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Abstract. Given a piecewise smooth function, it is possible to construct a global expan-
sion in some complete orthogonal basis, such as the Fourier basis. However, the local
discontinuities of the function will destroy the convergence of global approximations,
even in regions for which the underlying function is analytic. The global expansions
are contaminated by the presence of a local discontinuity, and the result is that the
partial sums are oscillatory and feature non-uniform convergence. This characteristic
behavior is called the Gibbs phenomenon. However, David Gottlieb and Chi-Wang
Shu showed that these slowly and non-uniformly convergent global approximations
retain within them high order information which can be recovered with suitable post-
processing. In this paper we review the history of the Gibbs phenomenon and the
story of its resolution.
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1 Introduction

The purpose of this paper is to review the history of the Gibbs phenomenon and the
groundbreaking work of David Gottlieb, Chi-Wang Shu, and their co-workers, [16,25–30]
on the resolution of the Gibbs phenomenon, for this special issue in memory of David
Gottlieb.

To understand the Gibbs phenomenon, we begin with a classical problem: the square
wave function,

f (x)=

{

−1, −1≤ x<0,

1, 0≤ x≤1,

which can be written as a Fourier sine series

f (x)=
4

π

∞

∑
j=odd

1

j
sin(jπx)=

4

π

(

sin(πx)+
1

3
sin(3πx)+

1

5
sin(5πx)+

1

7
sin(7πx)+···

)

.

However, when we look at a Fourier partial sum

fN(x)=
4

π

N

∑
j=odd

1

j
sin(jπx),

we observe that it is oscillatory, and that there is an overshoot and undershoot near the
discontinuity and the boundaries (Fig. 1). As more terms are used, the overshoot and
undershoot get closer to the discontinuity x=0 and boundaries x=±1, but do not dimin-
ish. This indicates that the convergence of the series is not uniform, i.e., even though for
each fixed x, the sequence of Fourier partial sums converges as N→∞ (pointwise conver-
gence), the sequence does not converge as x→0 and N→∞ simultaneously. Furthermore,
even the pointwise convergence is slow, due to the oscillations.

The convergence of a Fourier series to a discontinuous (or, equivalently, a non-
periodic) function is non-uniform, the partial sums are oscillatory and the pointwise
convergence is slow, even when we are looking at a point x for which the function is
continuous. The oscillatory behavior of the Fourier finite sums was first remarked upon
by Wilbraham in 1848, and later, inspired by Josiah Willard Gibbs’ spirited correspon-
dence in NATURE in 1898 and 1899, called the Gibbs phenomenon. The Gibbs phe-
nomenon is due to the fact that the local behavior of the function (i.e., a discontinuity
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Figure 1: Squarewave function (in black) and its Fourier partial sums for N = 4 (red), N = 8 (green), N = 16
(blue), N =32 (magenta), and N =64 (cyan).

or lack of periodicity) pollutes the expansion coefficients which are used to construct a
global approximation to the function. The Gibbs phenomenon occurs in all other global
expansions as well, and has been studied as early as the 1920’s in Bessel and Schlömich
functions [12, 13, 46, 47].

In the 1990’s D. Gottlieb, together with C.-W. Shu and other co-workers, showed that
it is possible to completely remove the Gibbs phenomenon by post-processing the Fourier
expansion in regions in which the function is analytic, using a re-expansion of the partial
sums fN(x) in a different (”Gibbs complementary”) basis [25]. This subject formed the
basis of David Gottlieb’s last public lecture [31], the John von Neumann lecture titled
”The effect of local features on global expansions” given at the SIAM Annual Meeting
in San Diego on July 8, 2008. This review paper was inspired by this lecture, which
contained a gentle introduction and a historical overview of the Gibbs phenomenon, and
the theory behind the resolution of the Gibbs phenomenon. It is our hope that this paper
retains the flavor of this lecture, which can be listened to online [31].

2 A history of the Gibbs phenomenon

The story of the Gibbs phenomenon is an interesting episode in the history of mathemat-
ics, and has been reviewed in [35] and [30]. The first appearance of a Fourier series was in
the middle of the 18th century, when Euler observed that a linear function can be written
as an infinite summation of waves, as in

∞

∑
k=1

sin(kx)

k
=

1

2
(π−x), 0< x<2π.
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This idea was later used by Fourier to model a complicated heat source as a linear com-
bination of simple sine and cosine waves, which enabled the solution of heat equations
as a superposition of the corresponding waves. However, the first study of the over-
shoots and undershoots which characterize the Gibbs phenomenon (as it later came to
be called) was published by Henry Wilbraham in 1848 [45]. A later paper in 1874 by Du
Bois-Reymond [14] published an analysis of the Fourier series near the points of discon-
tinuity, but missed identifying the Gibbs phenomenon. In 1898 Michelson and Stratton
built a harmonic analyzer (later pictured in the Encyclopedia Brittanica [8]) which, due to
Hooke’s law, stored up to 80 Fourier coefficients in its springs. A description of the har-
monic analyzer was published [39] and featured graphs of functions reconstructed from
the Fourier coefficients, including the square wave function (similar to those in Section
1). However, the overshoots and undershoots were not mentioned.

