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Abstract. We investigate the effectiveness of two extrapolation-based methods aiming
to approximate the initial state required by an iterative solver in simulations of un-
steady flow problems. The methods lead to about a ten-fold reduction in the iteration
count while requiring only negligible computational overhead. They are particularly
suitable for parallel computing since they are based almost exclusively on data stored
locally on each processor. Performance has been evaluated in simulations of turbu-
lent flow in a stenosed carotid artery and also in laminar flow in a very large domain
containing the human intracranial arterial tree.
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1 Introduction

Discretization of first-order (in time) PDEs

∂u

∂t
= fa(t,u,x)⇒

un+1−un

∆t
= fd(tn+1,un+1,un,x)

often requires the iterative solution of a linear system of equations of the form Aun+1=b;
here fa is an analytic function and fd is its discrete counterpart.

In general, the performance of the iterative solver is determined by: (1) the condition
number of the (preconditioned) operator; (2) the number of floating points operations
required at each iteration (e.g., sparsity of the operator); (3) degree of parallelization, i.e.,
minimization of the sequential part of an algorithm with respect to the work performed
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in parallel; and (4) the proximity of the initial state (guess) to the exact solution. The
first two factors are related to the properties of the operator and also to the discretiza-
tion method employed. The third factor is greatly affected by the choice of the numeri-
cal scheme for iterative solution and its implementation. While in the last few decades
significant effort has been put in developing effective preconditioning techniques that
minimize the condition number of the matrix A and maximize its sparsity, very little
work has been published on attempts to obtain a good initial state to initialize the iter-
ative solver. It is common practice to use the solution from a previous time step un as
an initial state, however, an approximate solution for un+1 can be obtained using various
techniques. Depending on the method and the smoothness of u(t), the distance between
approximate solution (hereafter denoted by ||uap−un+1||) can be significantly smaller
than ||un−un+1||, hence leading to a substantial reduction in the number of iterations.
This, in turn, lowers the CPU-time and enhances the overall efficiency of a solver, hence
it is crucial that obtaining uap will require minimal computational effort.

Markovinović and Jansen [1] employed Proper Orthogonal Decomposition (POD) to
accelerate convergence of iterative solvers, and tested it in simulations of two-phase flow
through heterogeneous porous media. Specifically, a two-step projection method was
proposed: in the first substep, solutions computed at previous time steps were projected
onto a subspace spanned by a low number of global POD modes. Subsequently, an ap-
proximate solution uap was obtained by solving the governing equations in the reduced
space and projecting the result back to the original, high-dimensional space. This proce-
dure was completed by solving the original system of equations using the uap (instead of
un) as an improved initial state, leading to 67% reduction in the computing time. The key
idea of this method is based on the observation that computing the approximate solution
(initial state for the iterative solver) using the reduced basis model is less computationally
demanding than performing a number of iterations required to advance the solution to
the same state. In another study, Tromeur-Dervout and Vassilevski [2] also implemented
POD to predict the solution field un+1 using a fully-implicit scheme. A low-dimensional
solution based on POD was used to provide a better initial state to an inexact Newton
back-tracking method, and a two-fold reduction in the computing time was reported.

A different use of POD was attempted in [3], where a Galerkin-free methodology
was implemented for simulating unsteady flow past a circular cylinder. Extrapolation
of POD modes was pursued over large time steps and the predictions were used as ini-
tial conditions to a Navier-Stokes solver running over much shorter time steps. A re-
lated study but targeting the right-hand-side (RHS) of the linear system was pursued
in [4] where it was proposed to reduce the iteration count in solution of a linear system
of equations Aun+1 = bn+1 by using information contained in successive RHS vectors
bn+1−k, k=1,··· ,L and corresponding solutions un+1−k, k=1,··· ,L. This method is based
on solving a modified system Aũ = b̃, where b̃ is computed by the Gram-Schmidt or-
thogonalization of the successive RHS vectors. The solution un+1 is obtained by adding
a superposition of the solutions un+1−k, k = 1,··· ,L to ũ. In [4] several variations of this
method have been proposed; while the computational complexity of the methods varied,
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all lead to significant reduction in the iteration count. This method also adds a certain
computational overhead as well as blocking collective and non-blocking point-to-point
communications.

