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1 Introduction

System biology, which studies integrated cellular reacting networks involving multiple
levels of biological activities from gene expression, protein interaction, metabolism to
signal transduction, has emerged as a new scientific discipline. Within such functional
networks, many types of molecular processes take place on a wide range of time and
population scales, under significant influence of random perturbations. From the point
of view of modeling, Gene Regulatory Networks (GRNs), unlike protein and metabolic
networks, involve fewer number of species and lower population of molecules in a small
volume within a cell [1]; therefore stochastic effects have a significant impact on the sys-
tem and stochastic models are particularly well suited to the study of the functionality of
GRN s [2]. The Stochastic Simulation Algorithm (SSA) introduced by Gillespie in [3,4] has
been the most successful and promising meso-scale bio-chemical reacting model, as well
as an accurate simulation scheme that incorporates stochastic effects. Meanwhile, it is
well known that bio-chemical reactions in intracellular networks involving gene expres-
sion occur on different time scales, e.g. the fast binding of RNA Polymerase to the DNA

*Corresponding author. Email address: richardl@math.msu.edu (D. Liu)

http:/ /www.global-sci.com/ 390 (©2011 Global-Science Press



D. Liu / Commun. Comput. Phys., 9 (2011), pp. 390-405 391

chain versus the relatively slower transcription process, which makes SSAs necessarily
inefficient despite its accuracy.

In recent years, the stochastic simulation of intracellular bio-chemical reacting net-
works with multiple time scales has received a great deal of attention and important
progress has been made. The main idea, pursued in different forms by many people, is
to capture the effective dynamics on the slow time scale, by assuming the fast processes
to be in a quasi-equilibrium distribution [5-11]. In [5], a scheme based on the quasi-
equilibrium assumption was proposed supposing that the probability density of the fast
species is known exactly as a function of the slow species or can be approximated, e.g.
by a Gaussian. The same quasi-equilibrium assumption was used in [6,7], where the ef-
fective slow rates are obtained by solving a system of approximate algebraic equations,
which are based on extra assumptions on both the reaction rates and the equilibrium dis-
tributions of the fast reactions. These limitations are removed in the recent work [8,9], in
which stochastic simulation algorithms with nested structures are proposed to deal with
the time scale issue. The Nested Stochastic Simulation Algorithm (Nested SSA, or NSSA)
proposed in [8,9] relies only on the disparity of the rates, and makes no a priori assump-
tion on the form of the slow and fast variables, nor upon the analytic form of the rate
functions. Similar schemes are also proposed in [10, 11], with different implementations
on sampling the quasi-equilibrium of the fast reactions and time advancing of the slow
reactions.

The purpose of the current paper is to test the Nested SSA on the cell cycle model for
budding yeast [12]. The cell-division cycle is the sequence of events that take place in
a eukaryotic cell leading to its replication. A growing cell replicates all its components
and divides them into two daughter cells, so that each daughter has the information and
machinery necessary to repeat the process. To account for random fluctuations in the
molecular numbers of some major regulatory proteins, it is imperative to incorporate
stochastic effects in the dynamics. A stochastic version of the budding yeast cell cycle
model has been proposed in the framework of SSA [13,14], which consists of 55 reacting
species involved in 82 reactions. Using Nested SSA, we are able to significantly speed up
the simulation of the model without losing much accuracy in the key dynamical features
of the system, such as the period of the cell cycle. In the following, we will first briefly
introduce the Nested SSA and the stochastic cell cycle model for budding yeast. Then we
will discuss in detail how NSSA can be applied to improve the efficiency of the stochastic
simulation.