Apparently, though, Michelson was troubled by the behavior he observed in the
Fourier partial sums, and worried that the sequence of partial sums did not seem to
converge. In October 6, 1898 his letter appeared in NATURE [38] which pointed out the
difficulty of constructing f (x)= x from its Fourier coefficients.

In all expositions of Fourier’s series which have come to my notice, it is expressly stated
that the series can represent a discontinuous function. The idea that a real discontinuity
can replace a sum of continuous curves is so utterly at variance with the physicist’s notions
of quantity, that is seems to me to be worth while giving a very elementary statement of
the problem in such a simple form that the mathematicians can at once point to the
inconsistency if any there be. Consider the series

y=2
[

sinx− 1

2
sin2x+

1

3
sin3x−···

]

.

If for x in the given series we substitute π+ǫ we have, omitting the factor 2,

−y=sinǫ+
1

2
sin2ǫ+

1

3
sin3ǫ+···+ 1

n
sinnǫ··· .

This series increases with n until nǫ=π. Suppose, therefore, ǫ=kπ/n, where k is a small
fraction. The series will now be nearly equal to nǫ= kπ, a finite quantity even if n=∞.
Hence the value of y in the immediate vicinity of x=π is not an isolated point y=0, but
a straight line −y=nx. [38]

Michelson went on to explain that this problem also plagues the derivative computed
by the Fourier series.

At least some mathematicians were happy to respond to the invitation to ”point to
the inconsistency if any there be”. A. E. H. Love replied in the next issue of Nature, one
week later (October 13, 1898).

In a letter to NATURE of October 6, Prof. Michelson, referring to the statement that
a Fourier series can represent a discontinuous function, describes ”the idea that a real
discontinuity can replace a sum of continuous curves” as ”utterly at variance with the
physicist’s notions of quantity.” If, as this seems to imply, there are physicists who hold
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”notions of quantity” opposed to the mathematical result that the sum of an infinite
series of continuous functions may itself be discontinuous, they would be likely to profit by
reading some standard treatise dealing with the theory of infinite series, such, for example,
as Hobson’s ”trigonometry”. [37]

After this insulting introduction, Love goes on to restate the problem and then ex-
plains the mathematical weakness in Michelson’s argument.

The processes employed are invalid. It is not the case that the sum of an infinite series is
the same as the sum of the first n terms, however great n is taken. It is not legitimate
to sum an infinite series by stopping at some convenient nth term. It is not legitimate
to evaluate an expression for a particular value of x, e.g., x = π, by putting x = π+ǫ
and passing to a limit; to do so is to assume that the expression represents a continuous
function. [37]

However, this (correct) statement of the impermissibility of Michelson’s argument
does not explain what Michelson was observing, and did not satisfy Michelson, who
responded with the remark that

If it is inadmissible to stop at ”any convenient nth term” it is quite as illogical to stop at
the equally ”convenient” value π/n.

In other words, Michelson believed that convergence should happen at any neigh-
borhood of the discontinuity. In the same issue of NATURE, there appeared a letter by
Gibbs [23], which explained Michelson’s concerns, pointed out that Love ignored them,
and described the oscillations which have come to be called ”the Gibbs phenomenon”.
However, in this letter, Gibbs implied that these oscillations decay with N, which is in-
correct.

Love responded to Gibbs’ letter by expounding on the notion of nonuniform conver-
gence and commenting that ”The matter ··· is perhaps that referred to by Prof. Michelson
··· but I did not understand his letter so.”. Finally, in an April 12, 1899 letter to NATURE

(published April 27, 1899), Gibbs corrected his analysis.

I should like to correct a careless error which I made (Nature, December 29, 1898) in
describing the limiting form of the family of curves represented by the equation ··· whatever
differences of opinion have been expressed on this subject seem due, for the most part, to
the fact that some writers have had in mind the limit of the graphs, and others the graphs

of the limit of the sum. A misunderstanding on this point is a natural consequence of the
usage which allows us to omit the word limit in certain connections, as when we speak of
the sums of an infinite series. In terms thus abbreviated, either of the things which I have
sought to distinguish may be called the graph of the sum of the infinite series. [24]

A follow-up consists of a note from Poincare defending Michelson (forwarded by
Michelson and published in the May 18, 1899 issue), and a later letter by Love explaining
Fourier’s theorem and reiterating the distinction between the limit of the sum and the
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sum of the limits. However, while the issues of convergence, and the difference between
pointwise and uniform convergence were clearly identified in this correspondence, it
did not yield an thorough analysis which was needed for understanding the behavior of
the finite sum to reconstructing the function, and in particular the need to study those
oscillations which we now refer to as the Gibbs phenomenon. This analysis, including
a proof, appeared in a long and careful paper by Böcher [6] published in 1906. It was
in this paper that the behavior of the Fourier partial sums was given the name ”Gibbs
phenomenon”.

3 Global approximations

The Gibbs phenomenon is a feature of all global approximations, and is not limited to the
Fourier series. Thus, we begin with some results about global expansions of a smooth
function. Given a function square integrable f (x)∈ L2

w[−1,1], (i.e., where w(x) is some
weight, to be described below), we can represent it in an infinite series

f (x)=∑
k

f̂kΨk(x) (3.1)

in a basis {Ψk(x)} which is orthonormal under some weight w(x),

∫ 1

−1
w(x)Ψk(x)Ψj(x)dx=δkj

and complete in L2
w[−1,1]. The expansion coefficients are given by

f̂k =( f ,Ψk)w =
∫ 1

−1
w(x) f (x)Ψk(x)dx.

