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Abstract. A robust and efficient solver coupling computational fluid dynamics (CFD)
with discrete element method (DEM) is developed to simulate particle-laden flows in
various physical settings. An interpolation algorithm suitable for unstructured meshes
is proposed to translate between mesh-based Eulerian fields and particle-based La-
grangian quantities. The interpolation scheme reduces the mesh-dependence of the av-
eraging and interpolation procedures. In addition, the fluid-particle interaction terms
are treated semi-implicitly in this algorithm to improve stability and to maintain accu-
racy. Finally, it is demonstrated that sub-stepping is desirable for fluid-particle systems
with small Stokes numbers. A momentum-conserving sub-stepping technique is intro-
duced into the fluid-particle coupling procedure, so that problems with a wide range
of time scales can be solved without resorting to excessively small time steps in the
CFD solver. Several numerical examples are presented to demonstrate the capabilities
of the solver and the merits of the algorithm.

PACS: 47.55.Kf, 47.57.Gc

Key words: Fluid-particle interaction, particle-laden flow, discrete element method, computa-
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1 Introduction

Particle-laden flows occur in many industrial and natural settings. For example, fluidized
bed reactors are widely used in chemical and petroleum industries to carry out multi-
phase chemical reactions, where gas with high velocity is injected to beds of solid parti-
cles to achieve effective heat transfer, mass mixing, and accelerated reactions. In coastal
engineering, waves mobilize and suspend sediments from beaches and transport sand

∗Corresponding author. Email addresses: xiaoh@ethz.ch (H. Xiao), j.sun@ed.ac.uk (J. Sun)

http://www.global-sci.com/ 297 c©2011 Global-Science Press



298 H. Xiao and J. Sun / Commun. Comput. Phys., 9 (2011), pp. 297-323

particles with the flow. In these examples, the fluid-particle and particle-particle interac-
tions play important roles. Fluid-particle interactions are also found in blood flows [1],
sand dune evolution [2], and other geological flows.

In the systems described above, the fluids are often modeled in the Eulerian frame
with Navier Stokes equations or their variants. The particles can also be modeled in the
Eulerian frame, where particle volume fraction and particle flow field velocities are de-
scribed and solved, and the individual particle motions are not tracked. This approach is
referred to as two-fluid model [3,4], since the particle phase is also treated as a fluid. An-
other approach is to track the movement of each individual particle based on the forces
exerted on the particle by the fluid and by other particles, which is referred to as the
hybrid computational fluid dynamics-discrete element method (CFD-DEM) model. In
both approaches, depending on the treatment of the fluid-particle and particle-particle
interactions, the numerical methods can be categorized as one-way coupling (fluid-to-
particle action only), two-way force coupling (fluid-particle mutual interactions), and
four-way coupling (fluid-particle interactions and particle-particle collisions) [5]. For di-
lute flows with small solid volume fractions, one-way or two-way coupling are sufficient.
For dense flows, which are common in fluidized-bed reactors and geological processes
such as sediment transport, the solid volume fraction could be very high (above 60% in
certain regions), and fluid-particle interactions and particle-particle collisions are both
important. Another feature of geological flows and many other particle-laden flows is
the wide range of particle sizes. We aim to model the dense flows occurring in industrial
and natural processes with wide ranges of particle-size distributions, and thus the CFD-
DEM approach with four-way coupling is necessary. The mathematical models and the
numerical methods for these problems are the focuses of this paper.

Cundall and Strack [6] first used DEM to model granular flows without interstitial
fluids in geotechnical engineering back in the 1970s. The hybrid CFD-DEM approach to
model particle-laden flows was attempted later to solve industrial fluid-particle flows [7]
and gained popularity in the past two decades. This approach has been used by many
researchers to simulate multiphase flows in chemical engineering processes [8, 9] and
other applications [10]. Wachem et al. [11] compared various formulations and closure
models in the simulation of dense gas-solid systems. Kafui et al. [12] clarified the equa-
tions used in the literature for CFD-DEM modeling. On the numerical aspect, Sundaram
and Collins [13] presented an efficient algorithm for their numerical model simulating
dilute suspensions with fluid-particle and particle-particle interactions. However, there
are still several difficulties associated with fluid-particle interactions in the dense flows
that have not been addressed in previous studies. Specifically, the following challenges
were encountered in our attempts to model dense particle-laden flows:

1. There is still a lack of proper schemes to translate between Eulerian fields based on
unstructured meshes and Lagrangian particle quantities,

2. The fluid-particle interaction terms in the fluid momentum equation, if treated ex-
plicitly, often cause convergence difficulty in flows with high volume faction of particles.
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An alternative treatment of the interactions with better stability performance but without
compromising the accuracy is needed,

3. Particle beds with a wide range of diameter distributions can have multiple time
scales and lead to stiff numerical problems, making conventional time stepping tech-
niques inefficient.

In this paper, we present the numerical techniques to address these difficulties en-
countered in the development of a robust and efficient CFD-DEM fluid-particle solver,
which is capable of simulating particle-laden flows in complex geometries with a wide
range of particle sizes and volume fractions.

The mathematical models describing the fluid-particle system are presented in Sec-
tion 2. The numerical methods used to solve the equations are discussed in Section 3. In
Section 4, numerical examples are presented to validate the solver and to illustrate the
merits of the proposed algorithm. Section 5 concludes the paper.

2 Mathematical formulation

2.1 Mathematical model for particle motion

In fluid-particle systems, the translational and rotational motions of a spherical particle
can be described individually according to Newton’s second law [8, 14]

mi

dupi

dt
= fti+f f pi+mig, (2.1)

Ii
dΨi

dt
=T i, (2.2)

where i is the particle index; t is the time; mi, Ii,upi,Ψi are the mass, momentum of iner-
tia, velocity, and angular velocity, respectively, of the particle; fti,f f pi,T i are the particle-
particle contact force, fluid-particle interaction force, and torque, respectively, on parti-
cle i; g is the body force (gravity) per unit mass. The particles are modeled as visco-
elastic spheres. The contact force between two particles is computed by assuming a linear
spring-dashboard model [8]. The particle-particle and particle-wall collisions are charac-
terized by the following physical parameters [14]: stiffness coefficient k (the elastic spring
constant of the particles), restitution coefficient e (the percentage of elastic energy recov-
ered during a particle-particle or particle-wall collision event, where e=1 corresponds to
perfect collision with no elastic energy loss), and friction coefficient γ (the ratio between
the maximum frictional force and the normal force during particle-particle or particle-
wall contacts). In this study, it is assumed that the torque on a particle is solely due to
the particle-particle contact, and the fluid-particle interactions do not contribute to the
rotational motions of particles.



