome transition observed
for germanium on silicon.

2 Energy localization method

In this section we review our algorithm for simulating the ball and spring model de-
scribed above. First, we recall the steps required for the implementation of an arbitrary
KMC model:

1. Compute all of the rates {rij}.

2. Compute the partial sums

pI J =
I

∑
i=1

J

∑
j=1

rij.

3. Generate a random number r∈ [0, pMM), for an M by M surface.

4. Execute the corresponding event.

5. Go to Step 1.

When elastic effects are included, the first step is by far the most time consuming, as each
calculation of ∆W involves solving a large linear system. Considerable effort has been
expended developing efficient methods for performing this calculation. In particular,
multigrid methods with artificial boundary conditions have been developed to quickly
solve for the elastic field [1, 19, 20].
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In more recent work [22] we introduce three ideas aimed at speeding up this basic
algorithm, which we extend to three dimensional growth in this paper. The first idea
is to implement a rejection scheme, which reduces the number of rate calculations from
O(M2) to O(1). In [22] this was based upon an empirical observation of the energy
barrier data. Below, we demonstrate that this observation extends to three dimensional
films, but, more importantly, offer additional insight into why one should expect such an
observation to hold. Next, we briefly review an energy localization principle, where we
previously showed that very accurate estimates of ∆W can be obtained using local rather
global updates of the elastic field. The final ingredient in the previous work was an
expanding box method-a simple iterative technique based on successive over-relaxation
(SOR) in a series of nested domains. Collectively, we refer to the full implementation
of these three techniques as the energy localization method. In Section 3, we introduce
further improvements of this method.

2.1 Reduced rejection scheme

As in the earlier, two-dimensional study [22], it is observed through extensive numerical
calculations that

CLwij <∆W <CUwij, (2.1)

where CL =CL(kL,kD), CU =CU(kL,kD) and wij is the total elastic energy contained in the
springs attached to the moving atom before it is removed. We find, for example, that for
the values of kL and kD used in this paper CU ≈1.5. These results are illustrated in Fig. 1,
where we plot ∆W versus wij for every atom on a surface featuring a number of islands.
Notice if one just removed the surface atom but did not allow the springs to relax, one
would find that ∆W = wij. This implies that the difference ∆W−wij corresponds to the
work as the crystal relaxes after the atom is removed.

For our present purposes, CU is used to determine an upper bound on the rates:

r̂ij =Kexp
[ (−ED−B+CUwi,j)

kBT

]

. (2.2)

The rate tables consist of these upper bounds on the rates. The results presented in this
paper actually use a slightly smaller value of CU, shown in Fig. 1. The rougher approxi-
mation gives a lower rejection rate and a somewhat faster computation. The number of
events that are under-sampled as a result is extremely small; a calculation with the larger
value of CU was performed to verify that the results were unaffected by this choice. Fur-
ther, the surface shown in Fig. 1 is a more extreme case, giving rise to more outlying data
points, than that which is typically encountered. When an atom is selected, the true rate
rij is then calculated and the move is accepted with a probability equal to rij/r̂ij. In future
work, it may also be possible to exploit the lower bound as well to automatically accept
a certain fraction of the candidate moves without performing any elastic updates.

One can begin to understand the nature of these bounds by considering a much sim-
pler calculation using a well know result due to Eshelby [5]. Consider the situation of
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Figure 1: The figure on the right is a scatter plot of ∆W versus wij for every atom on the surface shown on the
left. The blue and red curves are approximate upper and lower bounds, while the green curve is an approximate
best fit, and the cyan curve is a less conservative upper bound used in the numerical procedures (see text).

an infinite, three-dimensional, elastically isotropic material with a varying stress field
denoted tij. The elastic energy density can be decomposed into two pieces

w=U+V,

where

U =
1

18κ
(tℓℓ)

2 and V =
1

4µ

(

tij−
1

3
δijtℓℓ

)2
,

κ is the bulk modulus, µ is a Lamé coefficient, and σ is the Poisson ratio.
If one considers a slowly varying stress field and removes a relatively small spheroid

of volume τ then Eshelby’s calculations can be reworked to give the change in elastic
energy as

∆W =τ(AU+BV),
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Figure 2: In the figure on the left, the bounds SU (blue) and SL (red) are plotted as a function of the Poisson
ratio. As a result, the relationship between the change in elastic energy ∆W and the local energy density wij is
bounded between the linear curves shown on the right.
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where

A=
3(1−σ)

2−4σ
and B=

15(1−σ)

7−5σ
.

