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Abstract. Plasmas in modern tokamak experiments contain a significant fraction of
impurity ion species in addition to main deuterium background. A new unlike-particle
collision operator for δ f particle simulation has been developed to study the non-
local effects of impurities due to finite ion orbits on neoclassical transport in toroidal
plasmas. A new algorithm for simulation of cross-collisions between different ion
species includes test-particle and conserving field-particle operators. An improved
field-particle operator is designed to exactly enforce conservation of number, momen-
tum and energy.

PACS: 52.30.Gz, 52.25.Xz, 52.25.Dg
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1 Introduction

To understand the performance of fusion toroidal devices in improved confinement
regime when the turbulent transport is reduced in the ion channel, the experimental data
is compared with neoclassical transport level. Neoclassical theory has been well devel-
oped [1–3] to understand this irreducible transport in local small ion orbit limit. And a
direct numerical solution of the drift kinetic equations globally is needed to address non-
local features of the dynamics [4–6] near magnetic axis or sharp profile gradients where
basic assumptions of most local theories are violated. In addition to main ion species,
which is normally deuterium, most of experimentally relevant plasmas contain one or
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more ion species. Consequently, impurity particles can make a significant contribution
to main deuterium heat flux indirectly by producing additional cross-species collisions.
In this paper we address the development of an unlike-particle collision operator for δ f
particle simulation technique. In addition to a test-particle operator, we describe a new
field-particle operator which conserves particle number, energy and momentum.

The distribution function Fs(X ,t) species s (with mass ms and charge Zs) evolves ac-
cording to the drift-kinetic equation

D

Dt
Fs ≡

(

∂

∂t
+Ẋ · ∂

∂X

)

Fs =∑
b

Csb[Fa,Fb]. (1.1)

The operator on the right hand side describes self-collisions of species s as well as cross-
collisions between various species. The guiding center coordinates X = (x,ρ||,µ) evolve
according to the Lagrangian equations

d

dt

(

∂

∂Ẋ
Ls

)

− ∂

∂X
Ls =0. (1.2)

Here Ls is Lagrangian and x = (r,θ,ζ) where r, θ and ζ are radial, poloidal and toroidal
spatial coordinates correspondingly. The magnetic moment µ = msv

2
⊥/2B (µ̇ = 0 due to

conservation of the adiabatic moment) and parallel gyroradius ρ|| = msv||/ZseB are ex-
pressed in terms of parallel and perpendicular velocities v|| and v⊥.

The δ f algorithm [4, 7, 8] involves solving the following equation

D

Dt
δ fs =−Ẋ · ∂

∂X
F0s+∑

b

(

Csb[δ fs,F0b]+Csb[F0s,δ fb]
)

, (1.3)

which is obtained directly from Eq. (1.1) by substituting Fs = F0s+δ fs and linearising the
collision operator. F0s is a time-independent shifted Maxwellian distribution function
which satisfies Csb[F0s,F0b]=0 for any s and b.

The local shifted Maxwellian background distribution function is written in the fol-
lowing form [4, 9]

F0s ≡F0s(ns,T,U‖)=ns

( ms

2πT

)3/2
exp

[

−ms

T

(

(v‖−U‖)
2/2+µB

)

]

. (1.4)

Here na(r)≡〈na(r,θ)〉, T(r) and ωt(r)=[B/I(r)]U‖(r,θ) are experimentally given profiles
for the ion density, temperature and toroidal angular frequency. I(r) = RBζ , where R is
the major radius, Bζ and Bθ are the toroidal and poloidal components of the magnetic
field B.

Since the constraint Csb[F0s,F0b]=0 on background Maxwellian distribution functions
must be satisfied, one need to have the same ion temperature T(r) and parallel flow U‖(r)
profiles in the distribution functions (1.4) for all species. The difference between exper-
imentally observed temperatures Ts(r) and toroidal angular frequencies ωts(r) between
different species is captured by initial δ fs(t=0) in the following form

δ fs(t=0)= F0s(ns,Ts,U||s)−F0s(ns,T,U||). (1.5)
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Our δ f algorithm with linearized collision operator requires that δ fs/F0s≪1. While tem-
perature and parallel velocity profiles may be substantially different between different
species, especially between ions and electrons, recent drift-kinetic simulations of realistic
axisymmetric toroidal fusion devices show that this condition is well satisfied in deu-
terium plasmas in presence of carbon impurity [5, 6].