Some well-known examples of complete orthogonal bases are the Fourier, Legendre, and
Chebyshev bases, which will be used in the remainder of the paper. We will also use
the family of Gegenbauer polynomials [5], which is a generalization of the Chebyshev
and Legendre bases. The Gegenbauer polynomials Gλ

k (x) are defined by the recurrence
relation

Gλ
k+1(x)=

2(k+λ)

k+1
xGλ

k (x)− k+2λ−1

k+1
Gλ

k−1(x), k≥2.

The first two terms are Gλ
0 (x)=1 and Gλ

1 (x)=2λx. They are orthogonal under the weight
function

w(x)=(1−x2)λ− 1
2 ,

and can be normalized recognizing that

(

hλ
k

)2
=

∫ 1

−1
(1−x2)λ− 1

2
(

Gλ
k (x)

)2
dx=

√
πGλ

k (1)
Γ(λ+ 1

2)

Γ(λ)(k+λ)
,
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where

Gλ
k (1)=

Γ(k+2λ)

k!Γ(2λ)
.

The special cases λ=0 and λ=1/2 give the Chebyshev and Legendre polynomials.

When we deal with approximations of the function f (x) based on global expansions
in these bases, we have two typical situations:

Approximation from a finite number of expansion coefficients

Given N+1 expansion coefficients f̂k, of the unknown function f (x) which is defined on
−1≤x≤1, we would like to construct an approximation which will give us accurate point
values of the function.

An approximation can be obtained by simply truncating the series in (3.1)

fN(x)=
N

∑
k=0

f̂kΨk(x). (3.2)

These Gegenbauer polynomial bases are all solutions of a singular Sturm-Liouville prob-
lem with weight w(x), and so are orthogonal and complete in L2

w[−1,1]. For this reason,
when these basis functions are used to approximate f (x)∈C∞[−1,1], the expansion co-
efficients decay exponentially and the sequence of partial sums is exponentially conver-
gent. To make this more precise, if the function f (x) ∈ C∞[−1,1], then the partial sum
fN(x) given by (3.2), where Ψk(x) are eigenfunctions of a singular Sturm-Liouville prob-
lem which form a complete orthonormal basis, converges exponentially. If the function
f (x)∈CK[−1,1], then we get convergence of order K. In other words, a discontinuity in
the function or in any of its derivative will result in reduced order of convergence.

For the Fourier case, we can write

fN(x)=
N/2

∑
k=−N/2

f̂kΨk(x)

instead of (3.2). The Fourier basis is a solution of a regular Sturm-Liouville problems,
and it too produces exponentially decaying coefficients and approximations, but only if
the function f (x) and all its derivatives are not only smooth but also periodic.

Approximation from a finite number of point values

Alternatively, we are given N+1 point values of the function f (xk) at some set of points
xk, k=0,··· ,N, and wish to construct an approximation which will give us accurate point
values of the function at any point x.

In this case, the usual procedure is to approximate the expansion coefficients by collo-
cation: we require that the approximation match the function values. The approximation
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is now given by

f̃N(x)=
N

∑
k=0

akΨk(x), (3.3)

where the collocation coefficients ak are evaluated by the requirement that

N

∑
k=0

akΨk(xj)= f (xj), j=0,··· ,N+1.

This procedure suffers from two types of errors: that of truncating the infinite series, and
that of approximating the exact expansion coefficients f̂k by the collocation coefficients ak.
The collocation coefficients do not equal to the exact coefficients, and so the collocation
approximation f̃N(x) differs from the Galerkin approximation fN(x). This second source
of errors decays with the number of collocation points, but is also sensitive to the location
of the collocation points.

The choice of interpolation points is critical: each basis Ψk(x) has an associated set
of interpolation points. For example, the (N+1) Gauss-Lobatto quadrature points for a
given polynomial basis are computed by finding the zeroes of the derivative of the degree
N basis polynomial, and the endpoints. The (N+1) Gauss points, on the other hand, are
computed by finding the zeroes of the degree (N+1) basis polynomial.

For these reasons, the approximation theory for collocation approximations is more
complicated, However, in the case where the basis functions Ψk(x) are the Fourier, Leg-
endre, Chebyshev, or any of the Gegenbauer polynomials, and where the interpolation
nodes are the appropriate Gauss or the Gauss Lobatto points, there are results which
prove that in these cases the collocation approximation converges exponentially when
the function is analytic [10, 15]. In the following lemma, we state the version of these
results which appeared in [29].

Lemma 3.1. ([29]) Let

f̃N(x)=
N

∑
k=0

akΨk(x)

be the collocation approximation with the basis {Ψk(x)} being the trigonometric polynomials
eikπx or the Gegenbauer polynomials Gλ

k (x) for λ > −1/2 with weight w(x), and where the
collocation coefficients are computed by interpolation of the function f (x) on the Gauss or Gauss-
Lobatto points associated with the basis. If f (x) has K continuous derivatives on [−1,1], then the
collocation approximation converges exponentially in the sense that

∥

∥ f − f̃
∥

∥

L2
w
≤ A

NK

∥

∥ f (K)
∥

∥

L∞ ,

where the weighted L2 norm is defined by

‖ f‖2
L2

w
=

∫ 1

−1
w(x)| f (x)|2dx,

and A is a constant independent of N and K.
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Figure 2: Pointwise errors of the
Fourier partial sums (a), Fourier col-
location (b) and Chebyshev (chebfun)
collocation (c) of the square wave func-
tion for N = 4 (red), N = 8 (green),
N = 16 (blue), N = 32 (magenta), and
N =64 (cyan).