It is convenient to define

SU =max
tij

AU+BV

U+V
=max(A,B) and SL =min

tij

AU+BV

U+V
=min(A,B).

Since U and V are both positive it follows that

SL≤
∆W

τw
≤SU.

For reasonable σ, SL and SU are quite close (see Fig. 2).

2.2 The principle of energy localization

The fact that the change in elastic energy can be accurately calculated using local calcu-
lations is somewhat surprising, but can be understood from the work in [22] which we
summarize here.

The argument is based on linear continuum elasticity. The exact energy barrier ∆E is
defined to be

∆W =W
(

with surface atom at site(i, j)
)

−W
(

without surface atom at site (i, j)
)

= lim
ρ→∞

[

E(u;Ωρ)−E(ua;Ωa
ρ)

]

,

where the energy barrier depends on the displacement fields for the initial configuration
u integrated over a finite region, Ωρ, with characteristic size ρ and a second displacement
field ua for a slightly modified surface (representing the atom-off case) integrated over a
correspondingly modified domain, Ωa

ρ.

For the local approximation, we redefine the atom-off solution on a domain Ωa
ρ with

lower boundary constrained so that it agrees with the atom-on solution on some arc Γρ:

ua
ρ =u, x∈Γρ.

Our approximation for the elastic energy barrier is then

∆WL =W(u;Ωρ)−W(ua
ρ;Ωa

ρ),

and we are able to prove that this approximate energy barrier satisfies the estimate

∆W =∆WL

(

1+O(ρ−2)
)

, as ρ→∞.
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Naively, one might expect an approximation based on a simple truncation of the energy
integrals,

∆WT =W(u;Ωρ)−W(ua;Ωa
ρ),

would be better. However, under the same assumptions used to prove the above esti-
mate, we are able to show

∆W =∆WT

(

1+O(Hρ−1)
)

, as ρ→∞,

which scales much worse as the size of the local region ρ grows and gets worse still as
the film thickness H increases.

2.3 Expanding box method

Following our earlier work [22], we use SOR to solve for the displacement field within
localized regions. Since we are starting from a system which is relaxed, the first iteration
of the displacement field within a localized region will have negligible effect for lattice
points that are more than one lattice spacing from the change. Similarly, the second itera-
tion will have significant impact up to two lattice spacings from the site of the change. In
this way, the effect of any localized change continues to propagate into the lattice at the
rate of one site per iteration. For this reason, we apply SOR on a region that expands no
faster than this. In view of the energy localization observations, the boundary values for
the displacement field are taken to be pre-correction values. Extensive experimentation
with this technique indicates two applications of SOR for each box size is optimal for
typical calculations.

To assess the accuracy of a local solution, the residual, defined as

R= AU−F, (2.3)

is computed. We define the global residual error as

RG =
‖R‖2

‖F‖2
,

where ‖·‖2 is the discrete L2 norm. The local residual error in a region Ωρ is defined as

RL =
1

µaskL
max

Ωρ

|R|, (2.4)

where both RG and RL are dimensionless. A local calculation is considered successful
if RL is sufficiently small. In our previous work we prove, within the context of contin-
uum elasticity, that the residual error decreases as the box size ρ is increased, scaling like
1/ρ2. This implies that the atoms just outside the last shell have a small net force and are
therefore somewhat out of equilibrium.
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Figure 3: A histogram illustrating the frequency of various box sizes for which the expanding box method
converges at two tolerance levels, RL =0.01 (blue) and RL =0.1 (red).