300 H. Xiao and J. Sun / Commun. Comput. Phys., 9 (2011), pp. 297-323

2.2 Mathematical model for fluid phase dynamics

The locally averaged governing equations for incompressible flows are used to describe
the fluid phase [12, 15]

∂

∂t
(εfρf)+∇·(εfρfuf)=0, (2.3)

∂

∂t
(εfρfuf)+∇·(εfρfufuf)=−∇p+∇·τ f +εfρfg−Ffp, (2.4)

where εf is the fluid volume fraction; ρf is the fluid density; uf is the fluid velocity; p is
the fluid pressure; τ f is the viscous stress of the fluid and ∇·τ f =µ∇2uf for a Newtonian
fluid. The fluid-particle interaction force, Ffp, per unit volume is

Ffp =
cn

∑
i=1

f f pi

/
Vc, (2.5)

with

f f pi =−Vpi∇p+Vpi∇·τ f +εffdi, (2.6)

where c is the cell index; cn is the number of particles in the cell with index c; Vpi is the
volume of the particle with index i; Vc is the volume of cell c; the subscript f denotes
fluid phase; εffdi (instead of fdi) is the drag force applied on particle i. The particle drag
force notation is adopted to be consistent with the conventions in the previous literature
(see, for example, [3, 12, 16]) since fdi is the quantity usually obtained from experimental
correlations.

Because both the fluid and the solid phases are assumed to be incompressible, the
following mass conservation equation, which is equivalent to Eq. (2.3), is solved in our
formulation

∇·(εfu f +εsus)=0, (2.7)

where us is the velocity of the solid/particle phase; εs is the solid volume fraction. Equa-
tion (2.7) is analogous to the continuity equation for incompressible single phase flows
(that is, ∇·u=0, with u being the fluid velocity). Physically Eq. (2.7) means that the vol-
ume fraction-averaged velocity field of the mixture should be divergence-free, similar to
that in the single phase flow. For the momentum conservation, Eqs. (2.5), (2.6), and the
relation between τf and uf are plugged into Eq. (2.4) to yield the following equation [12]

∂

∂t
(εfρfuf)+∇·(εfρfufuf)=−εf∇p+εfµ∇

2uf−εf

cn

∑
i=1

fdi

/
Vc+εfρfg. (2.8)

In the equations above, the fluid volume fraction, εf, is not solved but obtained from the
relation

εf =1−εs,
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where εs is obtained by averaging the Lagrangian particle quantities from the DEM sim-
ulations. The solid field velocity, us, is obtained by using a similar procedure. The term
εf ∑

cn
i=1fdi is the sum of drag forces from all the cn particles in cell c. This is only the con-

ceptual representation. The actual implementation will be discussed in Section 3.1. The
drag term fdi is correlated experimentally to the fluid and particle velocities [3, 17]

fdi =
Vpi

εfεs
βi(upi−u f i)=

πd3
pi

6

1

εfεs
βi(upi−u f i), (2.9)

where Vpi, dpi, upi are the volume, the diameter, and the velocity, respectively, of particle
i; u f i is the fluid velocity interpolated at the location of particle i; and βi is the correla-
tion coefficient. To facilitate the presentation of the fluid-particle interaction algorithm in
Section 3.2, Eq. (2.9) is re-written as

fdi = Bi(upi−u f i), with Bi =Vpiβi

/
εfεs (no summation over i). (2.10)

The specific form of βi depends on the drag correlations used. In this study, the drag
correlation by Syamlal and O’Brien is adopted [3]

βi =
3

4

Cd

V2
r

ρf|upi−u f i|

dpi
εsεf, with Cd =

(
0.63+4.8

√
Vr/Re

)2
, (2.11)

where the particle Reynolds number Re is defined as

Re=ρfdpi|upi−u f i|
/

µ, (2.12)

where Vr is the ratio of the terminal velocity of a group of particles to the terminal velocity
of a single particle, obtained from the following correlation [18]

Vr =0.5
(

A1−0.06Re+
√

(0.06Re)2+0.12Re(2A2−A1)+A2
1

)
, (2.13)

with

A1 = ε4.14
f , A2 =

{
0.8ε1.28

f , if εf≤0.85,

ε2.65
f , if εf >0.85.

(2.14)

3 Numerical methods

The particle motion equations (2.1) and (2.2) are solved using a classical molecular dy-
namics simulation solver, LAMMPS (Large-scale Atomic/Molecular Massively Parallel
Simulator), developed at the Sandia National Laboratory [19]. It has been extensively
used in previous studies of granular flows [8, 14].

The fluid flow solver is partly based on a two-fluid model simulator developed
by Rusche [20] utilizing the library OpenFOAM (Open Field Operation and Manipu-
lation) [21]. The finite volume method is used to discretize the equations on an unstruc-
tured mesh. All variables are stored in the cell centers, that is, co-located grid is used. The
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implicit Euler scheme is used for the time integration, which has only the first order ac-
curacy but is unconditionally stable. The convection and diffusion terms are discretized
with a blend of central difference (with second-order accuracy) and upwind difference
(with first order accuracy). Further details of the numerical schemes are given in [20].

In the hybrid CFD-DEM solver, the fluid phase is solved in the Eulerian frame, and
the particle phase is tracked in the Lagrangian frame. The solvers for the two phases
are coupled using fluid-particle interaction models accounting for various forces such
as drag, buoyancy, and added mass. In this section, three specific issues in the fluid-
particle interactions are discussed: (i) the translation between the Eulerian fields and
Lagrangian quantities; (ii) the treatment of fluid-particle interactions; and (iii) the effects
of sub-stepping. Finally, the overall algorithm of the CFD-DEM solver is summarized.

3.1 Forward and backward interpolations between Lagrangian and Eulerian
fields

In Eqs. (2.7) and (2.9), solid volume fraction, εs, and Eulerian mesh-based particle phase
velocity, us, are needed. They are obtained from the particle data in the DEM simula-
tion via averaging procedures. The problem of calculating εs can be stated as: given a
mesh and a set of particles with known locations and diameters, the mesh-based vol-
ume fraction field is to be calculated. Lagrangian polynomial interpolation is the most
widely used method for the Lagrangian-Eulerian averaging processes in previous works
(e.g., [22]). However, it requires an orthogonal grid and is not applicable when a three-
dimensional (3D) unstructured mesh is used. A heuristic approach is taken here to ex-
plain the procedure used in this study.

For the convenience of illustration, we consider a generic two-dimensional (2D) sys-
tem with three particles (P1 to P3) and four cells (C1 to C4) as shown in Fig. 1(a). A
possible method of calculating the solid volume fraction is to sum up the volume of all
the particle centered in each cell and then divide by the corresponding cell volumes (see
e.g., [10]). With this procedure, the solid volume fraction, εsc3, for cell 3 would be

εsc3 =
1

Vc3
(Vp2+Vp3), (3.1)

where Vc3 is the volume of cell 3; Vp2 and Vp3 are the volume of particles 2 and 3, respec-
tively. This procedure, referred to as the sum-up procedure hereafter, may have difficulties
when several large particles happen to have centers in one cell. Fig. 1(b) shows an exag-
gerated scenario, where the volumes of the four large particles all contribute to cell at the
center (denoted with thick edges), making it possible for εs of this cell to approach unity.
The problem is even more pronounced when the particles have a wide range of size dis-
tribution, because they could achieve more compact packing. When εs approaches unity,
the drag force term obtained from Eq. (2.9) becomes unbounded, which in turn desta-
bilizes the solution. In practice, instability often occurs whenever εs exceeds about 0.80
during a simulation.
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(a)
Figure 1: (a) Illustration of the averaging procedure using a generic and simple fluid-particle system with three
particles and four cells. (b) An exaggerated scenario encountered when using the sum-up procedure (box-car
kernel function) for the averaging. Polygons denote cells; Circles denote particles; X denote cell centers; P1-P3
and C1-C4 denote particle and cell numbering; Arrows denote particle-to-cell ”contribution” of in solid volume
calculation.