2 The nested stochastic simulation algorithm

2.1 Direct SSA

The Stochastic Simulation Algorithm [3,4] describes the time evolution of a spatially ho-
mogeneous mixture of chemically reacting molecules contained in a fixed volume V. The
solution is assumed to be well mixed and iso-thermal so the details of the diffusion and
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transport processes can be neglected and the reaction rates only depend on the popula-
tions of reacting molecules. We take Ns species of molecules S;—; ... n, involved with Mg
reactions Rj1,... M, With x; €IN being the number of molecules of species S;. The state of
the system is defined by
x=(x1,++,xN;) eINNs, (2.1)
Each reaction R; is characterized by a rate function 4;(x) and a state change vector v; €
INNs. We write
R]': (a]-, V]) (22)
Given state x, the occurrences of the reactions on an infinitesimal time interval dt are
independent of each other and the probability of reaction R; during this time interval is
given up to the first order by a;(x)dt. The state of the system after reaction R; is x+v;.
The time evolution of the probability distribution of the system P(x,t) is governed by the
forward Kolmogorov equation:
%:;<aj(x—vj)P(x—vj,t)—uj(x)P(x,t)). (2.3)
The SSA (see also [15] for similar schemes) constructs numerical realizations of the
time evolution of the state vector x;, i.e. simulated trajectories x; advancing with time ¢
in the state space. To describe the method, we assume that the current time is t=¢,, and
the state of the system is at x=x,,. One version of SSA called the Direct Method performs
the following steps:

1. Let ao(x)zzjaj(x). Generate independent random numbers 71 and 1, with uniform distribution
on the unit interval [0,1]. Let

1 1
oty 1=——In{ — |, 24
" g (x) n(ﬁ) 24
and k,, .1 be the positive integer such that
kpy1—1 kni1
Y. aj(x) <raap(x) < ) aj(x). (2.5)
j=1 j=1

2. Update time and state of the system by

thi1=tn+0tu 11, Xp+1=Xn+Vg (2.6)

n+1°

Goto 1. unless certain stopping criterion is met.

A slightly different implementation known as the First Reaction Method, was also
introduced in [3,4]. In both versions, the SSA skips time intervals on which there is
no reaction event, going directly to the occurrence of the next reaction. Because more
random numbers are generated at each time step, the First Reaction Method is usually
less efficient than the Direct Method. This was improved in [16] by reusing the random
times for reactions that are not affected by the chosen reaction event at each time step.
The SSA is exact in the sense that the process generated by SSA has the same probability
distribution as the chemical reacting network being simulated.
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2.2 Nested SSA

To present the Nested SSA, we focus on the case when there are only two times scales.
The general cases is treated in [8,9]. We assume that the rates {a;(x)}’s can be divided
into two groups: One group corresponding to the fast processes with rates of order 1/¢
and the other group corresponding to the slow processes with rates of order 1, with e <(1:

a(x) = (a*(x),a’ (x)), (2.7)

where
1 ) (2.8)

in dimensionless units. The corresponding reactions and the associated state change vec-
tors can be grouped accordingly:

R°=(a’*), Rf = v)). (2.9)

The Nested SSA consists of two SSAs organized in a hierarchical fashion: an outer
SSA on the slow processes only, which uses modified slow rates, and an inner SSA on
the fast processes only, which uses the original fast rates and serves to give the modified
slow rates. Let t =t,, x = x,, be the current time and state of the system. The steps of the
Nested SSA are the following;:

1. Inner SSA
Run N independent replicas of SSA with the fast reactions Rf = (af,l/f) only, for a time interval
of Tf. During this calculation, compute the modified slow rates: For j=1,---,Ms, these are

a:

I MR 210)
a. — — e XkT T, .
PONG T !

where x;(T) is the k-th replica of the auxiliary fast processes at virtual time T whose initial value
is x¢(0) =x,. Tp is a parameter we choose in order to minimize the effect of the transients in
the auxiliary fast processes.

2. Outer SSA
Run one step of SSA for the modified slow reactions

R =(a°v°), (2.11)
to generate (f,41,X,41) from (t,,x,). Then goto 1. until a certain stopping criterion is met.
The justification of the Nested SSA is the following. The slow-fast chemical reacting

network can be viewed as a singular perturbation problem [17-19]. It is can be proved [9]
that the effective dynamics on the slow time scale can be given, up to order O(e), by:

R=(a(y)v°), (2.12)
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where y is the effective slow variables defined to be linearly independent functions con-
served in the fast reactions and

aj(y) = (a;(x))y = }_ aj(x)py (%), (2.13)

xeX

with p,(x) being the quasi-equilibrium distribution of the fast reactions. Moreover, a
rigorous and optimal error estimate for the Nested SSA, as well as generalizations to
dynamically partitioning of slow-fast reaction sets and to simulating systems with more
than 2 time scales, can be found in [9]. As applications, the virus infection model [20]
and the Heat Shock Response of E. Coli. [21] were studied. The same scheme has also
been applied to stochastic differential equations with multiple time scales [22], where a
rigorous error analysis is also provided.