In cases where the size of the expanding box exceeds a threshold, ρmax, we abandon
the local calculation in favor of a global one. If the threshold is set too small, the solution
reverts to a global calculation too frequently; if it is set too large, then a local update can
take longer than an application of the Fourier-multigrid method. In Fig. 3, a histogram
illustrating the frequency of various box sizes for which the expanding box method con-
verges at two tolerance levels, RL = 0.01 (blue) and RL = 0.1 (red) is shown. Typically,
global solutions were needed for especially difficult configurations or as the result of
accumulating errors in the displacement field after many local updates.

2.4 The algorithm

The complete algorithm is summarized below.

1. Select an event by choosing a uniformly distributed random number r∈[0,R̂), with R̂=rdep+∑ r̂ij.
This interval represents an overestimate of the sum of rates for atoms hopping plus the rate of
deposition. The event to which r corresponds is located using a binary tree search [3].

2. If the event is a deposition, locally update the height and connection arrays and attempt a local
elastic solve; revert to a full elastic solve if the expanding box exceeds size S. Update the rate
estimates using (2.2) in the same region in which the elastic field was updated. Return to Step
1.

3. If the event selected is a hop, then take into account elastic effects:

(a) Make a copy of the displacement field uρ (atom on). Follow the same procedures in Step
2 to compute the displacement field with the atom removed, ua

ρ (atom off).

(b) Once the elastic field has been updated (locally or globally as necessary), calculate the
energy barrier and actual rate rij (≤ r̂ij).

(c) Use rejection to decide whether or not to make the move. Note that the atom-off calculation
must be performed whether or not this move is made.

(d) If the move is rejected, no change is made to the displacement field. Return to Step 1.
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(e) If the move is accepted, a hop is made. Update the displacement field in the vacated
position using ua

ρ. Perform a second local/global calculation in the atom’s new position
thereby updating u.

4. One event has been completed. Return to Step 1.

2.5 An example

The results shown in this paper use T = 800K, energy barrier for diffusion ED = 1.1eV,
γ11 = 0.18eV, γ12 = 0.16eV and γ22 = 0.16eV as = 5.5Å. kL = 62eV/a2

s ,and kD = 30eV/a2
s .

These values come from Lee et al. [10], and were chosen to model the growth of InAs
on GaAs. All of the simulations where done on a 128×128 film with periodic boundary
conditions. Further, unless otherwise specified, the results shown below will correspond
to a misfit of 0.07.

Fig. 4 shows a sequence of snapshots from a single simulation using the energy local-
ization method in three dimensions. The coverage ranges from 0.05 to 2.0 monolayers.

Our basic tool for comparing the results of different simulations is a radially averaged
autocorrelation function. First we define h̃=h−h̄, where h̄ is the mean surface height and
compute the discrete form of

I(u,v)=
∫∫

h̃(x−u,y−v)h̃(x,y)dxdy,

followed by

ḡ(R)=
1

2πR

∫

I
(

u(r,θ),v(r,θ)
)

δ(r−R)drdθ,

where one uses a suitably mollified delta function. This gives a fairly robust measure of
film characteristics at different length scales. For a given set of operating and material
parameters, we frequently do some additional ensemble averaging over a set of four to
eight simulations. The result is then characteristic of larger ensembles while remaining
sensitive to changes in materials parameters. In Fig. 5, we plot ḡ(R) for the four surfaces
shown in Fig. 4, while Fig. 6 demonstrates the convergence of ḡ(R) as the tolerance for
the relative residual is reduced. The roughness of the film is

√

ḡ(0), the island size is
approximately the distance to the first zero of ḡ(r), and the island spacing is approxi-
mately the distance between the first two local maxima, the region where ḡ(r)<0 being
indicative of a bare substrate.