In this paper we investigate the performance of extrapolation-based acceleration tech-
niques for the spectral/hp element method. We test the POD-based extrapolation and
also an extrapolation performed in the modal space (space of the amplitudes of the high-
order polynomials approximating the solution). The later is more efficient than the ap-
proach in [1, 2] and it also involves significantly less memory and inter-processor com-
munications. We test performance using an embarrassingly parallel diagonal precondi-
tioner and also a scalable and very effective parallel Low-Energy Basis preconditioned
(LEBP) [7, 8] for the iterative solution of Helmholtz and Poisson problems with Conju-
gate Gradient method (PCG). Numerical results are reported on simulations of arterial
flows performed on CRAY XT4 and CRAY XT5.

2 Methods

In this section we first overview the spectral/hp element method implemented in the par-
allel code N εκT αr . Second, we present two techniques employed in the current study
for calculating the approximate solution uap. The two methods are based on extrapola-
tion performed in modal space. The first method (denoted as Method 1) requires comput-
ing the POD modes and reconstructing the flow field variables using extrapolated values
of the temporal POD modes. The second method (denoted as Method 2) is employed
in conjunction with the spectral/hp element discretization. The spatial discretization is
based on C0 Galerkin projection of the solution onto a space spanned by mixed-order Ja-
cobi polynomials. The extrapolation method is applied in the modal space and involves
directly the time-dependent amplitudes of the polynomial expansion.

The two acceleration techniques are integrated in the numerical scheme for solving
the incompressible Navier-Stokes equations. Specifically, we apply the extrapolation
techniques to predict a more accurate initial state for Helmholtz and Poisson equations
for the velocity and the pressure, respectively. Velocity is a dynamic variable and it is
a smooth function in time, hence a good prediction of un+1 can be obtained via extrap-
olation methods. Pressure is not a state variable but a constraint required to ensure the
incompressibility of the velocity field, and hence it is difficult to obtain a good initial state
for the pressure solver.

2.1 Numerical methods in N εκT αr

Here we provide only a brief overview of the discretization method and the numerical
scheme employed, for a complete review we refer to [5, 6]. The computational domain
employed in N εκT αr consists of tetrahedra, hexahedra, prisms, pyramids or a combina-
tion of these. Within each element the solution is approximated in terms of hierarchical,
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mixed order, semi-orthogonal Jacobi polynomial expansions [5]:

uδ(x)=
Ndo f

∑
i=1

ûiΦi(x)=
Nel

∑
e=1

dim(V δ)

∑
i=1

ûe
i φ

e
i (xe(ξ)), (2.1)

where Ndo f is a total number of degrees of freedom and φi(x(ξ)) are polynomials defined

in a space (V δ) of order P, which when pieced together under the mapping x(ξ) make
a C0 continuous (global) expansion Φi(x). The superscript δ emphasizes that we use a
finite (truncated) space. To simplify the notation we will omit the superscript δ in the rest
of the manuscript. The expansion is hierarchical in a sense that the modes are separated
into vertex (linear term), edge, face and bubble (interior) modes. In Fig. 1 we provide an
illustration of the domain decomposition and polynomial basis employed in N εκT αr .

Figure 1: Illustration of the unstructured surface grid and the polynomial basis employed in N εκT αr . The
solution domain is decomposed into nonoverlaping elements; within each element the solution is approximated
by vertex, edge, face and (in 3D) interior modes. The shape functions associated with the vertex, edge and face
modes for fourth-order polynomial expansion (P=4) defined on triangular and quadrilateral faces are shown in
color.

The polynomial expansion basis within each element is decomposed into interior and
boundary modes (vertex, edge and face) to help construct a global C0-continuous field.
The interior modes have zero support on the elemental boundaries, thus the bound-
ary and interior degrees of freedom can be numerically decoupled through a technique
known as substructuring, where the Schur complement of the boundary system is con-
structed. The boundary degrees of freedom, corresponding to adjacent elements, are
coupled due to the requirement of C0-continuity.

