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Abstract. We propose a new multiscale method that couples molecular dynamics sim-
ulations (MD) at the atomic scale and finite element simulations (FE) at the continuum
regime. By constructing the mass matrix and stiffness matrix dependent on coarsen-
ing of grids, we find a general form of the equations of motion for the atomic and
continuum regions. In order to improve the simulation at finite temperatures, we pro-
pose a low-pass phonon filter near the interface between the atomic and continuum
regions, which is transparent for low frequency phonons, but dampens the high fre-
quency phonons.

PACS: 47.11.St, 02.70.-c, 46.40.Ff
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1 Introduction

Multiscale modeling makes simulations at large length and time scales possible. The
concurrent multiscale methods [1–7] usually combine different physical length scales to-
gether, such as atomic scale described by interatomic potentials or by a tight binding
model and the continuum scale usually described by elastic mechanics. Such meth-
ods have made their success in the simulation of static [8–10] or quasistatic [11] prop-
erties. However, the coupling between two length scales inevitably introduces an artifi-
cial interface, and the existence of such an interface can cause the spurious reflection of
phonons [12–14]. The reflection can interfere with the dynamics in the atomic region and
thus prohibit the application of the concurrent multiscale methods to properly simulate
dynamical properties. Recently, some hybrid methods have taken a step towards in the
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treatment of dynamical processes [15] by introducing suitable boundary conditions (BC)
placed at the coupling interface, such as stadium BC [16,17], exact BC [18–20] and absorb-
ing BC [21], or perfectly matched layer (PML) [22, 23]. Such boundary conditions adopt
either a time-dependent [18] or position dependent damping term [16], with which all
waves are dampened near the interface region.

However, although the physics properties at two length scales themselves are differ-
ent, the low frequency phonons can exist in both length scale, while the high frequency
phonons can only exist in the atomic region. Meanwhile the low frequency phonon plays
a significant role in understanding the long range interaction related to mechanical defor-
mation. Hence, the boundary condition should be frequency dependent, and it should
be transparent for the phonon with the frequency as high as possible. The previously
proposed algorithms [16,18,24] dampen all phonons for the computational convenience.
Therefore it is essential to construct a realistic algorithm to couple atomic and continuum
simulations.

In this paper, an atomic-based finite element method (AFEM) is introduced, which
can be merged seamlessly with an atomistic region in order to enable energy transfer-
ring through the coupling interface. Meanwhile, we design a new damping method near
the interface to absorb the spurious reflections of high frequency, while keeping low fre-
quency phonons transparent.

2 Theoretical method and analysis

We first consider a one-dimensional (1D) model which can be spatially composed of MD
region, FE region and linking region (LR), as shown in Fig. 1. We adopt Lagrangian
mechanics to describe the MD region, which is shown without the external force as

L(u,u̇)=
1

2
u̇TMAu̇−V(u), (2.1)

where MA is diagonal mass matrix denoted by atomic mass mµ and u is discrete atomic
displacement. The MD simulation can be numerically implemented in terms of Newton’s
equation by solving Eq. (2.1).

The FE region is divided into two-node elements with different length from the lat-
tice length aµ, which is gradually scaled up to hl =nlaµ (nl =1,2,··· ,) into the macroscale,
as shown in the left part of Fig. 1. The linear basis functions are set up on the FE re-
gion which is linked with the MD systems nearby the most dense elements. Under the
Cauchy-Born rule [25], the atomic displacement u is the linear mapping of the nodal
displacement d, expressed as u = Jd, where J is Jacobi matrix of the linear interpolation
function which provides the atomic displacement within the element. Substituting this
relation into Eq. (2.1), by solving the corresponding Lagrangian equation, the equation of
motion can be written as

[M] ¨[d]=−[K][d], (2.2)
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Figure 1: Schematic of a one-dimensional multiscale model which includes the FE region, MD region and linking
region (LR).

where [M]= JTMAJ is the mass matrix and [K]=∂2V(Jd)/∂d2 is the stiffness matrix.
Since the conventional FE method [26] is derived from the macroscale continuum

constitutive relation, the atomic behavior representing localized bond and discrete mass
could not be captured. Although the lumped mass approximation [2] is chosen to match
with the discrete distribution of atomic mass, this approximation conflicts with the con-
sistent distribution of mass in the continuous region, which can be greatly improved.