3 Faster methods

In this paper, we introduce two additional ideas for speeding up the simulations de-
scribed above. While these can be combined, we study them separately in order to estab-
lish their validity. First, we consider a coarse grained random walk and follow this with
a method that seeks to estimate the energy difference ∆W using the local energy density
wij.
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(c) (d)

Figure 4: Snapshots of film growth for a flux of 1.0 ML/sec and a misfit µ = 0.07 for different coverages in
monolayers: 0.5 (a), 1.0 (b), 1.5 (c), and 2.0 (d).
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Figure 5: Autocorrelation curves for the film surfaces shown in Fig. 4 (0.5 monolayers (ML) black, 1.0 ML
green, 1.5 ML blue, 2.0 ML red).
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Figure 6: Convergence Check. Ensemble averaged auto correlation function for different tolerances: ε = 1.0
(magenta), ε=0.5 (cyan), ε=0.1 (black), ε=0.01 (blue), and ε=0.005 (red).
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3.1 Coarsened random walks

In the basic implementation described above, each event requires a similar amount of
computation, dominated by a local elastic update, which sometimes reverts to a global
elastic update. However, the vast majority of these events are associated with adatom
motion. Clearly, there is much to be gained if this particular type of processes can be
handled quickly using a specialized approach. It turns out that the elastic contribution
to the energy barrier is relatively small for adatoms, and that it varies relatively little,
in an absolute sense, for atoms on the substrate (see Fig. 7). This suggests that, as an
approximation, one could ignore this variation.
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Figure 7: Plot of the elastic contribution to the energy barrier on a surface featuring several islands.

We aim to exploit these observations using some form of a coarse-grained hop for the
adatoms. Since moving an adatom without updating the elastic field by what amounts
to a standard KMC technique is essentially a zero-cost event compared to the cost of mo-
tion requiring elastic updates, in the present case we can simply implement the ”coarse-
grained” motion by simulating a short random walk using, as an approximation, the rate
calculated at the adatom’s initial position, and terminating the walk if the atom encoun-
ters another atom or a vacancy. Even in the absence of elastic contributions, one makes a
potentially serious error in implementing such a procedure, in that one neglects potential
interactions with other adatoms and/or vacancies during the coarse grained motion. Pre-
vious implementations of this idea [4] suggest that this interaction error can be neglected
if the scale of the coarse grained motion is sufficiently small. It is clear, for example, that
if adatoms are always allowed to hop until they attach to existing islands, the nucleation
of new islands will never occur. If, however, the coarse grained motion is limited to a
number of hops that is small compared to the typical island spacing, adatom interactions
omitted by the coarse grained motion are found to be negligible. We will verify that
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this holds in the present case as well. What is essential is that each pair of adatoms has
sufficient opportunity to form a dimer.

One way of implementing this is to compute an effective rate for an n-hop process,
and include this in the list of events in place of the usual one-hop process. There are two
potential problems with this. First, because there is the possibility that the coarse grained
motion ends early due to interaction with a surface inhomogeneity, one must find a way
of using the remaining hops in a way that does not corrupt the underlying stochastic
process. In [4] this is accomplished by distributing the balance of the moves over other
adatoms. Notice that this amounts to a reduced hop limit for the last adatom selected,
even when it has not yet encountered any surface inhomogeneity. In the present imple-
mentation this is somewhat undesirable due to the expense of updating the elastic field
at the end of coarse-grained moves. Thus, we adopt an alternative way of maintaining
the correct balance between the various independent processes that involves assigning
separate clocks to adatoms. This idea has been used successfully in other applications of
coarse-grained random walks [18].

The second issue is that the waiting-time distribution for an n-hop move is not expo-
nential, nor is it additive. For example, the two-hop waiting time distribution, assuming
the events are independent, is

f (t1,t2)= f (t1) f (t2)= R2e−R(t1+t2),

where f (t) = Re−Rt is the usual exponential distribution with mean waiting time 1/R.
Treating this as one process, we can compute the exact distribution for the total waiting
time

P
({

(t1,t2)|t1+t2 = t
})

≡ f2(t)=
∫ t

0
f (t1,t−t1)dt1 = tR2e−Rt.

While one can verify that 〈t〉=2/R, the variance is not the same (i.e., if one samples the
usual exponential distribution with the reduced rate, the mean is correct but the fluctu-
ations are different). Further, there is no simple way to combine a two-hop process with
other n-hop processes in the way one can with the one-hop processes, (i.e., while the
mean waiting-times remain additive the distribution functions get increasingly compli-
cated).