In the current study we consider 3D unsteady incompressible flow in a rigid domain
Ω in R3; the flow is described by the Navier-Stokes equations:

∂u

∂t
+u·(∇u)=−∇p+ν∇2u, ∇·u=0, (2.2)

where u=[u,v,w] is the velocity vector, p is the pressure, t is time and ν is the kinematic
viscosity. In order to solve Eq. (2.2) numerically we decouple the velocity and the pres-
sure fields by applying a high-order time-splitting scheme [12]. First, the provisional field
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u∗ is computed in physical space (on a grid of quadrature points) using formula (2.3a).
Second, we apply Galerkin projection to obtain the weak formulations for the pressure
(2.3b) and the velocity (2.3c) fields:

u∗=
Je−1

∑
k=0

αkun−k−∆t
( Je−1

∑
k=0

βk(nl)n−k+f
)

, nl=u·(∇u), (2.3a)

L p̂=−
1

∆t
(∇·u∗,φ)+

(∂p

∂n
,φ

)

, (2.3b)

Hûn+1 =
1

γ0
(u∗−∆t∇p,φ)+

∆tν

γ0

(∂u

∂n
,φ

)n+1
. (2.3c)

Here γ0, αk are coefficients of backward differentiation formula, βk are the integration
coefficients as suggested in [12], Je is the order of the time discretization scheme, H =
M−(∆tν/γ0)L, and M and L are the mass and stiffness matrices, respectively.

The linear systems (2.3b) and (2.3c) are solved iteratively. For example, the solution
vector û and the appropriate forcing term f are decomposed into contributions associated
with the boundary (ûb) and interior (ûi):

[

Hbb Hbi

Hib Hii

][

ûb

ûi

]

=

[

fb

fi

]

. (2.4)

Due to non-overlapping support of the interior modes, the contributions of Hii to H are
decoupled from each other. It is therefore more efficient to construct the Schur comple-
ment

S=Hbb−Hbi[Hii]
−1Hib

and solve first for the boundary degrees of freedom, which when known can be used to
recover the interior degrees of freedom. In the discretization method we implement here
the global Schur complement operator can be constructed from the local (element-wise)
operators, however, global assembly is not necessary if the linear problem for the bound-
ary degrees of freedom is solved iteratively as it is explained in detail in [5]. The solution
for the boundary degrees of freedom is obtained iteratively by PCG. The efficiency of the
iterative solver is strongly affected not only by the preconditioner but also by the prox-
imity of the initial state ûap to the solution ûb. To obtain better initial states we employ
the methods described in the next sections.

2.2 Method 1: POD-based extrapolation

POD is a very effective method for identifying an energetically dominant set of eigen-
modes in an evolving system. For a comprehensive review on the POD method we refer
the reader to [9–11]. Here we provide a brief overview of the method. For a set of data
u(t,x), represented as a function of physical space x and time t, POD determines a set of
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orthogonal basis functions of space Ψq(x) and temporal modes aq(t):

u(t,x)=
Q

∑
q=1

aq(t)Ψq(x). (2.5)

We employ the method of snapshots [9] to compute the POD modes in a time interval
T =[t−(Q−1)∆t, t]. The inner product between every pair of velocity fields (snapshots)

C(t,t′)=
∫

Ω
u(t,x)u(t′,x)dx

is the temporal auto-correlation covariance matrix C used as the kernel. The temporal
modes aq(t) are the eigenvectors of the C matrix and are calculated by solving an eigen-
value problem of the form:

∫

T
C(t,t′)aq(t′)dt′ =λqaq(t).

Using orthogonality, the POD spatial modes are calculated by

Ψq(x)=
∫

aq(t)u(t,x)dt.

The eigenvalue of a single mode represents its contribution to the total kinetic energy of
the field which is proportional to the sum over all eigenvalues. Therefore, the eigenspec-
trum of the decomposition can be regarded as the primary indicator of the importance
of each individual mode from the energetic point of view. The modes with the lowest
numbers are the most energetic whereas the high modes may contribute little to the field
u(t,x), and hence they may be ignored.

In order to approximate the solution at time step tn+1 the following procedure is em-
ployed:

Step 1: At every time step tn the correlation matrix C is constructed from the solution
fields un−k, k=0,1,··· ,Q−1:

Ci,j =
∫

Ω
u(tn+1−i,x)u(tn+1−j,x)dx, i, j=1,··· ,Q.

It is not necessary to recompute C for all indices i, j=1,··· ,Q at every time step, but only
the inner products

(

u(tn,x),u(tn+1−j,x)
)

, j=1,··· ,Q, since the inner products of the fields
computed at previous times steps do not change. The correlation matrix is computed in
parallel and one global summation of a vector of size Q is required. We also considered a
variation of the POD of a vector field, where the velocity components are treated as inde-
pendent (uncorrelated) scalar fields, i.e, the correlation matrix and the temporal modes
for each component of the velocity vector are computed. The computational complexity
of such method is only slightly higher: (a) global summation of a vector of size Qd is
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required, and (b) the eigenvalues and eigenvectors of d correlation matrices (instead of
one) should be computed; here d is the spatial dimension of a problem. To distinguish
the two approaches, we denote the first one by uap = POD1(u) and the second one by
uap = POD2(u); most of the results reported here are for POD1.