Example 3.1. To better understand the Gibbs phenomenon, let’s take a closer look at the
square wave we used as the motivating example in Section 1. We compute the Fourier
Galerkin approximation using the exact coefficients and the collocation approximation,
and the Chebyshev approximation (using Trefethen’s CHEBFUN [44]), and examine the
pointwise errors using both approaches. As expected, the errors are oscillatory every-
where, and are particularly large at the boundaries for the Fourier approximation and
at the point of discontinuity x = 0 for both the Fourier and Chebyshev approximations
(Fig. 2). Worse yet, at those points the error does not decay even as more points are
taken.

The Gibbs phenomenon happens when we use information from the domain (−1,1),
on which f (x) is not analytic, to construct an approximation to f (x). Even when the
function is smooth enough that the Gibbs phenomenon is not obvious (i.e., no overshoots
and undershoots), it causes slowed convergence and therefore a poor approximation. Of
course, if we could use only data from an interval where f (x) is analytic our approxima-
tions would not suffer from the Gibbs phenomenon. Unfortunately, we typically have
no choice in the matter, as we are usually given the expansion coefficients which were
computed this way, for example as a result of some natural Fourier transform (as in satel-
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lite images or CT scan or NMR data), or point values which were computed as part of a
pseudo-spectral approximation to a partial differential equation. The problem facing us is
that of recovering high order local information in a region of smoothness from global in-
formation which is contaminated by the presence of discontinuities. In [16, 25–30] it was
shown that starting with the approximations fN(x) or f̃N(x) it is possible to construct
high order approximations in smooth regions which eliminate the Gibbs phenomenon.
In the next two sections we will discuss how this is done.

4 Post-processing the Galerkin approximation using Gibbs

complementary functions

In this section, we will focus on the case where we begin with the knowledge of the first
N+1 exact expansion coefficients. The usual approximation to f (x) is then given by

fN(x)=
N

∑
k=0

f̂kΨk(x). (4.1)

This approximation is global because the expansion coefficients f̂k depend on the value of
the function over the entire domain

f̂k =( f ,Ψk)w =
∫ 1

−1
w(x) f (x)Ψk(x)dx.

The problem is that if the function f (x) is only piecewise continuous, the expansion co-
efficients f̂k are all affected by this, and the series (4.1) does not converge uniformly to
f (x). Furthermore, the pointwise convergence of (4.1) away from the discontinuity is no
longer exponential. This means that even if we only care about the approximation fN(x)
to the function f (x) at points x∈ [a,b] where the function is very smooth, the approxima-
tion is contaminated by the fact that the expansion coefficients are defined on a domain
−1≤ x≤1 on which the function is not smooth.

In [16, 25–30] it was shown that even though the sequence of partial sums fN(x) con-
verges slowly and non-uniformly, it still contains enough information so that we are able
to recover exponential accuracy in the regions in which f (x) is smooth by re-expanding
these in an appropriate two-parameter family {Φλ

l (ξ)}.
To transform between the domain ξ∈ [−1,1] and x∈ [a,b], we define

x=
( b−a

2

)

ξ+
( b+a

2

)

=ǫξ+δ.

The new approximation, defined on a≤ x≤b, is

m

∑
k=0

〈

fN ,Φλ
l

〉

λ
Φλ

l (ξ(x)), (4.2)
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where

〈

fN ,Φλ
l

〉

λ
=

∫ 1

−1
(1−ξ2)λ− 1

2 fN(x(ξ))Φl(ξ)dξ.

Note that this new approximation does not depend on the original (exact) expansion
coefficients directly, but only on fN(x), and only from the interval over which f (x) is
analytic, x∈ [a,b]. For this reason, the new approximation (4.2) is referred to as the post-
processed approximation.

We will show in Theorem 4.2 that, for appropriate choices of parameters λ and m,
(chosen, for simplicity, to be λ=m), this new approximation (4.2) converges exponentially
to f (x) on the interval x ∈ [a,b] as long as this new basis family {Φλ

l (ξ)} satisfies the
following conditions [34] :

(a) Orthonormality For each λ, the basis family {Φλ
l (ξ)} is orthonormal under the

weighted inner product

〈

Φλ
l (ξ),Φλ

l′ (ξ)
〉

λ
=

∫ 1

−1
(1−ξ2)λ− 1

2 Φλ
l (ξ)Φλ

l′ (ξ)dξ =δll′ . (4.3)

(b) Spectral Convergence The expansion of an function g(ξ), which is analytic in
−1≤ ξ≤1, in the bases Φλ

k (ξ) converges uniformly exponentially fast with λ=m,

max
−1≤ξ≤1

∣

∣

∣
g(ξ)−

m

∑
l=0

〈

g,Φλ
l

〉

λ
Φλ

l (ξ)
∣

∣

∣
≤ e−q1λ, q1 >0. (4.4)

(c) The Gibbs Condition There exists a number β<1 such that if λ= βN then

∣

∣

∣

〈

Φλ
l (ξ),Ψk(x(ξ))

〉

λ

∣

∣

∣
max

−1≤ξ≤1

∣

∣Φλ
l (ξ)

∣

∣≤
(αN

k

)λ

, (4.5)

where k> N, l≤λ, α<1.