In the present application, the second issue is easily avoided by sampling the one-
particle waiting time distribution repeatedly and adding up the result. While this would
be too costly in terms of computational time for many KMC methods, the cost remains
negligible compared to the cost of the elastic computations. Similarly, one can also afford
to simulate the correct distribution for the atom’s final location by simply generating the
random walk one step at a time. This also allows one to check for surface inhomogeneity
along the way.

3.1.1 Using multiple clocks

Both of the issues outlined above benefit from the idea of simulating some of the individ-
ual Poisson processes independently, while the remaining processes are handled collec-
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tively in the usual way. Let TK
0 represent the time reached by the bulk of the processes,

which we refer to as the ”system” and denote with a zero subscript, by a sequence of K
random time increments, which we denote using a superscript:

TK
0 =

K

∑
k=1

tk.

If at some point in the overall process an adatom forms, we assign it its own clock, ini-
tialized using the current system time. The adatom’s clock will move in bursts of several
random steps, so that it becomes desynchronized, under the assumption that it does not
interact with the system during its short random walk. After a while, several adatoms
will be assigned to separate clocks TK

n , none of which are equal to the system clock. At
the beginning of each simulation time-step k, a single clock is advanced using a random
increment

tk = Rn logr,

where r is uniformly distributed between zero and one, and Rn is either the hopping
rate of an adatom or the sum of all of the ”system” rates. If the event is an adatom,
this can immediately be repeated until either the hop-limit is reached or a non-uniform
environment is encountered. One might think it is most accurate to always choose the
clock which is lagging, but careful testing has revealed that it is more accurate to choose
the clock that minimizes its expected reading at the conclusion of the next step.

3.1.2 An example

One can get a sense for why the last statement is true by considering a simplified scenario
in 1+1 dimensions, with an immobile substrate and an immobile island/wall at both
ends of the domain. We consider just two processes: a slow deposition and a fast hop,
with irreversible attachment. Suppose we do regular KMC. The first event is always
a deposition. In most samples, this atom subsequently walks to and sticks to the wall
before the second atom drops. Now consider the KMC algorithm with a separate clock
for each process. The first event is the same. Then either the adatom makes one hop or a
second atom is deposited. Since the adatom clock was just split off from the deposition
clock, they have the same initial reading, so a straight comparison of the clocks gives us
no preference for stepping one over the other at the next step. In that case, suppose we
choose randomly. If we choose the adatom hop, its clock advances a small amount, so
that the deposition clock is slightly lagging, but the configuration is essentially the same
with the adatom displaced just one site. If we now step the process with the slowest clock
(or if we chose the deposition event at the last step, when the clocks were equal), a second
adatom is deposited, advancing its clock far ahead of the first adatom because deposition
is a slow process. Either way, after the second atom drops there are now two atoms on
the surface, with the first one’s clock way behind both the second atom’s clock and the
deposition clock. So the first atom will make a bunch of hops before its clock catches up,
giving it a rather large chance of nucleating an island rather than attaching to a wall.
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This enhanced nucleation effect is exaggerated in 1+1-dimensional growth, but even
in 2+1-dimensional growth, we find that choosing the lagging clock systematically dis-
torts the results slightly in favor of enhanced nucleation. Thus, this example suggests
that when comparing clocks to decide which process to update next, add to each clock
the current mean waiting time. While not exact, the improvement is significant. This will
be illustrated further in the results presented below.

3.1.3 Clock merging principle

In principle, each one of the surface sites could be assigned their own clocks, but only
the ones that are allowed to take multiple time steps need their own clocks. Once an
adatom encounters another atom or vacancy, we no longer wish to advance it multiple
times, so it can once again be merged with the system clock. Some care must be taken in
the merging, however, which exploits the well known property of Poisson processes that
the waiting time distribution at the current time is independent of how long you have
waited to the current time. This leads to the following clock merging principle:

When a clock passes another clock on a given random increment, they can be merged at the
value of the lagging clock.