Step 2: The eigenvalues and eigenvectors (aq(t)) of C are calculated at each time step,
then the spatial modes Ψq(x), q=1,··· ,QR are computed. Typically QR < Q, which leads
to computational savings. The parameter 1≤QR ≤Q is adjusted at each time step using
the following criteria:

(a) The value of 1≤QR ≤Q is then chosen such that

Q

∑
k=QR+1

λk <ǫ, 0<ǫ≪1,

i.e., the first QR modes contribute 100%−ǫ of the kinetic energy E1,Q =∑
Q
k=1λq.

(b) Alternatively, threshold criteria can be applied, such that the QR parameter satis-
fies λq <ǫ, ∀q>QR.

The choice of ǫ is very important for effectiveness of the method. Although, POD is
basically a compression technique which might be employed to filter-out the high fre-
quency components associated with small energy, we have found it most efficient to re-
tain the low energy components by setting ǫ to very low values of order O(10−14−10−15).
We also note that here we use QR as a global parameter; generally speaking, it is possi-
ble to adjust QR for different regions of the computational domain based on some local
features of the solution. For example, reducing QR in the regions of high gradients may
have some smearing effect.

Step 3: The values of aq(tn+1) are computed using the formula

aq(tn+1)=
QR−1

∑
k=0

βkaq(tn−k), (2.6)

where βk are extrapolation coefficients.

Step 4: The approximate solution is computed from

uap =
QR

∑
q=1

aq(tn+1)Ψq(x). (2.7)

Depending on the spatial discretization method employed, an additional step might be
required to complete the procedure: If the linear system of equations is formulated in
the modal space, e.g., the Eq. (2.4), transformation of uap from physical space to modal is
required. This transformation is typically the most computationally intensive step of the
POD-based extrapolation.
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Computational complexity: The POD-based extrapolation technique requires 2×Q×
Nqp×sizeo f (double) bytes storage per field-half of it to store the solutions at previous
time steps and another half to store spatial modes. The memory requirement for the
correlation matrix C is Q×Q and the same memory is required to store the temporal
modes; since Q is typically of order O(1), the memory requirements are not substantial.
At each time step the following operations are required:

(i) Q values of C are computed via numerical integration:

Ci,1 =C1,i =
Nqp

∑
j=1

[

u(tn,xj)u(tn+1−i,xj)wj

]

, i=1,··· ,Q,

here wj are the integration weights; computing C1,i, i=1,··· ,Q, requires one dvmul oper-

ation† and Q vector-vector dot products.

(ii) The eigenvalues and eigenvectors of C are computed by dsyev function‡. Consid-
ering the small size of C, the eigenvalue decomposition can be performed sequentially.

(iii) QR spatial modes are computed by performing one dscal and QR−1 daxpy oper-
ations for each field.

(iv) The field uap is computed from the spatial and temporal POD modes; this opera-
tion holds the same computational complexity as (iii).

(v) Transformation of a solution into modal space, which is performed by solving a
projection problem. The projection problem can be solved locally, within each element,
or globally. From the computing standpoint, the local projection is advantageous since
it involves only one matrix-vector multiply per element in addition to computing inner
products of the approximated solution with the shape functions Φ. Approximate solution
for the interior modes is not required, which reduces the computational effort. However,
the local projection does not guarantee the C0 continuity, which can be achieved by aver-
aging degrees of freedom shared by the adjacent elements.

2.3 Method 2: Spectral-based extrapolation

In this section we review a simple but effective method to obtain an approximation uap≈
un+1. Compared to the other methods, the spectral-based extrapolation has the least
computational complexity and memory requirements. Moreover, the method is local,
i.e., approximation of a degree of freedom i does not require information on the degree
of freedom j, hence the method is embarrassingly parallel. It is also general and can be
applied in conjunction with other methods, e.g., finite differences or finite elements.