The first two conditions are properties of the re-projection basis Φλ
l (x) only, while the

third condition interrelates the two basis, requiring that the projection of the high modes
of the basis {Ψk} (large k) on the low modes of Φλ

l (ξ) (small l) is exponentially small in
the interval −1≤ ξ≤1 for λ proportional to N.

Using these conditions on the post-processing basis, we can show that the new ap-
proximation indeed converges exponentially.

Theorem 4.1. ([34]) Let f (x)∈L2[−1,1] be analytic in the subinterval [a,b]⊂ [−1,1]. Suppose
that Ψk(x) is an orthonormal family under the inner product (·,·)w such that

|( f ,Ψk)w|≤C

for some constant C independent of k, and

lim
N→∞

| f (x)− fN(x)|=0
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almost everywhere in x ∈ [−1,1]. Let
{

Φλ
l (ξ)

}

be a Gibbs complementary basis to
{

Ψk(x)
}

,
with λ = βN. Furthermore, assume that the approximation error can be expressed as the tail of
the series

〈

f − fN ,Φm
l

〉

λ
=

∞

∑
k=N+1

( f ,Ψk)w

〈

Φλ
l ,Ψk

〉

λ
. (4.6)

Then the new approximation converges uniformly and exponentially

max
a≤x≤b

∣

∣

∣
f (x)−

m

∑
l=0

〈

fN ,Φλ
l

〉

λ
Φλ

l (ξ(x))
∣

∣

∣
≤ e−qN , q>0. (4.7)

Proof. We begin with the observation that

max
a≤x≤b

∣

∣

∣
f (x)−

m

∑
l=0

〈

fN ,Φλ
l

〉

λ
Φλ

l (ξ(x))
∣

∣

∣

≤ max
a≤x≤b

∣

∣

∣
f (x)−

m

∑
l=0

〈

f ,Φλ
l

〉

λ
Φλ

l (ξ(x))
∣

∣

∣
+ max

a≤x≤b

∣

∣

∣

m

∑
l=0

〈

f − fN ,Φλ
l

〉

λ
Φλ

l (ξ(x))
∣

∣

∣
.

We wish to show that this converges exponentially and uniformly in [a,b].
To approximate the maximum of first term on the interval [a,b], we note that because

f (x) analytic for x∈ [a,b], the Spectral Convergence Condition (b) implies that

max
a≤x≤b

∣

∣

∣
f (x)−

m

∑
l=0

〈

f ,Φλ
l

〉

λ
Φλ

l (ξ)
∣

∣

∣
≤ e−q2m, q2 >0.

The second term can be estimated by rewriting it as the tail of the series

max
a≤x≤b

∣

∣

∣

m

∑
l=0

〈

f − fN ,Φλ
l

〉

λ
Φλ

l (ξ(x))
∣

∣

∣
≤ max

a≤x≤b

m

∑
l=0

∞

∑
k=N+1

∣

∣

∣
( f ,Ψk)u

〈

Φλ
l ,Ψk

〉

λ
Φλ

l (ξ)
∣

∣

∣
.

Recalling that |( f ,Ψk)w|≤C and that there exists some β<1 so that for λ= βN

∣

∣

∣

〈

Φλ
l ,Ψk

〉

λ

∣

∣

∣
max

−1≤ξ≤1

∣

∣Φλ
l (ξ)

∣

∣≤
(αN

k

)λ

,

for k> N, l <λ, α<1, we conclude

max
a≤x≤b

∣

∣

∣

m

∑
l=0

〈

f − fN ,Φλ
l

〉

λ
Φλ

l (ξ(x))
∣

∣

∣
≤C

m

∑
l=0

∞

∑
k=N+1

(αN

k

)λ

≤ e−qN , q>0.

The proof is complete.
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The post-processing procedure discussed here requires knowledge of the interval of
analyticity [a,b]. Many methods have been proposed to find the edges, based on knowl-
edge of the Fourier, Chebyshev, or Legendre coefficients, or on the point values of a func-
tion [1, 9, 11, 20–22].

The natural question to ask is if there actually exist any Gibbs complementary fam-
ilies for the types of bases commonly in use. This is indeed the case: an orthonormal
basis based on the Gegenbauer polynomials can be shown to be Gibbs complementary
to the Fourier, Legendre, and Chebyshev bases, and more generally to the Gegenbauer
polynomials [30].

Theorem 4.2. ([30]) Assume that f (x) is an analytic function on [a,b] ⊂ [−1,1]. Given the
first (N+1) coefficients of a Fourier series or a polynomial expansion based on the Gegenbauer
polynomial basis {G

µ

k }, define the Fourier or Gegenbauer approximation fN(x) as above, and use
it to compute the first m+1 Gegenbauer coefficients

ĝλ
l =

1

hλ
l

∫ 1

−1
(1−ξ2)λ− 1

2 fN(x(ξ))Gλ
l (ξ)dξ, l =0,··· ,m.