This is equivalent to the claim that the sequence of waiting times generated by suc-
cessively sampling the one-hop distribution f (t) is not corrupted if we force the system
to make a stop at a particular time T∗ and then resume the process. Suppose the process
is at time Tk. If we sample f (t) and get a sample t1 where Tk+t1 < T∗, the distribution
is clearly unaffected. If, on the other hand, Tk+t1 > T∗, replace t1 with t∗ = T∗−Tk, and
sample f (t) a second time. The probability of this happening is

P(t1 > t∗)=
∫ ∞

t∗
f (t)dt= e−Rt∗ .

Since the second sample is independent of the first, the distribution for t> t∗ becomes

P(t1 > t∗) f (t2)= e−Rt∗Re−Rt2 ,

corresponding to a total t= t∗+t2 distributed by f (t).
Thus, two things can happen to an atom which is no longer an adatom and therefore

a candidate for merging when it is its turn to move: 1) it may take a time step that fails
to catch it up to the system clock, in which case it remains an independent process, or
2) it may take a step that surpasses the system clock, in which case it is merged with the
system (unless it happens to have become an adatom again).

4 The local energy method

As indicated earlier, numerical experiments (Fig. 1) demonstrate that the elastic energy
barrier is strongly correlated with the elastic energy contained in the springs immedi-
ately attached to the atom being removed. This observation was first made in our earlier
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work [22], where we used it to estimate upper bounds for hopping rates, which were
then used as part of a rejection scheme. When the upper and lower bounds are close, it is
reasonable to simply replace the rejection scheme with the approximation

∆W≈C(kL,kD)wij, (4.1)

where C is now chosen to achieve a best fit rather than a bound. It is perhaps useful to
note that ∆W is precisely equal to wij plus the work required to reinsert the atom and
restore the original configuration. In view of this, it is not entirely surprising that these
quantities would be comparable and that some sort of scaling law would hold. In future
work we plan to use the work of Eshelby [5] to obtain bounds on the latter contribution
in the case of semi-infinite elastic solid with a flat free boundary. A crucial aspect of
this calculation is a knowledge of the Green’s function for the half space problem. For
the isotropic case this is known (see, for example, [8]). For the anisotropic case this was
recently studied in [17].

Employing (4.1) instead of calculating ∆W by the energy localization method achieves
a roughly fifty percent reduction in computational cost, as one no longer needs to do
atom-off calculations. In this scheme we still employ the expanding box method to up-
date the elastic field after the atom is moved to its new location.

5 Comparison of the methods

In Fig. 8 we plot the ensemble averages of four autocorrelation curves using the test pa-
rameters identified above for a) the unapproximated energy localization method, b) the
local energy approximation, and c) the coarse grained random walks with up to twenty-
five hops per iteration. The fact that the autocorrelation curves agree closely indicates
that both approximations are capturing the essential features of the film surface correctly.
In particular, the roughness, island size and island spacing appear to agree well. The
local energy approximation was a bit more than twice as fast, while the big hop method
was about 25% faster. This latter number improves significantly for simulations in the
submonolayer regime, where a much larger fraction of the events correspond to adatoms
moving on the substrate. This performance boost is further enhanced in the low deposi-
tion regime, which features a lower island density and larger regions of bare substrate.
If, for example, the deposition rate is reduced by a factor of 100, the performance of the
coarse graining method is roughly a factor of ten better than the original energy localiza-
tion method during the first one tenth of a monolayer of growth.

The quality of the coarse-grained results improves as the step size is lowered. This is
illustrated in Fig. 9, where we plot the ensemble averaged, unapproximated autocorrela-
tion curve along the approximations with stepsizes of one, five and twenty-five.

It would be possible to combine the two approximations for an additional increase in
computational speed. For this paper, however, we will use the local energy approxima-
tion to compute our remaining results, as we feel the error it introduces is more uniform
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Figure 8: Autocorrelation curves using the test parameters identified in Section 2.5 for (a) the unapproximated
energy localization method (red), (b) the local energy approximation (blue), and (c) the coarse grained random
walks with up to 25 hops per iteration (green).
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Figure 9: Comparison of the coarse-grained random walk method using varying step sizes-25 (green), 5 (blue),
1 (black)-with the energy localization method (red).

from case to case, and it seems more likely that this will become the method of choice for
future calculations based on the present model.