3 The cell cycle model of budding yeast

Cell cycle is the essential mechanism by which all living things reproduce themselves
[23]. It consists of the succession of events whereby one cell grows and divides into two
daughter cells that each contains the information and machinery necessary to repeat the
process. Between one cell division and the next, all essential components of the cell must
be duplicated. The most important component is the genetic material (DNA molecules
present in chromosomes), which must be accurately replicated and the two copies care-
fully segregated to the two daughter cells. The eukaryotic cell cycle consists of 4 phases.
The 2 most dramatic events that constitutes the M phase are called mitosis and cytoki-
nesis, in which the nucleus divides and the cell splits into two. During the S (synthesis)
phase, the cell replicates its nuclear DNA. The G; is the interval between the completion
of M phase and the beginning of S phase, while the G, phase is the interval between the
end of S phase and the beginning of M phase. During the G; —S—G; phases, the cell
continues to transcribe genes, synthesize proteins and grow in mass. 2 checkpoints are
imposed before the cell enters the S and M phases to make sure that there is no damage
to the DNA and its replication.

A lot of knowledge has been accumulated on the molecular mechanism of eukary-
otic cell cycle control for budding yeast, which makes Saccharomyces cerevisiae, the uni-
cellular budding yeast, an excellent example to study cell cycle regulation. Molecular
biologists have dissected and characterized individual cell cycle components and their
interactions that regulate the cell cycle. Read from bottom left toward top right, Fig. 1
shows a consensus picture of the regulatory network of the budding yeast [12]. More in-
formation on the model can be found at http://jigcell.biol.vt.edu. The original cell
cycle model was only deterministic in the form of a system of ODEs. Although being able
to reproduce the time scales of the dynamical interactions between different modules of
the network, it does not take into account the population scales of the reacting species,
which is influenced significantly by random fluctuations. To understand the impact of
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Figure 1: Reaction diagram for the cell cycle regulation of budding yeast.

stochastic effects on the dynamics, a stochastic version of the model has been recently
proposed in [13, 14] in the framework of SSA using experimentally collected data on the
populations of the reacting species [24] (also available at http: //www.yeastgenome.org).
In Table 1, we list the total 82 reaction channels and the corresponding reaction rates
of the model. We use struct to represent the structural proteins making up the reacting
species. We also denote it by degraded when a reacting species is degraded or dissociated.
There are also 25 algebraic relations between the reaction species populations and the re-
action rates that are listed in Table 1. The parameters in the reaction rates and the initial
conditions for the simulations are given in Table 2.

In Table 1, Swi5T denotes the total population of Swi5, while Swi5 denotes the active
population of Swi5. Reaction a43 implies that they share the same decay rate. At each
reaction event of the degradation of Swi5, a random number is generated according to
the proportion of active Swi5 among total Swi5 to determine whether an active Swib
should be degraded. The same notation is also used for the reacting species Cdc20, Cdhl,
Cdc14, Net1 in reaction as, as3, 61, 69, respectively.

Besides the reacting species that are in discrete quantities, there are also continuous
variables in the system. The mass of the cell is supposed to grow exponentially until the
cell division:

d
Emass =kg -mass. (3.1)

Notice that mass enters the dynamical system as a multiplier of the rates of synthesis
of cyclins CIn2, CIb2 and CIb5. At division of the cell, the mass is divided between the
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Table 1: The cell cycle model of the budding yeast.

I. Reaction channels and reaction rates

ay :kd,,,TCan

Cln2 struct/degraded *)
ap = (kgrnz-i-kgrn[SBF)muss
az = Vd,b5~Clb5
Clb5 struct/degraded
ay= (K, 54kl ,5-MBF)-mass
csp 5=kt s
ae =k s,b -Sic1-Clb5
CIb5 + Sicl e C5
a7 =kg; p5-C5
= -F5P
psp _ 8=kose PSP ops
ag :kﬂs,f5'CdC6'Clb5
Clb5 + Cdc6 F5
a10 =ky; r5-F5
a = Vd,bz-Cle
Clb2 struct/degraded
a1p = (K, yp +kl/ o -Mcml)-mass
cop M ThpaCP o opp
a14 =k pp-Sic1-Clb2
CIb2 + Sicl S c2
115 =kg;pp-C2
= -F2P
pop 6=k Clb2
ary :k,,s,f2~Cdc6~Clb2
Clb2 + Cdcb F2
a1 =kyj p2-F2
=K K, -Swi
Sicl 219 =hser Hhser S struct/degraded
c2 _ =Var€? g
cs _ m=VasSS | g
. ax = Vkp,c] -Sicl .
Sicl Sic1P
a3 =kpp c1-Cdc14-SiclP
SiclP 24 ki3 c1-SiclP degraded
cop 5= Vaw P gqp
csp M= Vas P gqp