Then for λ = m = βǫN where β <2πe/27 for the Fourier case, or β <2/27 for any Gegenbauer
basis, we have

max
−1≤x≤1

∣

∣

∣
f (ξ)− 1

hλ
l

m

∑
k=0

ĝλ
l Gλ

l (ξ)
∣

∣

∣
≤Aq−ǫN,

for some q<1, and a constant A.

Remark 4.1. These results, suitably modified, work even if f (x) is not analytic on [a,b],
but only has some number of continuous derivatives. In this case, however, the post-
processed solution will not converge exponentially, but will recover the order of conver-
gence expected in the function f (x) on the interval [a,b]. In the case where f (x) is not
analytic, but only has K continuous derivatives, this process can still be followed and will
yield a uniformly convergent approximation of order (1/N)K .

Example 4.1. Once again, we look at the square wave function computed by the first
2N+1 exact Fourier coefficients. The errors of the partial sums are large and do not
decay at all at the points x=0,−1,1. After post-processing with Gegenbauer polynomials
on the domains [−1,0] and [0,1], the errors are significantly reduced and decay rapidly
(Fig. 3). However, our implementation of the Gegenbauer method is sensitive to roundoff
errors at the boundaries, which accounts for the larger errors at the points x=−1,0,1.

Example 4.2. We repeat this experiment on the sawtooth function computed by the first
2N+1 exact Fourier coefficients. The errors of the partial sums are large and do not decay
at all at the boundaries. After post-processing with Gegenbauer polynomials, the errors
are significantly reduced and decay rapidly (Fig. 4).
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Figure 3: Fourier Galerkin approximation of the squarewave function before and after post-processing with
λ = 0.4N and m = 0.2N and their pointwise errors for N = 5 (red), N = 10 (green), N = 20 (blue), N = 40
(magenta), and N =80 (cyan).
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Figure 4: Fourier Galerkin approximation of the sawtooth function before and after post-processing with λ =
m=N/4 and their pointwise errors for N=4 (red), N=8 (green), N=16 (blue), N=32 (magenta), and N=64
(cyan).

In practice, the use of Gegenbauer polynomials is not robust. Gegenbauer polynomi-
als suffer from roundoff errors [7,17], and the choice of parameters λ and m has a detailed
theory of its own, analyzed in [17, 18]. Furthermore, singularities in the complex plane
can ruin the convergence of the Gegenbauer method unless β is below some threshold [7].
A more robust Gibbs complementary basis was proposed by [19], in which it was shown
that for an analytic function the expansion of the function in the new basis converges
exponentially, that the projection of high modes in the original basis on the low modes
in the new basis is exponentially small. This new basis is also a two-parameter family
for which, as the order of the original expansion increases, the weight function of the
new basis converges to a weight whose associate basis satisfies the spectral convergence
condition.
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5 Post-processing the collocation approximation

When beginning with a Galerkin approximation fN(x) the error has one source: the
truncation of the infinite series. However, the collocation approximation f̃N(x) has two
sources of errors: the truncation of the infinite series and the approximation of the expan-
sion coefficients by interpolation. For the Galerkin approximation post-processing with a
Gibbs complementary basis eliminates the Gibbs phenomenon, which is caused by trun-
cation of the infinite series for a function which is not smooth, but in the case of a collo-
cation approximation there are other problems which may come into play: the aliasing
error and the Runge phenomenon. Aliasing error is a phenomenon that is caused by the
fact that the data may be sampled at points which are too far away, so that higher modes
may be indistinguishable from (”aliased to”) lower modes. The Runge phenomenon is a
problem commonly seen in polynomial interpolation of functions on equidistant points,
and is characterized by oscillations near the boundary; The Runge phenomenon depends
on the distribution of interpolation points, and is not eliminated by post-processing.

In Section 3, we discussed the collocation approximation

f̃N(x)=
N

∑
k=0

akΨk(x),

where the coefficients are given by the interpolation requirement

N

∑
k=0

akΨk(xj)= f (xj), j=0,··· ,N+1,

where {xj} are the Gauss or Gauss-Lobatto points associated with the basis Ψk(x), which
are trigonometric polynomials or Gegenbauer polynomials. In Lemma (3.1), we saw that
if the function f (x) and its derivatives are smooth on x ∈ [−1,1] then the collocation
approximation converges uniformly and rapidly. Of course, the problem we face is that
the function f (x) is not continuous on [−1,1], and so the Gibbs phenomenon occurs and
we have slow convergence away from the discontinuity and non-uniform convergence.

Our question is: given a finite number of point values (conveniently located on the
Gauss or Gauss-Lobatto points of the trigonometric polynomials or of any of the Gegen-
bauer polynomials) is it possible to get a high order approximation to the function f (x)
on a subinterval [a,b] on which f (x) is very smooth?

A simple approach would be to repeat the process used in Section 4, but instead of
starting with the Galerkin approximation fN(x) we use the collocation approximation
f̃N(x), so that the new approximation, defined on the region of analyticity of f (x), a≤x≤
b, is

m

∑
k=0

〈

f̃N ,Φλ
l

〉

λ
Φλ

l (ξ(x)), (5.1)
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Figure 5: Pointwise errors of Chebyshev interpolation of the square wave function without (left) and with
(right) post-processing with N = 10 (red), N = 20 (green), N = 40 (blue), N = 80 (magenta), N = 160 (cyan),
and N =320 (yellow) and parameters as listed in the text.

where

〈

f̃N ,Φλ
l

〉

λ
=

∫ 1

−1
(1−ξ2)λ− 1

2 f̃N(x(ξ))Φl(ξ)dξ.