Based on the divided principle of elements, a concrete formalism of mass and stiffness
matrix can be obtained. The mass matrix can be formed as a tridiagonal,

[M]=mµ









. . .
. . .

. . .

ζ l ηl ζ l

. . .
. . .

. . .









, (2.3)

where ζ l =(nl−1)(nl +1)/6nl , ηl =nl−2ζ l and nl is number of atoms per element.
The stiffness matrix can be evaluated by the derivative of the interatomic potential,

expressed as

Kij =∑
µ

∂2V(uµ)

∂di∂dj
, (2.4)

where di is the i-th component of d. For simplicity, the interatomic potential V(uµ) is
chosen to involve the nearest and second neighbor interactions, and the force constant is
separately k1 and k2. Thus the stiffness matrix is given as

[K]=









. . .
. . .

. . .
. . .

. . .

κl
α κl

β κl
γ κl

β κl
α

. . .
. . .

. . .
. . .

. . .









, (2.5)

where

κl
α =

k2

n2
l

, κl
β =

k1

nl
+

4nl−4

n2
l

k2, κl
γ =−2(kl

β+kl
α).

This matrix is pentadiagonal, which indicates that the nodal force involves the second
neighbor interactions.
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Figure 2: Comparison of the calculated reflection coefficient for AFEM and conventional FE methods with
lumped mass approximation. The AFEM can largely improve the transparency.

Hereto we have obtained the equation of AFEM, described by node-dependent mass
and stiffness matrix. When the element length equals with lattice length as nl=1, the mass
matrix will be reduced to be diagonal and the equation of AFEM is corresponding with
the one of atomistic region. And for nl = ∞, the mass and stiffness matrix tends toward
tridiagonal and the equation of AFEM becomes the continuous case, where the model
approaches linearly elastic medium as the elastic constant is C=(k1+4k2)aµ. Therefore,
the present equation of AFEM can seamlessly span from atomistic region to FE region.

Since the present mass matrix is essentially different from the lumped mass matrix
used the in the conventional method, where the mass of atoms are simply on the two
nodes of the element and the matrix is diagonal with equal value of 1/2. The new mass
and stiffness matrix can largely improve the scattering of the varying mesh interface in
the FE region. Fig. 2 shows the reflection coefficient of a plane wave with the frequency
ω traveling from atomic region to nl =2 region, compared with conventional FE method
with lumped mass matrix approximation. It is clear that, the lower limit of the complete
reflection is increased more than 30 per cent. This indicates that more phonon with higher
frequency can travel into the FE region and reduce the unphysical energy resistance.
However, although the new mass matrix significantly improved the transparency, the
spurious phonon reflection still exits at the large wave vector k0 ≥π/nl , one must find
out an algorithm to dampen the spurious reflection.

Here we provide a low-pass filter procedure [27] to filter the reflection of high-
frequency phonons but keeping the propagation of low frequency ones. In the dynamical
process, the vibration of every atom (node) can be seen as a signal where the displace-
ment u(t) changes with time t, analogous to the circuit signal. Therefore we can construct
a transfer function defined as H(s)=uν(s)/uν−1(s) between the neighbor atomic signals,
where the variable s is the Laplace transform of time t, which exhibits a frequency re-
sponse for the different atomic signals. H(s) is an intrinsic quantity strongly dependent
on the atomic model and is governed by the dynamical equation.
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As an ideal model, the equation of motion for 1D harmonic lattice system only sub-
jected to the nearest-neighbor interaction, in terms of displacement uν, can be written
as

üν(t)=uν−1(t)+uν+1(t)−2uν(t), (2.6)

where the atomic mass and force constant is set to be 1. Utilizing the Laplace transform,
one can obtain the corresponding transfer response H(s), which reads,