Continued on next page
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Table 1 - continued from previous page
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ayy = PVkV’cyCZ
C2 c2p
azs :kpp,,;1~cdcl4~C2P

ap9 = PVkp,cl'C5
C5 C5pP
aso :kpp,C1~Cdc14~C5P

az) = k;,fﬁ +k;’rf65w15+k;"'fﬁSBF

Cdc6b struct

pp _ =Vant2 g

a33="Vp5-F5

E5 Cdc6

a34 = Vkprf@CdCG
Cdc6 CdceP
azs = kpp,f6~Cdcl4~Cdc6P

aze — kd3,f6 -Cdc6P

Cdc6P degraded
Fop _ w=VawF2P g6
F5P a3s = Vajs FSP Cdc6

a39 =V, f6-F2
F2 F2p
asn :kpprf6~Cdc14~F2P

ag1=Vip,f6-F5
F5 F5pP
ag :kpp,fﬁ'CdCl4'F5P

a43 = kd,swi' (SszT\ Sw15)

Swi5T\Swib struct/degraded

Aa4= k;,swi +k;/,swi'Mcml
45 =K 520i-CIb2-Swi5

Swib = struct/degraded
46 =K s0pi-Cdc14- (SwibT — Swi5)

ag7 = k,‘rap,:'Apc_P/ (]i,gpc + APC_P)
APC_P struct/degraded
48 = kg ape-Clb2-(1.15¢3— APC_P) / (Jo apc+1.15¢3— APC_P)

49 =k o9 +k 59-Mem1

Cdc20T struct
Cdc20T\Cdc20A 450 =kq20-Cdc20T Cdc20A degraded
asy :kmﬂdTCdCZOA
Cdc20A struct/degraded
052 = (K, 20+ K/ 20- APC_P)-(Cdc20T — Cdc20A)
as3 =k on-(CART\ Cd1
Cdh1T\Cdh1 3 =gt ! ) struct/degraded

as4 =K cdn

Continued on next page
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Table 1 - continued from previous page

ass =V dh'thl/(]', dh+th1)

Cdh1 B = struct/degraded
a56 = Vi can (CARLT — Cdh1) / (Jocan+Cdh1T — Cdh1)
asy =kpypo-Tem1/ (Ji tem+ Tem1)

Tem1 . o struct/degraded
asg =kje1-(Tem1T — Tem1) / (Ja,tem~+ Tem1T — Tem1)

asg :ki,15~Cdc15

Cdc15 struct/degraded

ag0 = (K}, 15-(Tem1T —Tem1) -k 15- Tem1+k;5-Cdcl4)-(Cdc15T — Cdc15)

a1 — kd,14 . (CdCl4T\CdCl4)
Cdc14T\Cdcl4 struct/degraded **)
a2 =ks14

RENT __ 63 =kanet RENT - ~q0qy (**)

a64:k . -Net1P-Cdcl4
Cdc14 ey struct/degraded **

a5 =kgnet RENTP,  age= kdi,renrp‘RENTP

a67 =kas,rentp Net1-Cdcl4 -
Cdcl4 + Netl RENT (**)
a68 =Kairent RENT
ae9 :kd, ~(N€f1T\N€t1)
Net1T\Netl = struct/degraded **)
azo = ks,net
RENT __ M=k RENT o (**)
azy = Vk y -Netl
Netl el struct/degraded **
a7z = Vpp,m,-Neth

ayy = Vk y ‘RENT

RENT pet struct/degraded **)

a75=Vpp et RENTP
aye = Vd,Wx-PPX

PPX struct/degraded
az7 = ks,ppx
azg = Vd, d -Pds1
Pds1 - struct/degraded
a9 = k;,pds +k;’1,pds~SBF+k;’2,pds~Mcml
ago =kas,esp- Espl-Pds1
Pdsl + Espl struct/degraded
ag1 =Kkgjesp- PE
=V yis-PE
Espl 52 = Vdpds degraded
II. Algebraic relations
GK(Va,ViJu, i) 2