Example 5.1. The square wave function is computed using the Chebyshev collo-
cation method, using Trefethen’s CHEBFUN [44] with N+1 Chebyshev points xj =

−cos
(

jπ/N
)

, j=0,··· ,N, for N=8,16,32,48,64. The errors before post-processing (Fig. 5,
left) exhibit evidence of the Gibbs phenomenon, while the errors of the post-processed
approximation (5.1) show significant improvement (Fig. 5, right). the post-processing
parameters are given in the following table:

N m λ N m λ

10 1 1 80 6 8
20 2 4 160 8 10
40 4 6 320 10 12

In this numerical example we observe that Gegenbauer post-processing recovers or-
der of accuracy of the collocation approximation. Many other numerical examples [29]
demonstrate that this approach seems to work well in general. However, from a theoret-
ical point of view, we cannot show that this process is convergent.

However, there is an alternative process that can be justified theoretically [29]: rather
than interpolating the function f (x) at the point values f (xj), we interpolate a new func-
tion, f α

λ(x), when this function is postprocessed using normalized Gegenbauer polyno-
mials Φλ

l (x), the result will be exponentially convergent. The process is described below:

Given point values f (xj), j=0,··· ,N where xj are the Gauss or Gauss-Lobatto points

of the trigonometric polynomials or of any of the Gegenbauer polynomials Gλ
k with λ >
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−1/2, define the function

αλ(x)=

{

(1−ξ(x)2)λ− 1
2 , a≤ x≤b,

0, otherwise,

where λ is a suitably chosen number which linearly depends on N. The effect of the
multiplying a function which is smooth on a≤x≤b by αλ is that the resulting function is
smooth on the domain −1≤ x≤1.

Now we define the interpolating function IN(αλ · f )(x), an expansion in the Fourier,
Chebyshev or Legendre basis Ψk(x) which satisfies the condition

IN(αλ · f )(xj)=αλ(xj) f (xj), j=0,··· ,N.

Which basis is chosen is, of course, dependent on which points xj are given. The Gegen-

bauer coefficients are computed based on IN(αλ · f )(x), instead of f̃N(x):

γ̂λ
l =

∫ 1

−1
IN(α· f )(x(ξ))Φλ

l (ξ)dξ,

and the Gegenbauer approximation is

g̃N(x)=
m

∑
l=0

γ̂λ
l Φλ

l (x). (5.2)

The theorem below states that, following such a procedure, for an appropriated choice of
λ, g̃N(x) converges exponentially to f (x) in the interval a≤ x≤ b, for a wide variety of
bases.

Theorem 5.1. ([29]) Let f (x) be an analytic function on [a,b], which satisfies

max
a≤x≤b

∣

∣ f (k)(x)
∣

∣≤C(ρ)
k!

ρk
, for any k≥0, with some ρ≥1.

Given a set of point values { f (xj)}N
j=0 on a set of Gauss or Gauss-Lobatto points {xj}N

j=0 asso-

ciated with the orthogonal basis Ψk(x) consisting of the trigonometric polynomials eikπx or the
Gegenbauer polynomials G

µ
k (x) for −1/2 < µ < 3/2, then the approximation (5.2) converges

uniformly and exponentially on [a,b] for λ=m= βǫN with β<2e/
[

27(1+ 1
2ρ )

]

max
a≤x≤b

∣

∣ f (x)− g̃N(x)
∣

∣≤A
(

qǫN
T +qǫN

R

)

,

where

qT =
[27β

2e

(

1+
1

2ρ

)]β

<1, qR =
(27ǫ

32ρ

)β

<1,

and A grows at most as N(5+µ)/2.
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The result in this theorem is also true when we use higher order Gegenbauer bases,
Ψk(x)=G

µ
k (x) for µ≥3/2, but in that case we need to define

α̃λ(x)=











(

1−ξ(x)2
)λ− 1

2

(1−x2)
µ
2 − 1

4

, a≤ x≤b,

0, otherwise,

and

γ̂λ
l =

∫ 1

−1

(

1−x(ξ)2
)

µ
2 − 1

4 IN(α̃λ · f )(x(ξ))Φλ
l (ξ)dξ.

We have here two approaches to the interpolation. The first approach is simple and
seems to work well in practice, but is not guaranteed by any theory. In fact, it is very
possible that aliasing error can ruin its convergence. On the other hand, we have a non-
standard process that has a theoretical guarantee, but is more cumbersome and may in
practice increase the Gegenbauer method’s sensitivity to roundoff errors. Fortunately,
the results in [29] show that in a variety of examples the standard interpolation, when
post-processed in the usual way (i.e., replacing fN(x) in the previous section by f̃N(x)),
gives equivalent results.

6 Extension to spectral and pseudo-spectral approximations

of partial differential equations

Up to now we have discussed the post-processing of a Galerkin or collocation approxima-
tion of a function f (x) which is analytic on the subinterval a≤x≤b. This post-processing
procedure builds a new function which converges quickly to f (x). In this section we
show that these results can be useful for spectral approximations of linear and nonlinear
hyperbolic partial differential equations.