H(s)=
2+s2−s

√
4+s2

2
. (2.7)

In the frequency space, the module |H(iω)| is equal to 1, indicating that all the vibra-
tional modes can travel back and forth without any damping. Note that although the
derived consequence of H(s) is under the condition of infinite atomic chain, seen from its
definition it describes the local transfer relation between neighbor atoms far away from
the boundary. However, to ensure the application of finite damping layers effectively
in the practical multiscale simulation, the local transfer function for one damping layer
embedding in the infinite linear chain is essentially studied to exhibit the filter property.

To demonstrate the validity of local transfer function, we will illustrate the filter re-
sponse by Langevin damping method, which has been widely applied for eliminating
the wave reflection necessarily occurred in the MD, FE or multiscale simulation bound-
ary, as mentioned in the introduction. Its equation of motion associated with a viscous
force, can be described by

üν(t)=uν−1(t)+uν+1(t)−2uν(t)−βu̇ν(t), (2.8)

where β is the damping coefficient with respect to the highest frequency of phonon dis-
persion relation. Following the Laplace transform, the Eq. (2.8) can be inverted into the
local transfer function for single damping layer

H(s)=
2

s2+2+s
√

4+s2+2βs
. (2.9)

It should be notable that the local transfer relation between atom ν+1 and ν in the ideal
harmonic lattice has been employed because of the approximative equivalence of their
displacements ratio for ideal and damping model in the time space. Though the atomic
vibrated modes induced by nonlinear viscous term will shift, the excited frequencies re-
sponsible for boundary reflection are primarily devoted to the long wavelength acoustic
modes. In addition, in the practical simulation the damping coefficient β is generally
not chosen too large to prevent from the severe wave reflection. Through the simulation
technique the amplitude ratio between atom ν and ν−1 concerning the module |H(iω)| is
numerically calculated and is in good agreement with the analytical result for the small β
and vibrated frequencies of Brillouin zone. As well one can evaluate the module |H(iω)|
involving multiple damping layers, used for estimating roughly the width of damping
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Figure 3: Transfer function for eliminating reflected phonons. ωt is the minimum frequency of total reflection.
The dashed line is the ideal transfer function. The solid line is a realistic transfer function we obtained for a
one dimensional system as described by Eq. (2.10).

layers applicable to wave absorbtion. While the module |H(iω)| goes to zero, it indicates
that all the waves have been dampened.

However, in our present goal to develop the dynamical multiscale method, a new BC
is expected to meet the demand that only the high-frequency waves are eliminated while
keeping the low-frequency waves traveling. That is to say, this BC should be frequency-
dependent. Nevertheless, Langevin damping method determines the same exponential
decay for high-frequency waves or low-frequency, and hence it is not appropriate, as well
including the developed damping approaches.

In order to filter out the reflected high frequency phonons, the ideal transfer func-
tion should be a step-function as shown in Fig. 3. Unfortunately, although one can write
down the theoretical expression of ideal transfer function, it is difficult to be converted
into an equation of motion in the time domain. Notwithstanding, it provides a route to
approach the solution that one can produce an approximate form of the transfer function
which can lead to an equation of motion with properly filter behavior. For instance, as
shown in Fig. 3 (solid line), we have successfully designed a realistic low-pass transfer
function, which can filter out most of phonons with frequency higher than ωt in corre-
spondence with on the wave vector k0 in Fig. 2. The corresponding transfer function for
single damping layer is expressed as

H(s)=
1+βs

s2+ 2−s2+s
√

4+s2

2 (1+βs)
, (2.10)

where β is a parameter which controls the shape of the transfer functions. By carrying
out the same deriving procedure as the Eqs. (2.8) and (2.9) and taking an inverse Laplace
transform, the resulting equation of motion is shown by

üν =uν+1+uν−1−2uν+β(u̇ν+1+u̇ν−1−2u̇ν). (2.11)
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Rewriting the Eq. (2.11) for the general case yields