The two-weight algorithm [10] assigns weights w∼ δ fs/F0s and 1−p∼ gs/F0s to each
simulation marker. Here the marker distribution function gs for species s in the extended
phase space is defined as follows

gs(X ,w,p,t)∼∑
i

δ(X−Xsi(t))δ(w−wsi(t))δ(p−psi(t)), (1.6)

The need for the second weight p is motivated by the fact that in neoclassical simulations
marker distribution function might also significantly deviate from the background F0s.

The kinetic equation for gs is

Dgs

Dt
+

∂

∂p

(

dp

dt
gs

)

+
∂

∂w

(

dw

dt
gs

)

=∑
b

Cab[gs,F0b]. (1.7)

Eq. (1.3) for the evolution of δ fs as well as trivial equation for the background dis-
tribution function DF0s/Dt = 0 are reproduced when the following definitions for the
marker particle weights w and p are adopted

∫

dwwdpgs =δ fs, (1.8a)
∫

dwdp(1−p)gs = F0s (1.8b)

together with the following equations of motion for the two marker weights

dw

dt
=

1−p

F0s

(

−DF0s

Dt
+∑

b

Csb[F0s,δ fb]

)

−η(w−ws), (1.9a)

dp

dt
=

1−p

F0s

(

−DF0s

Dt

)

−η(p−ps). (1.9b)

Here η is the damping rate [11], which provides a continuous relaxation of w and p
toward their locally average values ws and ps. This procedure is introduced to reduce
particle noise due to marker weight spreading without affecting physics results. Equa-
tions for δ fs and F0s are not affected by these additional terms, which may be illustrated
by substituting Eqs. (1.9a)-(1.9b) into Eq. (1.7) and taking moments Eqs. (1.8a)-(1.8b).

2 Operator for unlike-particle collisions

The linearised unlike-particle collision operator for species a colliding with species b can
be rewritten as follows

Cab[δ fa,F0b]+Cab[F0a,δ fb]≡CTP
ab (δ fa)+CFP

ab (δ fb), (2.1)
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where the test-particle operator

CTP
ab (δ fa)=

∂

∂v
·(vFδ fa)+

∂2

∂v∂v
:
(

GI+H
vv

v2

)

δ fa (2.2)

describes the drag and diffusion. The coefficients

F=−νab
v3

nb

∂

∂v
Hb(v), (2.3a)

G=νab
v2

2nb

∂

∂v
Gb(v), (2.3b)

H =νab
v3

2nb

(

∂2

∂v2
− 1

v

∂

∂v

)

Gb(v) (2.3c)

are expressed in terms Rosenbluth’s potentials

Gb(v)=
∫

d3v′F0b(v′)|v−v
′|, (2.4a)

Hb(v)=

(

1+
ma

mb

)

∫

d3v′
F0b(v′)
|v−v′| . (2.4b)

Here the collision frequency is defined by νab =4πZ2
a Z2

b Λabnb/m2
av3

a. The standard Monte
Carlo technique [12] is utilized in the drift-kinetic simulation to implement this operator.

The field-particle operator appears as a source term in Eq. (1.3), and not being sensi-
tive to the details of δ fb, may be rewritten in the following form [13, 14]

CFP
ab0(δ fb)=Rab(v)v‖δP0

ab+Qab(v)δE0
ab. (2.5)

The number, momentum and energy lost by species b test particles as a result of collisions
with species a field particles are

δN0
ab =−

∫

d3vCTP
ba (δ fb)=0, (2.6a)

δP0
ab =−

∫

d3vmbv‖CTP
ba (δ fb), (2.6b)

δE0
ab =−

∫

d3v(mbv2/2)CTP
ba (δ fb). (2.6c)