The case of a Galerkin approximation has very clear and complete results, and these
can be extended to the spectral methods solutions of linear hyperbolic partial differential
equations (PDEs). However, the situation for pseudo-spectral (collocation) approxima-
tions of a linear hyperbolic PDE is quite different because the convergence result that we
do have is not for the interpolation of f (x), but rather when we interpolate α· f , as we dis-
cussed above. Nevertheless, numerical evidence demonstrates that not only is the post-
processed collocation approximation rapidly converging, but that even after stepping
forward in time, high order accuracy can be recovered by post-processing. Finally, we
want to consider the case for a nonlinear hyperbolic partial differential equation. Spec-
tral (and pseudo-spectral) approximations of scalar nonlinear hyperbolic PDEs are stable
if we filter the solution appropriately [34, 42]. When the solution is discontinuous, we
can still stabilize the method using filtering, but the high order information seems lost.
Numerical evidence demonstrates that this high order information is retained and can be
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recovered by post-processing. In the following example we present the discontinuous so-
lutions of a Burgers’ equation by spectral and pseudo-spectral methods, post-processed
to recover order of accuracy.

Example 6.1. Taken from [41]: Given Burgers’ equation

ut+
(u2

2

)

x
=0, x∈ [−1,1], t>0,

u(x,0)=0.3+0.7sin(πx).

The solution develops a shock at t = 1/0.7π and we compute the solution up to t = 1.
The initial condition is chosen such that the shock is moving with time. Using a Fourier
spectral method with filtering to stabilize the method, to approximate the solution to
this equation, the pointwise errors before post-processing (Fig. 6 (left)) show slow con-
vergence, while the pointwise errors of the post-processed solution 6 (right) show good
accuracy everywhere including at the discontinuity x=±1+0.3.
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Figure 6: Pointwise errors in log scale, Burgers equation. Fourier Galerkin using 2N+1 modes with exponential
solution filters of order r. r=4 for N=10; r=6 for N=20; r=8 for N=40 and r=12 for N=80. Figures taken
from [41]. Left: before post-processing. Right: after post-processing with parameters λ = 2,m = 1 for N = 10;
λ=3,m=3 for N =20; λ=12,m=7 for N =40 and λ=62,m=15, for N =80.

Example 6.2. We solve the Burgers’ equation

ut+
(u2

2

)

x
=0, x∈ [−1,1], t>0,

with the initial condition

u(x,0)=−sin(πx).

With this initial condition the shock forms at t = ts = 1/π at x = 0. We use the Cheby-
shev collocation (pseudo-spectral) method with N+1 Gauss Lobatto collocation points.
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Figure 7: Pointwise error for (a) solu-
tion with N = 8,16,32,64; (b) filtered so-
lution with the filtering order p=16 (with-
out Gegenbauer reconstruction); (c) Gegen-
bauer post-processed solution of unfiltered
solutions.

Fig. 7(a) shows the pointwise errors with N = 8,16,32,64, Fig. 7(b) shows the point-
wise errors with exponential filtering with p = 16. Filtering is included here because
it is needed for stabilizing the method. Fig. 7(c) the Gegenbauer reconstruction with
λ = N/8, m = N/8. For the Gegenbauer reconstruction we use the fact that the shock lo-
cation is at x=0 for ∀t≥ ts. Once again, we observe that the Gegenbauer post-processing
of the Chebyshev collocation is sensitive to roundoff errors at the boundary.

7 Conclusions

Although local discontinuities destroy the convergence of global approximations even on
regions which feature smooth solutions, these global approximations still contain within
them high order information which can be recovered with suitable post-processing. For
the Galerkin approximation, there is a complete theory that guarantees that convergent
approximations can be obtained by post-processing with a Gibbs complementary basis. For
the collocation approximation, the situation is more delicate: in this case, the theory re-
quires interpolation on a specialized set of nodes, and an interpolation procedure on a
new function, rather than the original set of points. However, in many cases, no dif-
ference is observed if the post-processing is performed on the original or the modified
interpolation.

A significant use of the post-processing method is in the numerical solution of partial
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differential equations with shocks. Theoretical justification exists for the case of linear
hyperbolic PDEs solved with a Galerkin method, and for the collocation method and for
nonlinear equations there is numerical evidence which shows that this approach is ap-
plicable. These methods have been used to simulate sophisticated problems, such as the
Richtmyer Meshkov instability calculated by W. S. Don [32], and have also been success-
fully applied to the field of image reconstruction by Archibald and Gelb [2–4]. Surpris-
ingly, the Gegenbauer basis has also been successful in recovering order of accuracy lost
in other types of approximations, such as weighted essentially non-oscillatory (WENO)
solutions of hyperbolic PDEs [33], and in radial basis functions approximations of linear
and nonlinear hyperbolic PDEs [36].

While the Gegenbauer basis has been used often and successfully, it suffers from prac-
tical drawbacks including difficulties in the choice of parameters. Other bases have been
considered, with greater success [19]. While the practical aspects of post-processing con-
tinue to be developed, the underlying message of the work reviewed here is that global
expansions which are contaminated by local discontinuities still retain within them high
order information, and the Gibbs phenomenon can be removed by post-processing.
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