The approximate solution at the time step tn+1 is computed using

uap(x)=EXT(u)≡
N−1

∑
k=0

βkun−k(x), (2.8)

†function dvmul computes z[i]= x[i]·y[i].
‡function dsyev computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix.
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where βk are extrapolation coefficients.
The formula (2.8) can be applied to extrapolate solution in the physical as well as

in the modal space (2.1). The numerical algorithm implemented in N εκT αr requires
transforming velocity values from the modal to physical space in order to compute the
non-linear term. Hence, choosing to perform extrapolation of solution in physical space
will not require additional computationally expensive operation. However, it is still ad-
vantageous to perform the extrapolation using modal values ûb(t) due to several reasons:

• Consider that the linear system we solve iteratively is formulated for modal Galerkin
bases, then extrapolation performed in the physical space would require solving the pro-
jection problem Mûap =(uap,Φ), which demands considerable computational effort. To
reduce the computational cost it is possible to solve a local projection problem (elemen-
twise) directly using the pre-computed inverse of the mass matrix (Me)−1. The local
projection may destroy the C0 continuity, hence additional computational effort might be
needed if C0 continuity of ûap is required.

• The number of modal degrees of freedom is typically lower than the number of
quadrature points needed for projection operations; consequently extrapolation in the
modal space requires less floating point operations and storage.

• Solution of a linear system arising in spectral element discretization is typically
performed using the Schur decomposition technique, which decouples the boundary and
interior modes. The interior modes are often computed using a direct solver, whereas,
the boundary modes are computed iteratively; thus, extrapolation of the interior modes
is not required.

In this study, the extrapolation operator is applied to the modal coefficients, hence
naturally preserving the C0 continuity. We note that we employ the extrapolation not
to compute the velocity field un+1, but to obtain an initial state for the iterative solver.
Hence, the accuracy and stability of the numerical scheme are not affected by methods
for computing uap.

Computational complexity: The aforementioned extrapolation technique requires stor-
ing solutions from the previous N time steps. The required storage per field is then
N×Nqp×sizeo f (double) bytes, where Nqp is the total number of quadrature points if
the extrapolation is performed in physical space. Alternatively, if extrapolation is per-
formed in the modal space, Nqp is the number of global boundary degrees of freedom.
Additional storage for uap is not required since the data can be written instead of solu-
tion field from the time step tn−N+1. At each time step one dscal and (N−1) daxpy§ calls
to BLAS library are required. Transformation of a solution into modal space (if needed)
requires Nel direct solves of a linear system Meûap =(uap,φ) which can be performed us-
ing precomputed LU factorization or inverse of a symmetric operator Me; note that only
solution for boundary modes is required. If uap is a vector field in Rd then one system
with d right-hand-sides should be solved, which is more efficient then solving a series of
single RHS systems.

§dscal function computes y[i]= ax[i]; daxpy function computes y[i]= ax[i]+y[i].
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3 Results

To investigate numerically the effectiveness of the extrapolation methods we considered
the following cases: (a) turbulent flow in a stenosed carotid artery, and (b) flow in the
intracranial arterial tree, consisting of a very large number of spectral elements. Before
we proceed further we provide some definitions and clarify the notation. In this section
xk denotes a solution vector at iteration k and the vector b denotes a suitable forcing term.
Other quantities are defined as:

• ||a||=
(

∑
N
i=1 a2

i

)
1
2 ;

• rk = ||Axk−b|| — residual, at iteration k;

• rk
Ns =

rk

Ns — residual normalized by the length of vector x (number of unknowns);

• rk
s = 1

||x0||
||Axk−b|| — residual scaled by the ||·|| norm of the initial state vector.

3.1 Accuracy verification

The accuracy of the solver has been verified by simulating unsteady flow in a pipe, forced
by a periodically varying pressure gradient. The numerical solution was compared to
the analytical solution (Womersley velocity profile). In Table 1, we show the error com-
puted for u and w (streamwise) velocity components; as expected, comparable accuracy
is achieved for all choices of the initial state provided to the iterative solver.

Table 1: Simulations of unsteady flow in a pipe: L∞-error for u (w-streamwise) velocity components. Initial state

(x0) for conjugate gradient solver is provided by: a) x0 =un, b) x0 =EXT(u) with N=4, and c) x0 =POD1(u)
with Q=4. ∆t=2.0E−4, stopping criterion for conjugate gradient solver: rk

s < TOL CG=1.0E−12.