To overcome this difficulty, in the averaging process, the volume of each particles is
distributed to all the cells according to its distance to the cell centers. Accordingly, a cell
accepts ”contributions” from all particles in the system. For example, the volume fraction
of cell 3 is

εsc3 =
1

Vc3

(
ω1,c3Vp1+ω2,c3Vp2+ω3,c3Vp3

)
, (3.2)

where ω1,c3 to ω3,c3 are the weights of the contributions from particles 1-3 to cell 3. Clearly,
the solid volume which all the cells ”receive” must equal the sum of all the particle vol-
umes, which is equivalent to requiring the weight functions to be normalized. This is en-
sured by choosing appropriate weighting functions for the contributions. For example,
the weight ω2,c3 in Eq. (3.2) of the contribution from particle 2 to cell 3, can be computed
as

ω2,c3 =
K

(
|xp2−xc3|

/
b
)

4

∑
m=1

K
(
|xp2−xcm|

/
b
)

, (3.3)

where K is a kernel function; xp2 and xc3 are the coordinates of particle 2 and cell 3,
respectively; b is the bandwidth; and m is the general cell index. Similarly, the weights
of the contributions from particle 2 to cells 1, 2, and 4 (denoted as ω2,c1, ω2,c2 and ω2,c4,
respectively) can be obtained. Because

4

∑
m=1

ω2,cm =1,

the total solid volume contributed by particle 2 to all the cells is

ω2,c1Vp2+ω2,c2Vp2+ω2,c3Vp2+ω2,c4Vp2 =Vp2. (3.4)

Therefore, the normalization requirement above is satisfied no matter which form is cho-
sen for the kernel function. This procedure is similar to the estimation of probability den-
sity function from discrete points, a problem frequently encountered in statistical data
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analysis [23]. It is also applicable for the interpolation of other quantities such as velocity
us. It can be easily generalized to 3D cases.

In summary of the illustration above, the volume fraction of each cell can be calcu-
lated as

εsc ≡ εs(xc)=
1

Vc

Np

∑
i=1

ωi Vpi, (3.5a)

with

ωi =
K

(
|xi−xc|

/
b
)

Nc

∑
m=1

K
(
|xi−xm|

/
b
)

, (3.5b)

where εsc is the solid volume fraction defined at the center of cell c; x is the coordinate
of cells or particles; i is the general index for particles, which runs from 1 to Np (the total
number of particles in the system); The cell index m runs from 1 to Nc (the total number of
cells); ωi is the weight of the contribution from particle i, where the cell number is omitted
from the subscript since it is clear that cell c is of concern in Eq. (3.5); The Gaussian
function is a reasonable candidate for the kernel function K:

K(ζ)=exp[−ζ2],

where ζ = |xi−xc|
/

b. However, due to efficiency considerations, the following kernel
function is used in the implementation

K(ζ)=

{
[1−ζ2]4, if |ζ|<1,

0, if |ζ|≥1,
(3.6)

which is very close to the Gaussian function for ζ between 0 and 1, as shown in [24]. It
can be seen that the sum-up procedure mentioned above is equivalent to using a box-
car kernel function in Eq. (3.5) with bandwidths equal to the local cell sizes, which may
not be globally uniform. Similarly, the solid phase velocity is obtained via the following
averaging procedure

usc =
1

εscVc

Np

∑
i=1

[ωiuiVpi], (3.7)

with ωi given by (3.5b). In a similar approach, the drag force on the flow field per unit
volume of mixture (or on cell c when discretized) is computed from drag forces from
individual particles as follows:

fdc ≡ fd(xc)=
1

Vc

Np

∑
i=1

[ωifdi], (3.8)
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where ωi given by (3.5b), in lieu of the conceptual representation, fdc = ∑
cn
i=1fdi

/
Vc, in

Eq. (2.8).
In Eqs. (3.5), (3.7), and (3.8), Eulerian fields are obtained from Lagrangian particle

quantities through averaging procedure. This operation is called averaging or backward
interpolation. Another operation required in the drag calculation is to calculate the fluid
velocity, u f i, at the particle location, xi, given the fluid velocity field based on an unstruc-
tured mesh. This operation, referred to as forward interpolation, can be conducted using
the same kernel function

u f i≡uf(xi)=
Nc

∑
c=1

ωcuc, (3.9a)

with

ωc =
K

(
|xi−xc|

/
b
)

Nc

∑
m=1

K
(
|xi−xm|

/
b
)

, (3.9b)

where ωc is the weight for cell c.
The interpolation operations in Eqs. (3.5) and (3.7)-(3.9) share a similar form

q=
N

∑
j=1

ωjqj, (3.10)

where q is the quantity obtained via interpolation (scalar or vector); qj is the source data
points, either particle quantities or fluid phase quantities; ωj is the weight for each source

data point. For the convenience of notation, we use ∑̃i to denote the weighted sum of the
quantities from all the particles, that is,

∑̃i
qi ≡

Np

∑
i=1

ωiqi. (3.11)

For forward interpolations (from Eulerian fields to Lagrangian particle quantities), the
index i in Eq. (3.11) is replaced with c. With the new notation, Eqs. (3.5), (3.7) (3.8), and
(3.9) are written in a unified framework as

εsc =
1

Vc
∑̃i

Vpi, usc =
1

εscVc
∑̃i

uiVpi, fdc =
1

Vc
∑̃i

fdi, and u f i =∑̃c
uc, (3.12)

respectively. When the box-car kernel function is used, the weighted sum degenerates to
the regular sum.

Although theoretically the interpolation procedure in Eq. (3.12) has a computational
complexity of the order of O(NpNc), since all the particles and cells are examined at each
step. In practice, however, the kernel functions have local supports, and thus only the
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neighboring particles or cells need to be examined. Since the kernel function, K, depends
on the particle-cell distance, |xi−xc|, which is a frame-independent norm, the results do
not directly depend on the frame orientation and the mesh sizes.

In the simulations using the hybrid CFD-DEM solver, the Eulerian mesh has to be
fine enough for the fluid simulation to achieve grid convergence and reasonable accu-
racy. On the other hand, in order to reduce the statistical error during the particle field
averaging procedure, each fluid cell has to contain enough particles. To satisfy both re-
quirements, a large number of particles may be needed in the system, which could make
the computation very expensive, since the DEM simulations are computationally inten-
sive. Introducing the kernel functions into the interpolation procedure can achieve small
statistical errors with relatively small number of particles in each cell, and thus minimize
mesh-dependence while keeping the computation cost low. In addition, in the scenarios
where the cells are of nonuniform sizes, using the sum-up procedure would assume dif-
ferent bandwidths (equal to local cell sizes) at different locations, while the kernel-based
averaging procedure is free from this limitation. Therefore, overall speaking, the averag-
ing procedure presented above is better than the sum-up procedure, although the later
has slightly lower computation cost, and is more consistent on the boundaries.