6 Simulation of heteroepitaxial growth

In this section we shall apply the local energy method to study various aspects of het-
eroepitaxial growth. In the first series of simulations the misfit is varied.

6.1 Misfit and flux variation

In Fig. 10, we show four surfaces after three monolayers of growth for misfits varying
from 0.03 to 0.05, while the remaining parameters are held fixed. The corresponding au-
tocorrelation functions, averaged over four samples, are shown in Fig. 11. These figures
show that the average island size decreases with increasing misfit. It is interesting to
note that while relatively small and large misfits yield square islands there seems to be
an intermediate range that favors rectangular islands. In addition, these results seem to
indicate that a critical misfit is needed to form islands after three monolayers of deposi-
tion. This, however, is a nonequilibrium effect. Increasing the temperature will drive the
system to equilibrium faster. Similarly, lowering the deposition rate will allow the system
more time to relax. Fig. 12 shows simulations that support these comments. In particular,
we consider the case in which the misfit is 0.03, but the deposition and temperature are
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(a) (b)

(c) (d)

Figure 10: Snapshots of a film at three monolayers of growth with a flux of 1.0 ML per second with a misfits
µ=0.03 (a), 0.035 (b), 0.04 (c), and 0.045 (d).

0 5 10 15 20 25 30
−2

0

2

4

6

g(
R

)

Figure 11: Autocorrelation curves for the surfaces shown in Fig. 10 and the lower left panel of Fig. 13: misfit
0.03 (magenta), 0.035 (black), 0.04 (green), 0.045 (blue), and 0.05 (red).

varied. In the upper two images the flux has been reduced to 0.1 and 0.01 monolayers
per second allowing the film more time to relax, which results in the formation of islands.
In the lower two images the flux is one monolayer per second, but we have increased the
temperature to 900 and 950K, resulting in the formation of islands.

Fig. 13 displays a sequence of simulations where the flux is varied over four orders
of magnitude; the values used were 10−2, 10−1, 1, and 10 monolayers per second. The
results indicate the morphology of the film changes quite slowly when varying the flux.
Not surprisingly, smaller values of the flux yield larger and more well separated islands.
This suggests there is a large entropic bottleneck for the formation of relatively large,
three-dimensional islands.



T. P. Schulze and P. Smereka / Commun. Comput. Phys., 10 (2011), pp. 1089-1112 1107

(a) (b)

(c) (d)

Figure 12: Snapshots of a film at three monolayers of growth with misfit µ= 0.03. (a): flux = 0.1 ML/second,
temperature 800K; (b): flux=0.01 ML/second, temperature 800K; (c): flux= 1.0 ML/second, temperature
900K; and (d): flux=1.0 ML/second, temperature 950K.

(a) (b)

(c) (d)

Figure 13: Snapshots of a film at three monolayers of growth with a misfit of 0.05 and fluxes equal to 10−2

ML/second (a), 10−1 ML/second (b), 1 ML/second (c), and 10 ML/second (d).



1108 T. P. Schulze and P. Smereka / Commun. Comput. Phys., 10 (2011), pp. 1089-1112

(a) (b)

(c) (d)

Figure 14: Annealed shapes in which the total number of atoms is varied with misfit equals 0.04 with no
deposition.

6.2 Equilibrium three dimensional islands

The next sequence of pictures was generated by annealing, for two billion KMC timesteps,
a number of isolated, initially cube-shaped islands with different initial sizes. There is an
interesting transition in the typical morphology as the size of the islands increases, not
unlike the pyramid-to-dome transition observed in the deposition of germanium on sili-
con [13]. The overall trend is for additional facets to form as the islands become larger.