P x0 =un x0 =EXT(u) x0 = POD1(u)
4 1.0E-3 (4.3E-3) 1.0E-3 (3.5E-3) 1.0E-3 (3.5E-3)
6 1.8E-5 (2.1E-4) 2.0E-5 (5.2E-5) 2.0E-5 (5.2E-5)
8 9.9E-7 (7.3E-6) 8.5E-7 (3.2E-6) 8.5E-7 (3.2E-6)

3.2 Turbulent flow simulations in stenosed carotid artery

In this section we consider simulations of flow in a domain of stenosed carotid artery,
shown in Fig. 2(right). The narrowing of the internal carotid artery creates a strong jet-
flow, and due to curvature and geometric asymmetry the jet adheres to arterial wall and
becomes unstable when the flow exceeds a certain velocity limit. In Fig. 2(left) we present
typical velocity data, recorded downstream of the stenosis; the high-frequency oscilla-
tions signify the onset of turbulence.
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Figure 2: (in color) Unsteady flow simulations in stenosed carotid artery. Left: Non-dimensional velocity
monitored downstream stenosis. Right: a high-speed region-red iso-surfaces, back-flow regions-blue iso-surfaces;
instantaneous path-lines of swirling flow and cross-stream secondary flows. ICA= Internal Carotid Artery;
ECA=External Carotid Artery; CCA=Common Carotid Artery.

Table 2: Turbulent flow simulations in stenosed carotid artery: performance of iterative solver with different
initial states. r0

Ns, Nit, Te-average (over time) initial residual (normalized by the number of unknowns), number
of iterations (Nit) and CPU-time (in seconds) required for extrapolation at each time step. Data are averaged
over time steps 100 to 4,000; preconditioner: low energy; ∆t=5.0E−5, P=6,10, Nel =22,441.

x0 =un x0 =EXT(u), N=3 x0 = POD1(u), Q=3

P r0
Ns Nit r0

Ns Nit Te r0
Ns Nit Te

6 2.8E-4 24 1.6E-8 9.1 1.3E-3 1.6E-8 9.1 3.6E-2
10 1.7E-5 19.2 1.9E-9 7.1 1.7E-3 1.9E-9 7.1 1.1E-1

In Table 2, we present results of the two acceleration techniques; both acceleration
techniques show comparable performance. The significant reduction in the initial resid-
ual r0

Ns is a result of accurate approximation of the initial state. Reduction of the it-
eration count in simulation with higher resolution (P = 10) is intriguing and deserves
some comments: The results of Table 2 correspond to solution of the Helmholtz equa-
tion using preconditioned (with LEBP) conjugate gradient method. We recall that the
Helmholtz operator is constructed as a linear combination of the L2 and H1 operators,
i.e., H = M−(∆tν/γ0)L. Results presented in Table 2 have been computed using very
small size of ∆t, which makes the L2 operator (M) dominant over the H1 operator (L).
The excellent p- and h-scaling in solving H1 problem with the LEBP has been presented
and analyzed in depth in [7]; however, the properties of the projection operator M, pre-
conditioned with the LEBP, have not yet been studied. To verify that the reduction in the
iteration count is a result of preconditioning we compared the performance of our solver
using the LEBP and the diagonal preconditioner, and setting the same initial states and
stopping criterion for the PCG; the results are presented in Fig. 3. In the case of diagonal
preconditioning the number of iterations grows with P (as expected), while employing
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Figure 3: Unsteady flow simulations in stenosed carotid artery: number of PCG iterations required for the
Helmholtz solver for the w-component (streamwise) of the velocity field. The iteration count has been averaged
over time steps 150 to 450. Solution is obtained with the diagonal (left) and LEBP (right) and also with and

without extrapolation of the initial state (N =4 and N =0). Stopping criteria for PCG solver: rk
s < TOL CG=

1.0E−8.

the LEBP lead to large reduction in the iteration count. Similar behavior was also ob-
served in simulations of a pulsatile flow in a pipe used for the accuracy verification in
the previous section. In simulation without preconditioning, P-refinement increased the
iteration count. More comprehensive analysis of preconditioning with the LEBP operator
M is out of the scope of this paper and is left for future research.

The LEBP requires considerable computational effort: blocking collective and non-
blocking point-to-point communications and also matrix-vector multiplications. In con-
trast, the diagonal preconditioner requires no interprocessor communications and negli-
gible computational effort, hence it might be feasible to use the less effective but embar-
rassingly parallel preconditioner in conjunction with the methods providing an accurate
initial solution for the PCG in order to obtain the lowest computational time. To this
end, in Table 3 we compare the performance of the PCG solver with the LEBP and di-
agonal preconditioner and two choices of initial state; clearly, the choice of the LEBP is
advantageous. Although, the last observation is valid for spectral element discretization,
this conclusion cannot be generalized for other numerical schemes and preconditioning
strategies.