Although the bandwidth b in the kernel function can take any value theoretically, our
experience shows that taking b between 1.5∆ and 2.5∆ (where ∆ is the average cell di-
mension) gives the best results. Computational expenses increase significantly when the
bandwidth is too large, while using very small bandwidth makes the procedure degen-
erate to the sum-up procedure and thus lose its advantages.

3.2 Robust treatment of fluid-particle interactions

In most of the previous studies of fluid-particle interactions using CFD-DEM approaches,
the dynamic effects of the particles on the flow field are represented by a drag force
term in the fluid momentum equation (see [9], [11], and the review in [25]). The drag
term is often treated explicitly in the numerical solution. This method of handling fluid-
particle interactions was originally proposed by Crowe et al. [26], where the algorithm
was termed particle-source-in-cell model. Note that the inter-particle interactions were
not accounted for in [26]. As reported in the literature (e.g., [27]) and according to our
experience, convergence difficulty often occurs in dense particle-laden flows, because of
the large external momentum source term (∑

cn
i=1fdi/Vc in Eq. (2.8)). In this study, this

issue is addressed with a semi-implicit treatment of drag terms as described below.
Using the drag relation in Eqs. (2.9) and (2.10), the momentum equation (2.8) can be

written as

∂

∂t
(εfρfuf)+∇·(εfρfufuf)=−εf∇p+εfµ∇

2uf+
εf

Vc
∑̃i

Bi(upi−u f i)+εfρ f g, (3.13)

where Bi is defined in Eq. (2.10). The drag force which the particles exert on the flow
field (that is, the third term on the right-hand-side of Eq. (3.13)), is nonlinear in that the
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coefficient Bi depends on the particle velocity upi and interpolated fluid velocity, u f i.
This term is first linearized so that upi and u f i from previous step is used to calculate
Bi. The particle velocity upi is not a function of fluid velocity, and thus the contribution
from the particle velocities toward the drag term can only be treated explicitly, along
with other external source terms such as g. However, the interpolated fluid velocity,
u f i, at the particle location is a function of the fluid velocity field, uf. Specifically, it is a
linear combination of the fluid velocities at all the cell locations where uf is discretized.
Therefore, it is possible to treat this term implicitly. To simplify the implementation,
we use the cell closest to the particle to approximate the fluid velocity at the particle
location instead of a weighted average of the fluid velocity from several (or all) cells. This
simplification is for the convenience of implementation and is not theoretically essential.
Separating the explicitly and implicitly treated terms, the fluid momentum equation can
be written as

∂

∂t
(εfρfuf)+∇·(εfρfufuf)=−εf∇p+ εfρ f Ac+εfρ f g

︸ ︷︷ ︸
Explicit treatment

+ εfµ∇
2uf−εfρ f Ωcu f c︸ ︷︷ ︸

Implicit treatment

, (3.14)

with

Ac =
1

ρfVc
∑̃i

Biupi, Ωc =
1

ρfVc

cn

∑
i=1

Bi, (3.15)

where u f c is the fluid velocity of the cell of concern, that is, the discretized version of the
fluid velocity field, u f . The term Ac is the acceleration on the fluid cell caused by the
explicitly treated drag force, that is, the discretized version of the explicit drag acceler-
ation field. This field is referred to as explicit drag for simplicity, but note that it has the
dimension of acceleration. The term Ωc is the coefficient for implicit drag and has the
dimension of frequency (viz. [1/s]).

The semi-implicit treatment of the drag terms ensures good stability performance,
easy implementation, and minimum mesh-dependence. Although this algorithm is not
unconditionally stable, our experience suggests that in all the cases simulated in this
study, the stability performance of the algorithm has been excellent. This is a major im-
provement over the fully explicit treatment in the current literature. Of course, a fully
implicit treatment of the drag term would have even better stability performance (prob-
ably unconditionally stable). However, this cannot be easily implemented because of the
difficulty in obtaining particle velocities for the current step.

Other components in the fluid-particle interactions include added masses, which are
treated implicitly, and lift forces, which are treated explicitly. Added mass is important
only when the fluid density is comparable to the particles density (e.g., sand particles in
water).

The momentum equation (3.14) together with the mass conservation equation (2.7)
are solved with a modified PISO algorithm. The original PISO algorithm with Rhie-
Chow interpolation was developed to prevent pressure-velocity decoupling in fluid flow
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simulations on co-located grids [28]. It was later modified for transient flow simula-
tions [29,30] and two-fluid models [20]. The algorithm of Rusche [20] is used in this study
with some modifications to accommodate the CFD-DEM coupling (refer to Section 3.4).
At individual time step for the fluid flow, the PISO algorithm can be summarized as
follows [20, 30]:

(i) Momentum prediction: solve the fluid momentum equation using the pressure field and the
external forcing from the previous step,

(ii) Pressure solution: solve the pressure equation, which can be obtained from Eq. (2.7), for the
updated pressure field,

(iii) Velocity correction: correct the velocity field using the updated pressure field with the momentum
equation,

(iv) Steps (ii) and (iii) are repeated until convergence.

The drag forces in Eq. (3.14) are computed based on each particles and then interpo-
lated to the Eulerian field. An alternative approach is to average the particle quantities to
mesh-based fields first, based on which the drag is then computed. However, to conserve
momentum during the interaction, the computed drag needs to be distributed to the par-
ticles in the cell, which makes it difficult to study some phenomena such as segregation
of poly-dispersed particles, since the choice of drag distributions scheme inevitably in-
fluences the results of the predictions [24]. The treatment presented here does not require
drag distribution and addresses this difficulty well.

3.3 Particle relaxation time and sub-stepping

In the current algorithm, the drag force is constant for each fluid time step. Consider a
scenario where a particle with zero velocity is released in a stream with constant velocity,
Ue. Assuming the drag force computed according to initial relative velocity is applied
on the particle without decrease due to the decrease of the slip velocity (defined as uri =
upi−u f i), the relaxation time, τp, of a particle can be easily computed as follows using the
drag correlation in Eq. (2.9)

τp =
Ue

εf fdi

/
mi

=
ρsεs

βi
, (3.16)

where ρs is the particle density; fdi is computed according to Eq. (2.9), with the slip ve-
locity taken as Ue since the particle is stationary initially. The relaxation time above has a
similar interpretation as the particle characteristic time in the definition of Stokes number.
Inserting the expression for βi in Eq. (2.11) into (3.16) yields

τp =
ρsεs

3
4

Cd

V2
r

ρfUe

dpi
εfεs

=
4ρsdpiV

2
r

3CdUeρfεf
. (3.17)
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Table 1: Exemplary relaxation time (in seconds) for different volume fractions, fluids, fluid velocities, and particle
diameters. Parentheses indicate cases which may need sub-stepping.