6.3 Stacked quantum dots

Fig. 15 is a simulation of capping, where a number of layers of substrate material are
deposited after islands have formed. This process can be repeated to build structures
reminiscent of stacked quantum dots, see for example [11, 14]. In more detail, we choose
the misfit to be 0.05 and a deposition flux of 0.1 ML/sec. We deposit three monolayers
of film material, followed by ten monolayers of capping/substrate material. This is re-
peated once and then a final three layers of film material is deposited, so that in total
there are three layers of islands, separated by two layers of capping. The state of the film
after the initial three monolayers of growth is shown in lower-left panel of Fig. 13.

The upper-left panel of Fig. 15 shows this same surface after two layers of capping.
At this stage, the islands have been eroded somewhat due to intermixing; also note that
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(a) (b)

(c) (d)

Figure 15: Capping simulations with a misfit of 0.05 and flux of 0.1 monolayers per second. The initial condition
for this simulation is shown in Fig. 11(c). (a) is after two monolayers of capping. (b) is after 10 monolayers of
capping and 0.5 monolayers of deposition. (c) and (d) show the film after 1.5 and 3 monolayers of deposition
respectively.
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Figure 16: Slices of the capping simulation at thee monolayers and ten monolayers of capping; three monolayers
of deposition then ten monolayers of capping and then misfit 0.05, flux 0.1. The last plot is a plot of elastic
energy density. The color is scaled to the logarithm of the energy density.
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the capping material prefers to grow in the low strain regions between well separated
islands. The upper-right portion of Fig. 15 shows the situation after ten layers of cap-
ping plus another half layer of the film material. The morphology at this stage is quite
interesting. Notice that the final monolayer of capping material is incomplete, with sev-
eral islands on the surface. These islands, however, are not necessarily aligned with the
underlying quantum-dot structures. When the film material is subsequently deposited,
it initially continues the growth of these islands in the manner of layer-by-layer growth,
and only later do the islands align with the underlying, capped, quantum dots. Impor-
tantly, it does not appear that the new layer of quantum dots nucleates over the existing
layer, as has been previously suggested [15,23], but rather there is a somewhat haphazard
nucleation process, followed by a subtle migration of the dots to the aligned positions.
The lower portion of Fig. 15 shows the latter stages of the evolution in more detail.

Fig. 16 shows three cross-sections of the same growth sequence after its completion
along with the elastic energy density for the third cross section. These figures demon-
strate the alignment of the dots via the migration mechanism mentioned above. The final
image shows a cross-section of the elastic energy density, revealing that the exposed layer
of dots is very relaxed, whereas the buried dots are under considerable stress.

7 Summary and conclusions

In this work, we have extended our previous energy localization and expanding box
methods from 1+1 to 2+1 dimensional simulations. We have also introduced two new
approximating methods aimed at further improvements in computational performance:
a coarse grained random walk for adatoms and a local energy approximation. We went
on to compare the performance and accuracy of the three methods. Collectively, these
methods are demonstrating the viability of using KMC to simulate the growth of films in
situations where elastic effects dominate.

The coarse-graining method must be used with care, as it can quite easily alter nu-
cleation statistics. This method is most useful in the submonolayer regime, where it can
significantly reduce computation times. Most of our results in this paper are aimed at the
growth of quantum dot structures that emerge after the deposition of several layers of
growth. For this, we relied on the local energy approximation.

We presented a brief analysis based on linear elasticity that offers insight into several
aspects of these methods. In particular, it now seems clear why one should expect bounds
of the type (2.1) to hold, whereas these bounds were based entirely on computational
observations in our earlier work. From these calculations, one can also see why there
appears to be a particular value of the poisson ratio near which the upper and lower
bounds collapse. In this paper, the material parameters we worked with appear to be
near this special case, allowing the local energy method to work well. For more general
material parameters, a generalized approximation based on scalar invariants of the local
stress tensor could be used. This will be explored in future work, where we will also aim
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to make these arguments quantitative by adapting the work of Eshelby to a half-space
geometry-we will seek to derive the upper and lower bounds used in the computation
and/or the fitting paramers used to approximate the energy barrier.
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