N Vi7Va+]a‘Vi+]z'Va+\/(V17Va+]a'Vz+1i‘Va)2744‘(‘/17‘/11)‘]i'Va

Continued on next page



D. Liu / Commun. Comput. Phys., 9 (2011), pp. 390-405

Table 1 - continued from previous page
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Vips= kfi,bS —&-kp‘/i’,bSCchOA

Vb =Ky 1o Tk 1o Cdhl+ky - Cdc20A
Cln3=1[Cy-D,3-mass/ (Ju3+ Dy3-mass))
Bck2=[By-mass]

Vi s f =kasbf (€spfna-CIN2+€gpf g ClnB-+€gp g yap Bok2+egpf ps- CIU5)
Vi,sbf:kgfsbf+k§,’sbf-Clb2

SBF =long(4.55¢4-GK(Vy st VisbfiJasbfiJisbf))
MBF=SBF

Mcml = [2.1e4-GK (ka,mem-CIb2,k; e, Ja,mems Jimem))
CIb5T=CIb5+C5+C5P+F5+4F5P
Clb2T=CIb2+C2+C2P+F2+F2P

Sicl1T = Sicl+Sic1P4-C2+C2P+C54-C5P

Cdc6T =Cdc6+Cdc6P+ F2+F2P+ F5+F5P

Vip,c1 =kar,c1+Kao,c1-(€c1,n3-CIn3+€cq ko Bek2+-€c1,up-Cln2 + €1 5 CIb5+€c1 42 CI02) / (Jag,¢1+ SiclT)

Vkp,fé :kdl,f6+kd2,f6' (6}'6,”3~Cln3+€f6,k2-BCk2+€f6,n2-Cll’l2+€f6,b5-Clb5+€f6,b2~Clb2) / (]dz,f6+CdC6T)

CKIT=Sic1T+Cdc6T
RENTP=Cdcl4T —RENT —Cdcl4
Net1P=NetlT— Netl —Cdcl4T+Cdcl4
PE=EsplT —Espl

Vaedn =k g, k) oy Cilc14

Vicdn= k;’,cdh +k;’,/cdh’ (ecd;,,n3~Cl?l?)+€cd;,,n2~CIYZZ+€cd;,,b2~Clb2+€th,b5-Clb5)

1
+hppne

(1 /"
Vkp,net = (kkp,ngt +kkp,nei.‘

Vit pits =kl pts + Ky s CAC20A 4Kl L -Cdll

Vop et =k ;- PPX

/
ppnet
-Cdc15)-mass

Vippx=k
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Table 2: Parameters and initial conditions.

A. Parameters for the cell cycle model

k¢ =0.007702 kgﬂ:o. kgn2:4.12673 kan=0.12 k;,bS =18
k;,bSZO.Ol kii/,bS =1.4e-3 k;,bz =2.25 k;/,bz =4.29¢—-3 k:i,b2:0‘003

ki pop=1.31e—3 k;,cl =27. k;/,cl =0.191 kg1,61=0.01 kipc1=1.
Kpper=165—3 K =54, K 1 =0.191 Klhe=198e—4  kpy =001

kg o =1. Kopfo=1.65¢—3 ks p5=0.0222 kii5=0.06 s, 5 = 4.44¢ — 6
kasp2=00222  kgipp=0.05 kus2=6.67¢=3 ki ;2=05 K 0i=7.05

ki su0i =0.08 koswi=8260—4  kigi=222e—5  kyape=511e=2  kjgpe=172¢2
klp0=327¢=3  kaa=03 K, 59 =05 Klpo=174e—4  kyan=1.