Volume fraction εs =0.2 εs =0.6 Unit
Diameter 0.1 1 0.1 1 mm

Water (3 m/s) (7.0×10−5) (1.0×10−3) (3.0×10−5) (4.0×10−4) s
Water (1 m/s) (1.5×10−4) 3.0×10−3 (6.7×10−5) (1.0×10−3) s

Air (3 m/s) 3.0×10−2 0.72 1.3×10−2 0.29 s
Air (1 m/s) 3.9×10−2 1.5 1.9×10−2 0.66 s

The actual relaxation time is a few times larger than the value in Eq. (3.16) because of the
exponential decay of the drag force as the particle velocity approaches fluid velocity.

Relaxation time for several different flow and particle conditions are presented in
Table 1, considering two solid volume fractions, εs = 0.2 and 0.6. Other drag correla-
tions [17, 31] are tested and similar results are obtained. When the relaxation time is
smaller than or close to the fluid time step, velocity oscillations or even instabilities may
occur. One way to circumvent this problem without decreasing the fluid step is to update
the particle velocity and drag force on the particle within one fluid step. This procedure is
called sub-stepping. Fig. 2 illustrates the fluid-particle interaction procedure, particularly
the drag update procedure, with and without sub-stepping.

(b) with sub−stepping

particle time step

sub−step sub−step

. . .       . . .

update drag

fluid time step

. . .       . . .

update drag

(a) without sub−stepping

Figure 2: Schematic of particle time step (separated by vertical thin lines), sub-steps (separated by vertical
thick lines), and fluid time step (the whole horizontal line), as well as the drag update in algorithms (a) without
sub-stepping and (b) with sub-stepping.

For fluid flows with properties in the range of interest and the mesh sizes used in this
study, the typical order of magnitude of time steps for the CFD simulation is ∆t f =10−3s,
considering the Courant-Friedrichs-Lewy (CFL) condition and the possible destabilizing
effects caused by the fluid-particle interactions. From Table 1, it is seen that when simu-
lating particle-laden water flows (usually with smaller Stokes numbers than gas flows),
sub-stepping is generally necessary if the particle sizes are smaller than approximately
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1mm. The cases which may need sub-stepping are indicated with parentheses in Table 1,
if the fluid step size is to be kept of the order of 10−3s.

Without sub-stepping, the momentum exchange between the two phases during fluid
step n is εff

n
di∆t f , with εff

n
di being the drag force on particle i calculated at the beginning

of fluid step n. If sub-stepping is used such that ∆tsub =∆t f

/
Ns, with tsub being the time

interval after which the drag forces on the particles are updated (sub-stepping size) and
Ns being the number of sub-steps per fluid time step, then the momentum exchange (Idi)
between particle i and the fluid is

Idi =
Ns

∑
k=1

εff
n,k
di ∆tsub =

1

Ns

Ns

∑
k=1

Vpiβiu
k
ri

εs
∆t f (3.18)

=
1

Ns

Ns

∑
k=1

Vpiβi(u f i−uk
pi)

εs
∆t f =

Vpiβi∆t f

εs

(
u f i−

1

Ns

Ns

∑
k=1

uk
pi

)
, (3.19)

where n is the fluid time step index and k is the sub-step index during fluid step n. The
average value for fdi during the fluid step n is

fn
di =

Vpiβi

εsεf

(
u f i−

1

Ns

Ns

∑
k=1

uk
pi

)
. (3.20)

Comparing Eq. (3.20) with (2.9), the average particle velocity from all the sub-steps (viz.

ūn
pi = ∑

Ns

k=1uk
pi

/
Ns) should be used in place of upi when calculating the drag force term

Ac in Eq. (3.15), in order to conserve momentum in the fluid-particle interactions. The
average velocity ūn

pi can be considered as the ensemble average of the particle velocities

based on all the sub-steps during the nth fluid step.
It is emphasized that if all particles in the fluid are of very small Stokes number,

the particles can be modeled as passive tracers because the particles follow fluid motion
closely without dynamics effects, and thus the sub-stepping procedure or even the DEM
simulation for the particles is unnecessary. The sub-stepping procedure is intended for
fluid-particles systems with a wide range of Stokes numbers (and thus relaxation time scales)
caused by the presence of some very fine particles. An example of such case is shown in
Section 4.4. It is apparent that reducing fluid time step according to the requirement
specified by Eq. (3.17) would certainly yield stable solution. However, it is often not
desirable to use excessively small time step and CFL number for the fluid simulation
due to accuracy considerations. Note that saving computational expense in the fluid
simulations is not the major benefit of using the sub-stepping scheme. Taking for example
Case 4 in Section 4.4, the saving of computational time by using sub-stepping is only
3%, which is relatively insignificant. This is because the DEM simulation is much more
computationally intensive than the CFD simulation, and thus the major computational
expense is associated with the DEM simulation. Therefore, reducing the computation
time spent on the CFD simulation has only minor effects on the overall computational
expense.
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To ensure stability, the number of sub-steps Ns should be chosen as approximately
∆t f

/
τp,min, where τp,min is the smallest relaxation time associated with all the particles.

Usually the particles are of the same density and thus τp,min is the relaxation time of the
smallest particles.

3.4 Overall algorithm of fluid-particle interactions with CFD-DEM coupling

In summary, the overall algorithm for the fluid-particle interactions is presented as fol-
lows (refer to the pseudo-code in Algorithm 3.1 for the numbered steps mentioned be-
low):

Algorithm 3.1: Overall fluid-particle interaction algorithm with sub-stepping

Initialize drag coefficient terms (Ω0
c and A0

c);

for n=1 to Nt do

1. Evolve fluid fields from u
n−1
f , pn−1 to un

f , pn (using PISO);

2. Calculate drag terms Ω
n
c and An

c ;

for k=1 to Ns do

3. Compute fluid drag (fn,k
di ) on each particle;

4. Evolve particle states with DEM simulator;

end

5. Obtain Eulerian fields (un
s and ε

n
s ) for fluid step n via averaging.

end

Nt is the number of fluid steps; n is the fluid step index; Ns is the number of sub-steps per fluid step;

k is the sub-step index. Further details of each step are explained in Section 3.4.

Given the initial fluid fields (u0
f , p0) and particle state (positions x0

p and velocities u0
p),

along with appropriate boundary conditions, the objective is to evolve the fluid-particle
system by certain amount of time (Nt steps of size ∆t f ). At each fluid step, the fluid
fields are first solved with the modified PISO algorithm, and the fluid fields are evolved
from state n−1 to n (see Step 1 in Algorithm 3.1). Solving the fluid equation requires the
information of the particle drag on the fluid fields. The drag information from previous
fluid step, Ωn−1

c and An−1
c , is used.