Table 3: Turbulent flow simulations in stenosed carotid artery: average CPU-time required by three Helmholtz
solves (for the three velocity components together) for two choices of initial state: a) x0=un, and b) x0=EXT(u)
with N =4; and two preconditioners: LEBP and diagonal; ∆t=5.0E−5, P =6, Nel =22,441.

CPU-time (sec)

preconditioner x0 =un x0 =EXT(u)
low energy 0.188 0.037

diagonal 1.09 0.25
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It is reasonable to assume that higher order extrapolation may lead to more accurate
prediction of the initial state, as long as the extrapolated field is sufficiently smooth. Such
assumption can be easily justified by estimating the truncation error of the polynomial
extrapolation, which is

error≈ c(∆t)N ∂Nu

∂tN
.

In the case of uniform time-stepping, i.e., tn−tn−1 = const, we have c = 1. In Table 4 we
present results obtained with different orders of extrapolation (N,Q = 3, N,Q = 4 and
N,Q = 5). About two orders of magnitude improvement in the accuracy of initial state
x0=EXT(u) is observed, and the reduced number of iterations reflects this improvement.
However, fifth-order accurate extrapolation (N = 5) does not lead to lower initial resid-
ual, which can be attributed to the numerical error of order TOL CG present in solutions
un−k, k=0,··· ,N−1 and the possible Runge effect related to high-order interpolation on
equidistant grid. In the case of x0 = POD1(u) and Q = 4 the improvement is not signif-
icant. Moreover, with higher POD expansion order (Q = 5) the performance gets even
worse. The relatively poor performance of the POD-based extrapolation is due to the ill-
conditioned correlation matrix. Large condition number results in error in computation
of orthogonal temporal and spatial POD modes, and, consequently, relatively high ex-
trapolation error. The eigenspectrum of the correlation matrix will be discussed in more
detail in the next section.

Table 4: Turbulent flow simulations in stenosed carotid artery: initial state is computed by high-order ex-
trapolation. r0

Ns, Nit, Te-average (over time) normalized initial residual, number of iterations and CPU-time
(in seconds) required for extrapolation at each time step. Data are averaged over time steps 100 to 4,000,
preconditioner: low energy; ∆t=5.0E−5, P=6, Nel =22,441.

x0 =EXT(u) x0 = POD1(u)
r0

Ns Nit Te r0
Ns Nit Te

N,Q=3 1.6E-8 9.1 1.3E-3 1.6E-8 9.1 3.6E-2
N,Q=4 2.75E-10 3.7 1.3E-3 1.16E-8 6.75 3.9E-2
N,Q=5 1.94E-10 3.7 1.3E-3 3.33E-8 9.2 5.5E-2

In Tables 2 and 4 we showed data averaged over 4,000 time steps and over the three
components of the velocity field. Here, in Fig. 4 we compare the number of iterations
required at every time step for each of the three velocity components (u,v,w), an up to
eight-fold reduction in iteration count is observed over 40,000 time steps. The reduction
is due to improved initial state, which minimizes the initial residual r0

Ns, also shown in
Fig. 4(right). In Table 5 we summarize the number of iterations and initial residual (aver-
aged over 40,000 time steps) for three choices of initial state; a slightly higher number of
iterations is observed when the initial state is approximated using POD. A more detailed
discussion on the last observation follows in the next section.
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Figure 4: Turbulent flow simulations in stenosed carotid artery: (a-c)-number of iterations required by iterative
Helmholtz solver for three velocity components. (d-f)-initial residual r0

Ns, curve marked by I (II) corresponds

to uap =un (uap = EXT(u), N =4). ∆t=5.0E−5, P=6, Nel =22,441.