K can =1 ki can = 00331 ki can=0-1 K ean =38- ks;14 =484

ks ot =203 ki et =0.03 K, 15 =35e—6 K/ s=175¢—3  K3,15=413¢—7
K, et =005 Kppa=3e—4 K, =001 Kl net=2.520=3  Kasrens=8.260—2
ki rent=1. Kairentp=2- ko ppr=100. Ky e =017 K g = 17502
Kh pas=660=5 Kby 0 =262e—4 Ky, =001 Ky pis=175¢=3  Kjy yo=de—4
i esp=0.5 K ori =2. ki ori=0.06 kg =0.2 kg pua=0.06

K spn =0.06 Ko sp =0.38 K,y =06 Klyy=3560=3  Komen=445¢—5

kad2=38. (for ORI >1. and SPN < 1.) or =.1 (otherwise).
kpupr =573. (for ORI >1. and SPN < 1.) or =114.6 (otherwise).
kite1=573. (for SPN > 1. and Clb2 < K,) or =57.3 (otherwise).

eshf,nZ: 1.6e—3 eshf,nSa:()'Oloz eshf,nSh:O~0125 eshf,bS =8.89¢—4 651,,,3:0.689

K5 =247e—4
K 1y =0.004
kazc1=1.

iz, r6=1.

ki g5=0.01

K/ i =537e—3
K 50 =0.687

ki can=0.01
ki1a=0.1
ki15=05

kus,ygntp =4.13e—4
k;pds =0.

s sp =0.5
ks,spn=0.1
ki mem=0.15

€c1,n2= 0.108

€1f2=00847  €q)5=0.1 €c1pp=0.45 €fon3=0.689 €f6,2=0.108 €foj2=0.0844
€655 =0.1 €62 =0.55 €cann3=2.55e—4  €cqpnp=32e—4 €cdnp5=3.56e—3  €cnp2=>5.33e—4
€orips=4.6—4 €oripp=2.6—4 €pudn3=5.1e—5 €pud 2 =2.6—4 €pudps =444 —4

Co=2392. Dy3=1. By=43.2 Tem1T =573 Cdc15T =238 Esp1T=100
Jaz,c1=112.5 Jao,f6 =112.5 Jaape=115. Jiape=115. Ja,cdn =3 Jican=3.
Jatem =573 Jitem =57.3 Jasbf =0.01 Jishf =0.01 Jamem=0.1 Jimem=0.1
Jspn=315. T3 =6. Jao,ppx=17.2 Jpas=4. Ko =2700. Kezn = 1800.
f=exp(—1.026+32.-kg)

B. Initial conditions for the daughter cell

mass =1.2060 F5=1 Cdc14=1133 Cln2=82 F2P=62 NetlT=6776
Clb5=117 F5P=1 Net1=45 Clb2=331 SwibT=1377 RENT=2540
Sic1=52 Swi5=1348 PPX=1232 SiclP=14 APCp=117 Pds1=3
C2=>536 Cdc20T =220 Esp1=30 C5=158 Cdc20A=51 C2P=54
Cdh1T =100 C5P=16 Cdh1=93 Cdc6=242 Tem1=>518 Cdc6P =35

Cdc15=156 F2=531 Cdc14T =4840
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mother cell and the daughter cell such that (1— f)-mass is given to the new born daughter
and f-mass remains with the mother cell.

Governed by the following equations, flag variables are also introduced to continu-
ously monitor and regulate the progress of critical events of the cell cycle:

dBUD

- ks bud* (€bud,n2 CIN2+€pyg 3 - CIn3+€pyg p5 - CIb5) — kg pug- BUD,

dORI

7 = ks,ori ) (eori,bS -CIb5+ €orib2° Cle) - kd,ori ‘ORI,

dSPN

B =Ko CIb2/ (Jopn + CIb2) k- SPN. (3.2)

BUD represents proteins that are phosphorylated and subsequently initiate a new bud
for the new daughter cell when the phosphorylation state reaches a threshold, BUD=1.
In a similar manner, ORI =1 signals the onset of DNA synthesis. ORI is reset to zero
only if CIb2+4-CIb5 drops below another threshold K.,;. The checkpoint is lifted when
SPN=1, which represents alignment of all chromosomes on the metaphase plate. When
Clb2 drops below K,,, we reset BUD and SPN to zero and the division of the cell is
initiated.

w
&
5]
3
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Figure 2: Reaction rates for the cell cycle model.