The functions Rab and Qab are to be determined from the requirement that momen-
tum and energy gained by species a field particles must equal that lost by species b test
particles

∫

d3vmav‖CFP
ab (δ fb)=δP0

ab, (2.7a)
∫

d3v(mav2/2)CFP
ab (δ fb)=δE0

ab. (2.7b)



R. A. Kolesnikov, W. X. Wang and F. L. Hinton / Commun. Comput. Phys., 9 (2011), pp. 231-239 235

With appropriate choices of multiplying factors, the functions Rab and Qab may be
found as follows:

Rab(v)v‖ =
CTP

ab (mav‖F0a)
∫

d3v′mav′‖CTP
ab (mav′‖F0a)

, (2.8a)

Qab(v)=
CTP

ab (mav2F0a)
∫

d3v′(mav′2/2)CTP
ab (mav′2F0a)

. (2.8b)

The resulting operator Eq. (2.5) now satisfies conservation properties Eqs. (2.7a)-(2.7b).
This can be verified by remembering that the test-particle operator preserves parity in v′‖.

Specifically, CTP
ab (mav′‖F0a) is odd in v′‖, and CTP

ab (mav′2F0a) is even in v′‖.

Since we use Maxwellian background distribution functions, these expressions may
be simplified by analytically computing the Rosenbluth potentials [12]:

Rab(v)=
3
√

π

4naT
(1+mb/ma)

3/2y−3/2
b φ(yb), (2.9a)

Qab(v)=

√
π

2naT
(1+mb/ma)

3/2y−1/2
b (ma/mb−d/dyb)φ(yb), (2.9b)

where φ(y)=2/
√

π
∫ y

0 et
√

tdt and yb =v2/v2
b.

As was illustrated by Sugama et al. [15], the test-particle CTP
ab and field-particle CFP

ab0
operators defined by Eq. (2.5) and (2.5) satisfy the adjointness relations

∫

d3v
δ fa

F0a
CTP

ab (δga)=
∫

d3v
δga

F0a
CTP

ab (δga), (2.10a)

Ta

Tb

∫

d3v
δ fa

F0a
CFP

ab0(δ fb)=
∫

d3v
δ fb

F0b
CFP

ba0(δ fa), (2.10b)

as well as Boltzmann’s H-theorem

Ta

Tb

∫

d3v
δ fa

F0a
[CTP

ab (δ fa)+CFP
ab (δ fb)]

+
∫

d3v
δ fb

F0b
[CTP

ba (δ fb)+CFP
ba (δ fa)]≤0, (2.11)

which states the asymptotic relaxation of the distribution function to the local Maxwellian
equilibrium state.

In Eq. (2.11), the left hand side vanishes when δ fs perturbations in the following form

δ fs = F0s

[

δns

ns
+

ms

Ts
δU‖v‖+

δTs

Ts

(

mav2

2Ta
− 3

2

)]

(2.12)

satisfy the correct null space of the linearized operator

CTP
ab (δ fa)+CFP

ab (δ fb)=0. (2.13)
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Implementation of CFP
ab0 according to (2.5) within δ f algorithm Eqs. (1.9a)-(1.9b) leads

to unsatisfactory particle number conservation properties. This is due to the fact that, al-
though test-particle operator conserves number according to Eq. (2.6a), the field-particle
operator Eq. (2.5) affects particle number moment

∫

d3vδ f by altering δ f according to
Eq. (1.3). To obtain improved field-particle operator, one can use the procedure devel-
oped by Wang et al. [10] for iterative calculation of the field-particle conserving part in
the following form

CFP
ab (δ fb)=

N−1

∑
n=0

CFP
abn(δ fb), (2.14a)

CFP
abn(δ fb)=Hab(v)δNn

ab +Rab(v)v‖δPn
ab+Qab(v)δEn

ab. (2.14b)