In Step 2 (refer to Algorithm 3.1), based on the newly obtained fluid fields (un and
pn) and current particle states (position xn−1

p and velocity un−1
p ), the particle drag terms

are computed according to Eq. (3.15), and thus Ωn
c and An

c are obtained. The calculation
involves backward interpolation, which is detailed in Section 3.1. In addition, as men-
tioned in Section 3.3, when computing Ωc and Ac, the ensemble particle velocity (ūn

pi)

from the previous fluid step should be used in lieu of the current particle velocity. The
evolution of particle states is conducted in Ns sub-steps.
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In each sub-step, the drag forces are computed according to fluid fields at current time
step n and particle state at current sub-step k (refer to Step 3 in Algorithm 3.1). With the
information of fluid particle interaction forces, the particle states are evolved from (un−1

p ,

xn−1
p ) to (un

p, xn
p) with the DEM simulator in Ns sub-steps, where each sub-step consists of

a certain number of particle steps (refer to Step 4).

Finally in Step 5, (that is, after all the sub-steps and at the end of each fluid step),
the Eulerian fields (εs and us) are obtained from the particle quantities (un

p and xn
p) with

the averaging procedures detailed in Section 3.1. At the end of the fluid step, all the
quantities and fields are all advanced to the new state, including the flow field (un

f and

pn), the particle state (un
p and xn

p), and the Eulerian particle fields (un
s and εn

s ).

4 Numerical examples

Four numerical examples are presented in this section. In Case 1, a mono-dispersed bed
is fluidized by upward air flow with gradually increasing velocity. This case is used to
verify the numerical model. In Case 2, a similar bed consisting of bi-dispersed particles is
fluidized by air flow at a constant velocity. The influence of kernel functions on the mesh-
dependence is studied by comparing the results with those obtained using the sum-up
procedure. Case 3 illustrates the effects of sub-stepping with the motion of one particle in
a constant water stream. Case 4 is an example of the transport and segregation of natural
sand by groundwater flows. The particle properties for all the cases are presented in
Table 2. Particle-particle and particle-wall collision parameters are as follows: particle
stiffness coefficient k = 5000 N/m, restitution coefficient e = 0.7, and friction coefficient
between particles γ = 0.15. The walls are assumed to be smooth and rigid. The fluid
domain dimensions are specified in each case. Pseudo-3D simulations are conducted for
all the cases. Specifically, the particle simulations are conducted in 3D, while the fluid
simulations are conducted in 2D. This is justified by the fact that the variation of fluid
motion in the thickness direction is small due to the small thickness of the bed. Note that
with the presence of very small particles (compared to the domain thickness) such as in
Case 4, the flow field is not strictly 2D. However, the dynamic effects on the flow field due
to the presence of the particles also decrease with decreasing particle sizes. Therefore, the
flow field variation in the thickness dimension is not considered. In all the simulations
except Case 3 (where there is only one particle), the particles are initially settled at the
bottom of the bed, with particles of all types randomly packed and uniformly mixed.
Unless noted otherwise, the fluid mesh has 15×75×1 cells (in x, y, and z directions,
respectively; same convention hereafter), the fluid (CFD) time step is 10−3s, and particle
(DEM) time step is 10−6s.

The dynamic viscosity and density of the air are µa = 1.8×10−5 [Pa s] and ρa = 1.2
[kg/m3], respectively. For water, we use µw =1.0×10−3 [Pa s] and ρw =1×103 [kg/m3].
The gravity constant is g=9.8m/s2. The added mass is considered when the interstitial
fluid is water, and an added mass coefficient 0.5 is used. Lift forces are neglected.
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Table 2: Particle properties for the computational Cases 1, 2, 3, and 4.

Model validation (Case 1)
dp 1.5mm
ρs 2000kg/m3

Umf (theoretical* ) 84cm/s
Number of particles 2160

Mesh-dependence study (Case 2)
Small particles Large particles

dp 1.52mm 2.49mm
ρs 2523kg/m3 2526kg/m3

Umf (theoretical**) ∼92cm/s ∼130cm/s
Number of particles 1783 377

Sub-stepping study (Case 3)
dp 0.083mm
ρs 2000kg/m3

Number of particles 1
Groundwater seepage problem (Case 4)

dp 0.083 — 2.5mm
ρs 2000kg/m3

Umf (theoretical**) 0.01 — 2.5cm/s
Number of particles 2160

* Obtained with drag correlation in Eq. (2.11) assuming εs = 0.554, the median value
of the initial solid volume fraction field.

** Assuming εs = 0.583. This is the measured value in the experiment [32] according
to which this case is composed. Note that the bed with bi-dispersed particles in this
case has higher volume fraction than the mono-dispersed bed in Case 1.

As an overview of the computational demand of the solver, the CPU time required to
simulate 2000 particles (Cases 1, 2, and 4) for a physical time of 20 s is about 6 hours on
one processor (AMD Opteron R© 2.3GHz with 4 GB memory). Most of the CPU time is
consumed by the DEM simulations, particularly when the particles are densely packed,
because more particle-particle collisions need to be handled.

4.1 Case 1: model validation

In this numerical example, air flow is injected into the bottom of a particle bed with
gradually increasing velocity. The domain geometry as well as the initial and boundary
conditions are shown in Fig. 3 and Table 3. The fluid pressure and velocity are monitored
at two heights: y1 = 0.2 cm and y2 = 15 cm, as indicated in Fig. 3. It is observed that the
flow fields are approximately uniform along the horizontal (x) and depth (z) directions,
and thus the x and y coordinates of the monitored locations are not of concern.

The inlet air velocity linearly increases from 0m/s to 1.5m/s, and then linearly de-
creases to 0m/s, as shown in Fig. 4. The pressure drop keeps increasing as the inlet air
velocity increases until the bed is fluidized. After that, the pressure drop keeps fluc-
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Figure 3: Geometry of the pseudo 3D computational domain and boundary conditions for all the simulations.
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Cases 1 and 2.
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Figure 4: Verification study of the numerical solver (Case 1): Inlet velocity (dashed line) and the corresponding
pressure drop (solid line) through the bed as measured by the pressure difference of the two points (S1 and S2)
in Fig. 3.
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Figure 5: Performance comparison of the box-car and the bell-shaped kernel functions in the simulation of bed
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Table 3: Computational domain sizes and initial and boundary conditions for Cases 1, 2, and 4.

Geometry
Height of domain (Ly) 20cm
Width of domain (Lx) 4cm
Depth of domain (Lz) 0.75cm

Initial bed height (h in Fig. 3)
model validation (Case 1) ∼ 2.5cm
mesh dependence (Case 2) ∼ 4cm

Groundwater seepage (Case 4) ∼ 2cm
Boundary conditions
Uniform fluid inflow Specified velocity

Pressure Zero gradient at outlet

tuating around a constant value but with increasing fluctuation amplitude as the inlet
flow velocity increases. The inlet velocity at which the pressure drop stops increasing
is the minimum fluidization velocity of the bed. The pressure drop at this point should
approximately balance the gravity of the particle bed (air weight is ignored here due to
its low density). When the inlet flow velocity decreases below the fluidization velocity
again, the pressure drop decreases. However, the decreasing and the increasing paths are
of hysteresis, because the fluidization/de-fluidization process is history-dependent. The
minimum fluidization velocity and the corresponding pressure drop are Umf = 83cm/s
and ∆p=235Pa, respectively. The theoretical prediction of Umf depends on the solid vol-
ume fraction, εs. It is estimated to be Umf = 84cm/s assuming εs = 0.554, which is the
median value of the initial solid volume fraction field. The numerical prediction is very
close to the theoretical value. The pressure drop across the fluidized bed can be theoreti-
cally estimated according to

∆p= Npmig
/
(LxLz),

where Npmi is the total mass of all the particles. The estimation gives 254Pa according to
the particle and domain properties in Tables 2 and 3. This is close to the prediction from
the simulation. The remaining discrepancy (less than 10%) is possibly explained by the
jam effects from the wall.