üν =−∂V(uν)

∂uν
+β(u̇ν+1+u̇ν−1−2u̇ν). (2.12)

The second term with damping role in Eq. (2.12) is composed of two-order difference of
the velocity between the neighbor atoms, instead of the damping term proportional to
the on-site velocity in the Langevin dynamics. By theoretical analysis, we found that this
damping form is dependent on the vibrated frequency. Obviously, the present damping
mechanism can effectively dampen high frequency phonons which have large two or-
der differences of the velocity, and keep the low frequency phonons which have small
two order difference of the velocity. In comparison, as stated earlier, Langevin dynamics
dampens nearly all the frequency. We call the present damping scheme as the Phonon
Filter (PF) method.

3 Numerical simulation results

In order to show the effectiveness of the AFEM and PF method, we perform a dynamical
simulation in the one-dimensional multiscale model, as illustrated in Fig. 1. In the finest
part of the FE region, the equation of AFEM is equivalent to the one of MD region so that
the dynamical properties can be automatically matched and there is no phonon reflection
at the atomistic/continuum interface. The spurious reflection intensively emits from the
varied mesh-size interface and PF method can be used to dampen the reflections. The
maximum value of element length nl is up to 2 and the thickness of LR region is chosen
to be 6. The velocity-Verlet algorithm is used for time integration for the whole system.

The dynamics of Gaussian wave packets traveling from the MD region to the FE re-
gion are also simulated. Fig. 4 shows the obtained results from three different simulation
methods: lumped mass FE method, AFEM without any filter scheme and AFEM with PF,
as shown in Fig. 4(a), (b) and (c), respectively. The wave-packet with wave vector k=0.7
and k = 1.8, are chosen as the testing wave. For k = 0.7, there is significant reflection of
waves using the lumped mass FE method, however, in the AFEM, the wave-packet is es-
sentially transparent. For the k =1.8, the wave-packet is completely not transparent and
nothing can be transmitted to FE region. In lumped FE and AFEM, the wave-packet is
completely reflected. However, the PF method can completely kill the reflected wave as
desired.

By calculating the energy changes between MD and FE region, we can numerically
obtain the reflection and transmission coefficient dependent on wave vector. Fig. 5 shows
the reflection and transmission coefficient which is plotted as a function of wave vector
k for three different simulation methods. The results show that AFEM with PF method
can eliminate the reflected phonon of high-frequency and have very little influence on
transmission of low-frequency phonon and the lumped mass FE method retains strong
reflection. From the reflection coefficient, one can see that most of the spurious reflections
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Figure 4: Gaussian wave packet of small wave vector (left column) and large wave vector (right column)
travelling from the MD region to FE region. (a) lumped mass FE method; (b) AFEM; (c) AFEM with PF
method. The dashed line denotes the atomistic/continuum interface. It is clear that PF has little effect on the
small wave vector packet, while it dampens the large wave vector packet.

Figure 5: A comparison of reflection and transmission coefficients using numerical simulations. The � line, N

line and • line are the result of AFEM with PF method, AFEM and lumped mass FE method, respectively.
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are eliminated and only a small fraction of wave near k=1.5 remain because the transfer
function is still different from a perfect step-function. At the phonon vector k =3.0 close
to the Brillouin zone, the velocity of these waves is very slow, so that it is difficult to be
dampened out as with other methods.

4 Conclusions

In summary, we have proposed an atomic-based finite element method, which can in-
crease phonon transparency by using a consistent mass matrix and stiffness matrix. The
derived equation of motion perfectly match together for the atomic region and contin-
uum region. We have also developed a phonon filter method with a new damping mech-
anism which is proportional to two-order difference of velocity. The phonon filter can
keep high transparency for low frequency phonons and simultaneously dampen the re-
flected waves of high-frequency. The efficiency is demonstrated by simulating the dy-
namics of the wave packet, and the reflection and transmission coefficients. The present
method is simple but efficient, and we believe that it can open a window for performing
high-accuracy multiscale simulations at the dynamical regime.
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