An additional function Hab is to be determined.
Operator (2.14a) is implemented as a sequence of N iterations to enforce the appropri-

ate conservation constraints. Specifically, the first n=0 iteration enforces momentum and
energy conservation according to Eqs. (2.7a)-(2.7b). Since simulation uses a finite number
of markers, the consequent iterations are necessary to further improve momentum and
energy (together with number) conservation properties according to

δNn
ab =

∫

d3vCFP
abn−1(δ fb), (2.15a)

δPn
ab =

∫

d3vmbv‖CFP
abn−1(δ fb), (2.15b)

δEn
ab =

∫

d3v(mbv2/2)CFP
abn−1(δ fb). (2.15c)

Analogously to Rab and Qab functions, the Hab function is chosen to be

Hab(v)=1−Qab(v),

so that the resulting operator Eq. (2.14a) satisfies conservation properties Eqs. (2.15a)-
(2.15c) as well as adjointness relation Eq. (2.10b) and H-theorem Eq. (2.11). Self-
adjointness and H-theorem in presence of contribution in Eq. (2.14a) due to an additional
Hab(v) term can be demonstrated by remembering that the first (n=0) iteration enforces
conservation of number and energy leading to

δN1
ab

∫

d3v
δ fa

F0a
Hab(v)=0 (2.16)

during the second (n=1) iteration.

3 Improved field-particle operator

Fig. 1 shows the residual errors in number and energy. The blue and the red crosses (for
deuterium and carbon) show the errors due to application of CFP

ab0(δ fb) operator Eq. (2.5),
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Figure 1: Residual errors in energy and number for a set of sample simulation markers. The blue and the red
markers are for deuterium and carbon respectively.

which enforces conservation of only momentum and energy. The resulting error in par-
ticle number is not satisfactory, which is the reason CFP

ab (δ fb) operator (2.14a) needs to
be used instead. Application of the complete operator (2.14a) leads to improved resid-
ual error in particle number, which is comparable to residual errors in momentum and
energy (squares in Fig. 1). Three-time (N =3) recursive operations of CFP

ab were used for
this figure. Note that the deuterium component has slightly higher residual errors in all
quantities compared to the carbon component due to higher thermal velocity.

While there is significant improvement in momentum and energy conservation when
CFP

ab is implemented, the residual errors will depend on the number of markers used in
the simulation. It is difficult to have sufficient number of markers, especially for non-
axisymmetric systems, for the error to converge. To resolve this problem, we follow the
procedure developed by Satake [16] rewriting the field-particle operator in the following
form

CFP
ab (δ fb)=Hab(v)δN+Rab(v)v||δP+Qab(v)δE. (3.1)

Instead of using theoretical values for the functions δN, δP and δE, we find them from
solving the following equation

ma

∫

d3v





1
v‖

v2/2



CFP
ab (δ fb)=





δN0
ab

δP0
ab

δE0
ab



, (3.2)

which is a statement of conservation of number, momentum and energy Eqs. (2.6a)-(2.7b).
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For the simulation with a finite number of markers, Eq. (3.2) may be rewritten as follows

K

∑
k=1

(1−pk)







Hab Rabv‖ Qab

Habv‖ Rabv2
‖ Qabv‖

Habv2 Rabv2v‖ Qabv2







k

×





δN
δP
δE





=−





0
δP0

ab/ma

2δE0
ab/ma



. (3.3)

Eq. (3.3) is designed to precisely enforce conservation of number, momentum and
energy locally in configuration space. k is the parameter to sum over the total number of
markers K in a cell of a spatial grid. In this procedure, this spatial grid must be chosen
to be fine enough to resolve the profiles of equilibrium magnetic field and radial electric
field. Using this approach, the error is at the rounding-error level (circles in Fig. 1) for
both deuterium and carbon, independent of the number of markers in the simulation.

4 Conclusions

The unlike-particle collision operator for δ f gyrokinetic particle simulation is described.
To study the neoclassical transport in toroidal plasmas, it is necessary to simulate the
drift-kinetic equations in presence of electron and ion species using new operator. This
operator includes test-particle and conserving field-particle parts. The improved version
of the field-particle operator is designed to precisely enforce conservation of number,
momentum and energy.
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