To evaluate the performance of the box-car and bell-shaped kernel functions, the sim-
ulation described above is repeated using both kernel functions. In this comparison, a
finer mesh with 25 × 100 × 1 cells is used, because the differences between the two ker-
nel functions are more pronounced for fine meshes, and fine meshes are often required
to achieve better accuracy in CFD simulations. The time series of the pressure drop, ∆p,
obtained by using box-car kernel function is shown in Fig. 5, and is compared with the
results obtained using the bell-shaped kernel function. Fig. 5 is zoomed in to show the
time when the fluidization occurs. The points corresponding to the bed fluidization on
the results from box-car and bell-shaped kernel functions are marked with a circle and a
square, respectively.
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Table 4: Comparison of predictions of minimum fluidized velocity (Umf) and pressure drop (∆p) in the simulation
of Case 1, using the box-car and the bell-shaped kernel functions.

Box-car Bell-shaped Theoretical prediction ∗

Umf 79 cm/s 83 cm/s 84 cm/s
∆p 223 Pa 235 Pa 254 Pa

∗ Note: Using the median value of the initial solid volume fraction (εs) field, 0.554.

The minimum fluidization velocity, Umf, and the corresponding pressure drop, ∆p,
obtained using the two kernel functions are presented in Table 4, and are compared to
the theoretical predictions. It can be seen that the bell-shaped kernel function gives better
agreements with the theoretical values in terms of both Umf and ∆p. In particular, it is
noted that when the box-car kernel function is utilized in the averaging procedure, the
predicted minimum fluidization velocity, Umf, is lower than the numerical predictions
from the bell-shaped kernel function and the theoretical value. This is because the sum-
up procedure inevitably gives unphysically high solid volume fractions in some cells (see
Fig. 1(b) for a more detailed explanation) and thus leads to artificially early fluidization.
During the simulation, when the computed solid volume fraction in any of the cells is
too high (e.g., larger than 0.80), particles in these cells may gain very large velocities,
which leads to instability of the whole system and these particles may even leave the
simulation domain. In these scenarios, the simulation has to be terminated, which is
indicated in Fig. 5 for the box-car kernel function case with arrow.

According to our experiences during this study, when box-car kernel functions are
used, simulations often fail due to this reason. This drawback makes the box-car kernel
function not a desirable choice for robust and stable solvers. Summarizing the compari-
son presented in Fig. 5 and Table 4, the bell-shaped kernel functions have better robust-
ness and accuracy than the box-car kernel functions in general, and are thus preferred.
Another desirable feature for a robust solver is the mesh independence, which is investi-
gated in Section 4.2 for both kernel functions.

4.2 Case 2: mesh-dependence study

In this example, a similar fluidized bed as in Case 1 is studied, except that the bed consists
of two types of bi-dispersed particles and the inlet air velocity is constant (1m/s). The
domain geometry as well as the initial and boundary conditions are shown in Fig. 3 and
Table 3. To study the mesh-dependence, simulations are conducted with two meshes.
The fine mesh has 12×60×1 cells of size 3.33 mm ×3.33 mm ×7.5 mm, and the coarse
mesh has 8×40×1 cells of size 5 mm×5 mm ×7.5 mm . The bandwidth for the kernel
function is 10 mm for both the fine mesh and the coarse mesh.

The pressure drops are monitored in the same way as in the verification case above.
The results obtained with the fine mesh and those with the coarse mesh are compared in
Fig. 6(a). As a comparison, the simulation results obtained on the same meshes but with
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Figure 6: Mesh-dependence study (Case 2): Simulated pressure drop through the bed with (a) bell-shaped
kernel function and (b) box-car kernel function (sum-up procedure). Results obtained with a fine mesh and
those with a coarse mesh are compared.

0 0.5 1 1.5 2
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
(a)

Time (s)

S
ol

id
 p

ha
se

 v
el

oc
ity

 (
m

/s
)

 

 

Fine mesh
Coarse mesh

0 0.5 1 1.5 2
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
(b)

Time (s)

S
ol

id
 p

ha
se

 v
el

oc
ity

 (
m

/s
)

 

 

Fine mesh
Coarse mesh

Figure 7: Mesh-dependence study (Case 2): Vertical component of the Eulerian mesh-based particle phase ve-
locity at S1 (see Fig. 3) with (a) bell-shaped kernel function and (b) box-car kernel function (sum-up procedure).
Results obtained with a fine mesh and those with a coarse mesh are compared.

box-car kernel function are shown in Fig. 6(b). The grid-convergence performance for the
bell-shaped kernel function is better than that for the sum-up procedure, as shown by the
differences between the fine mesh results and coarse mesh results. The Eulerian particle
phase velocity, us, at point S1 (refer to Fig. 3) is also monitored. The results obtained
with bell-shaped kernel function and those from box-car kernel function are compared
in the same way as for the pressure drop. Again, the fine mesh results and the coarse
mesh results are compared for both kernel functions, and the differences between them
indicate the performance of mesh-dependence. It can be seen that mesh-dependence
of the particle phase velocity is much larger in the box-car kernel function results than
that in the bell-shaped kernel function results. The difference in grid convergence is
more significant for the particle phase velocity because the particle phase quantities are
directly influenced by the averaging procedure, while the fluid field quantities such as
the pressure are only indirectly influenced.
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Another observation is that with bell-shaped kernel functions, finer mesh could be
used to gain better accuracy for the flow field without causing the instability described in
Section 3.1. In other words, we could have fewer particles in each cell. According to our
experience, when using the sum-up procedure (box-car kernel function), instability often
occurs and it is more difficult to obtain reasonable results. Considering that the DEM
is a computationally intensive method, this advantage of the proposed averaging proce-
dure is of practical significance when the available computational resources are limited
compared to the demands of the problems.

4.3 Case 3: sub-stepping study

In this example, we consider a single particle in a water flow of constant velocity
Ue = 0.05m/s. The domain geometry is shown in Fig. 3, with the same dimensions as
in other cases but with different boundary and initial conditions so that uniform flow is
achieved. The particle has an initial velocity of zero and is accelerated due to the fluid
drag. For simplicity, other external forces such as gravity, buoyancy, and added mass are
neglected in this case, and the box-car kernel function is used. The particle has a diame-
ter of 0.083mm and the cell size in the mesh is 2mm×2mm×2mm. The influence of the
particle to the overall flow field is negligible.