4 Simulation of cell cycle model with NSSA

We used both Direct SSA and Nested SSA to simulate the cell cycle model. The time
scale separation can be illustrated by Fig. 2, which gives the magnitude of the reaction
rates at time t =2000. It can be seen that the time scale separation is of the order of
O(10%), with the fastest rates to be of order O(10%), while most of other rates are of
O(10). The corresponding fast reactions are marked with (x) and (*x) in Table 1. Notice
that the fast reactions belong to the modules that synthesis and degrade CIn2 and Cdc14,
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Figure 3: Reaction rates for CIn2 and Cdcl4.

corresponding to reactions marked with (x) and (xx), respectively. The cyclin CIn2 is
primarily responsible for bud emergence while Cdc14 is the phosphatase required the
cell for exit of M phase and return to G1 phase. The net effect of these reactions are for
CIn2 and Cdc14 to reach an quasi-equilibrium while the other species in these modules
do not influence the rest of the network. Therefore even the reaction rates agz —a¢4 and
a9 —az are only O(10') —O(10?), they are still counted in the fast module for Cdc14 since
they are dominated by faster reactions in the module. Notice that the fast modules are
affected by the slow modules through populations of species like CIb5 and Cdc15. To
justify the validity of Nested SSA, we need to verify the quasi-equilibrium assumption,
which requires the time scale separation to hold. For this purpose, we evaluate the rates
of the synthesis and degradation of CIn2 and Cdc14. It can be seen from Fig. 3 that the
reactions for Cdc14 remain fast all the time and the corresponding rates remain balanced
most of time. But the reactions for CIn2 constantly switch between slow and fast sets,
with the magnitude of the rates spanning a wide range of O(1)—O(10®). This means
we have to dynamically partition between the fast and slow reactions sets in Nested
SSA. We make the following rule for the reactions marked with (x) in Table 1 such that
if a1 +a > 1000, then the synthesis and degradation of Cln2 is counted as fast reactions,
otherwise if a1 +-a, <=1000, they are treated as slow reactions. Although the convergence
for the adaptive NSSA is still not well addressed, the numerical result here shows that
this simple mechanism still achieve efficiency while keeping accuracy of NSSA.
To handle the continuous variable mass, we simply solve (3.1) such that

mass(t+1) =mass(t)exp (k;T), 4.1)
where T is generated at each time step of Outer SSA. The flag variables BUD, ORI and
SPN are solved using the Duhamel’s principle:

1— —ki pudT
BUD(t+7)= exiib dd'b“d )‘ks,bud' (€pua 2 CIN2+ €33 - CIN3+-€pyyq p5 - CIb5)
bu

—exp( _kd,budT) : BUD,
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1—exp(—kj T
ORI(t+7)= ii ‘d’orl ) ks ori* (€orip5 - CID5+€ori - CIb2) —exp(—ky,0riT)-ORI,
Lori
1—exp(—kd,5pnr)

kd,spn

SPN(t+1)=

“ks,spn-CIb2/ (]spn +Clb2) —exp(—kgspnT)-SPN, (4.2)

where all the variables on the right hand side are evaluated at time ¢.
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Figure 4: Cell cycles obtained by SSAs.

In Fig. 4, we show the numerical results obtained using both Direct SSA and Nested
SSA. We have chosen the numerical parameters in Nested SSA such that

N=1, T,=0, T;=10"°. (4.3)

To further test the efficiency of Nested SSA quantitatively, we run the simulation till about
10* periods of cycles and measure the average and variance of the effective period. The
direct SSA will require 2.42 x 10* CPU seconds to finish the computation, and give an
average mean cycle period of 101.2246 seconds with a variance of 9.4288. In Nested SSA,
the parameter T is increased gradually each time, which will require a longer CPU time
but increase accuracy. The results are given in Table 3. It can be seen that the Nested
SSA is about 4 times faster than Direct SSA while the relative error on the key dynamical
feature of the effective period is only .0014%.

Table 3: Efficiency of Nested SSA for the period of cell cycle.

Ty 107 108 1077 10°°

CPU 5900 5820 6074 6032
Period 101.2257 | 101.2261 | 101.2260 | 101.2260
var(Period) || 11.4156 | 9.8154 | 11.1637 | 10.3799
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5 Conclusion

We tested the Nested Stochastic Simulation Algorithm on the cell cycle model of budding
yeast. The results show Nested SSA as a very efficient and accurate methods for simulat-
ing large scale reacting networks with multiple time scales. Future investigations will be
focused on analyzing convergence of adaptive schemes and applying the method to the
study of more biological problems.
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