The particle velocity is described by

dupi

dt
= Fdi, (4.1)

where Fdi = εs fdi is the drag force on the particle; fdi is a nonlinear function of upi as
computed from Eq. (2.9), and εs = 0.524 is constant. Both the force fdi and the velocity
upi are scalars in this context since unidirectional flow is considered. If a constant force
computed according the initial slip velocity is applied on the particle, the time it takes to
accelerate the particle to the steam velocity is τp =0.5×10−3 s in this case, where τp is the
critical time step. The forward Eulerian time-stepping is used to solve Eq. (4.1) for the
particle motion, and the results obtained with different time step sizes are presented in
Fig. 8(a). The result obtained with MATLAB function ODE45, which uses a higher order
method, is considered as the exact solution for reference.

It can be seen that when the time step size ∆t is smaller than or equal to τp, the so-
lution is stable. When ∆t is between τp and 2τp, some oscillations occur but the particle
approach the flow velocity eventually. If ∆t is larger than 2τp, the solution diverges ex-
ponentially. Fig. 8(a) shows the results obtained from the numerical simulation with
the hybrid solver, with fluid time step size ∆t f = 1.1×10−3s. The particle movement in
the hybrid solver is similar to solving Eq. (4.1) except that the force term Fdi (a nonlin-
ear function of upi) is linearized in the solver. The result obtained without sub-stepping
is compared to those with 2 and 50 sub-steps per fluid step. It suggests that the sub-
stepping effectively renders the algorithm stable. When 50 sub-steps are used, the results
is almost identical to the exact solution (MATLAB ODE45 result in Fig. 8(b)).



H. Xiao and J. Sun / Commun. Comput. Phys., 9 (2011), pp. 297-323 319

! " # $ % & '
!!(!&

!

!(!&

!("

!("&

!(#

)*+,-."!
!$
-/0

1
2
34
*5
6,
-7
,
68
5
*4
9
-.
+
:/
0

.20

-

-
;2462<-=>?%&
!4-@-"

A

!4-@-"(B-"
A

!4-@-#"
A

!4-@-#(""
A

0 1 2 3 4 5 6
−0.05

0

0.05

0.1

0.15

0.2

Time (10−3 s)

P
ar

tic
le

 v
el

oc
ity

 (
m

/s
)

(b)

No sub−stepping
2 sub−steps
50 sub−steps

Figure 8: Sub-stepping study (Case 3): Particle velocity from (a) theoretical prediction with different time step
sizes and from (b) numerical simulations using the hybrid solver with and without sub-stepping.

4.4 Case 4: groundwater seepage-induced particle transport

The transport of fine particles in porous media is of interest to researchers in various dis-
ciplines. For example, in geotechnical engineering, rapid groundwater flow caused by
dewatering can carry away the fine sand from the soil, leading to mass loss and even-
tually the collapse of soil foundations. An example of seepage-induced transport is pre-
sented here to show the capabilities of the solver. The domain geometry as well as the
initial and boundary conditions are shown in Fig. 3 and Table 3. The setup is similar to
Cases 1 and 2, except that the interstitial fluid is water, with an inlet velocity of 3.5cm/s.
The particle diameter has a Gaussian distribution with a mean of 1.25mm and a stan-
dard deviation of 0.5mm. The minimum and maximum particle diameters are 0.083mm
and 2.5mm, respectively. The cumulative mass distribution curve shown in Fig. 9. For
the convenience of visualization, the particles are categorized into three groups: small
(0.083mm to 0.83mm), median (0.83mm to 1.67mm), and large (1.67mm to 2.5mm). The
simulation is conducted for 4.1s, with particle time step size ∆tp =6×10−8s and 25 sub-
steps per fluid step.

The snapshots at three time instances (t=0s, 0.6s, and 4.1s) are shown in Fig. 10. Par-
ticles of different size groups are shown in different colors. The snapshot at t = 0 s in
Fig. 10(a) shows the initial configuration where particles of all sizes are stationary and
uniformly mixed. During the initial period of approximately 1s, the bed expands grad-
ually and meanwhile the very small particles start to rise to the top. The snapshot at
t = 0.6s is shown in Fig. 10(b) where many small particles are observed at the top sur-
face of the bed. The segregation of median and large particles is not obvious from the
snapshot. Afterward, some small particles start to be transported upward and leave the
bed. Meanwhile, the size segregation among all particle groups continues. The snap-
shot at t = 4.1s in Fig. 10(c) shows the bed configuration after the segregation process,
where smaller particles are concentrated at the top and the larger particles are settled at
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Figure 9: Cumulative distribution of particle diameters in Case 4.

Figure 10: Snapshot at different time instances: (a) t=0s (initial particle state); (b) t=0.6s; and (c) t=4.1s.
The box indicates the fluid domain. Only bottom half of the domain is shown. Different particle size groups
(small, median, and large) are shown in different colors for the convenience of visualization.

the bottom. The segregation is obvious in this snapshot. To illustrate the segregation
process quantitatively, the mean height of the three groups of particles (ysmall, ymedium,
and ylarge for small, median, and large particles, respectively) are shown in Fig. 11(a).
The ratio between the mean height of the small particles and that of the large particles
(ysmall/ylarge) is shown in Fig. 11(b). The three groups of particles have the same mean
height initially, confirming the uniform initial mixing. The bed expansion and particle
segregation processes as explained above can be clearly seen in Fig. 11.

In this case, the particle time step size is very small because of the presence of the
very fine particles (0.083mm minimum). The fluid step size is kept the same as in Cases
1 and 2 (∆t f = 10−3s). The sub-stepping is important for this case, otherwise either ex-
cessively small fluid step size is needed or the small particle would leave the domain
with unphysically large velocity. This case also shows that the numerical model is able to
capture the particle size segregation process and the transport of fine particles in a poly-
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Figure 11: Quantitative description of transport and particle size segregation caused by upward seepage flows
(Case 4). (a) Mean height of the three particle size groups (large, median, and small). (b) Ratio between the
mean height of small particles and that of large particles.

dispersed bed. A major advantage of hybrid CFD-DEM models over two fluid models is
their ability to simulate beds with continuous particle size distribution as in this case [4].

5 Conclusions

In this work, a robust hybrid CFD-DEM solver has been developed to simulate dense
particle-laden flows with a wide distribution of particle sizes. A kernel-based interpo-
lation procedure between Eulerian and Lagrangian fields suitable for 3D unstructured
meshes is proposed. This procedure has been shown to be able to reduce the mesh-
dependence of the interpolation processes and to increase the robustness of the solver.
A semi-implicit treatment of the fluid-particle interaction terms in the fluid momentum
equation is proposed, leading to improved stability performance over the explicit treat-
ment. Finally, for flows with a wide range of Stokes numbers and thus multiple time
scales, numerical examples suggest that excessively small step sizes for the fluid are
needed. A momentum-conserving sub-stepping procedure is proposed to eliminate the
stringent time step requirement for the fluid solver. Numerical simulations have been
conducted to demonstrate the capabilities of the solver and the merits of the algorithm.
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