Table 5: Turbulent flow simulations in stenosed carotid artery: average number of iterations (Nit) and average
initial residual r̄0

N for three choices of initial state: a) x0=un, b) x0=EXT(u) with N=4, and c) x0=POD1(u)
with N =4. Data is averaged over time steps 100 to 40,000, preconditioner: low energy; ∆t=5.0E−5, P =6,
Nel =22,441.

x0 =un x0 =EXT(u) x0 = POD1(u)
Nit r̄0

Ns Nit r̄0
Ns Nit r̄0

Ns
u 17.97 2.60E-3 2.31 6.80E-8 3.33 1.99E-7
v 18.12 3.20E-3 2.42 7.56E-8 3.55 2.54E-7
w 15.53 5.46e-3 2.36 7.65E-8 2.48 6.62E-8

3.3 Simulations of flow in the Circle of Willis

In this section we consider simulations of flow in a complex network of major brain ar-
teries including the Circle of Willis (CoW), which is reconstructed from MRI images of a
human brain; the computational domain is presented in Fig. 5(right). The simulations are
started from initial solution u(t=0)=0, and a steady velocity profile is imposed at three
inlets of the domain. The simulation time considered here is significantly lower than the
time required to establish a steady state solution. The goal of this section is to show that
the aforementioned techniques aiming to provide a good initial state for iterative solver
can be successfully applied to simulations of a flow in very large computational domains.
The size of the computational domain of CoW compared to the domain of carotid artery
is very large; specifically, CoW consists of 22 arteries and is discretized into Nel=162,909
tetrahedral spectral elements.

In Table 6 we compare the number of iterations required by the Helmholtz solver
with respect to three choices of initial state. Similarly to the turbulent flow simulations,
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Table 6: Flow simulations in Circle of Willis: performance of iterative solver with different initial states. Average
number of iterations (Nit) and average initial residual r̄0

Ns for three choices of initial state: a) x0 = un, b)

x0 = EXT(u) with N = 4, and c) x0 = POD1(u) with Q = 4. Data is averaged over time steps 300 to 3,000.

Nel = 162,909, ∆t = 5.0E−4, preconditioner: low energy. Stopping criterion for PCG: rk
< TOL CG = 1E−5

(rk
Ns ≈7.9E−12).

x0 =un x0 =EXT(u) x0 = POD(u)
Nit r̄0

Ns Nit r̄0
Ns Nit r̄0

Ns
P=3 24.60 2.99E-4 3.70 3.34E-10 6.81 9.70E-9
P=4 22.15 6.01E-5 3.15 1.06E-10 5.81 2.05E-9
P=5 20.85 1.77E-5 3.27 7.22E-11 4.94 5.90E-10
P=6 18.80 8.20E-6 2.67 4.50E-11 4.06 2.87E-10

Table 7: Flow simulations in Circle of Willis: performance of POD-based accelerator. Uit,Vit and Wit-number
of iterations required for solution of Helmholtz equations for velocity at times steps 2991 to 3000. QR-number
of POD modes used for velocity field reconstruction. λi, i=1,2,3,4-eigenvalues of correlation matrix C. Q=4,

P=4, Nel=162,909, ∆t=5.0E−4, preconditioner: low energy. Stopping criterion for PCG: rk
<TOL CG=1E−5

(rk
Ns ≈7.9E−12).

Uit Vit Wit QR λ4 λ3 λ2 λ1

7 6 7 3 -8.03e-14 3.37e-10 9.75e-05 1.38e+04
7 7 7 3 -8.96e-13 3.35e-10 9.74e-05 1.38e+04
4 4 4 4 1.01e-12 3.37e-10 9.73e-05 1.38e+04
7 6 7 3 -1.26e-12 3.38e-10 9.72e-05 1.38e+04
8 8 8 3 -6.90e-13 3.36e-10 9.72e-05 1.38e+04
7 7 7 3 -7.13e-13 3.39e-10 9.71e-05 1.38e+04
4 3 4 4 1.57e-12 3.39e-10 9.70e-05 1.38e+04
7 6 7 3 -1.86e-12 3.40e-10 9.70e-05 1.38e+04
4 3 4 4 4.05e-13 3.39e-10 9.69e-05 1.38e+04
3 3 3 4 1.41e-13 3.39e-10 9.68e-05 1.38e+04

in simulations with LEBP the P-refinement results in lower iteration count. The effect of
improved initial state is noticeable for both choices of the extrapolation techniques; how-
ever, the performance of Method 2 is superior. To understand the poorer performance
of the POD-based extrapolation we monitored the eigenspectra of the correlation matrix
C at every time step (see Table 7). The very fast decay in the eigenspectra signifies that
the correlation length between velocity fields is significantly greater then the size of a
time step, which results in an ill-conditioned correlation matrix. In simulations where
∂u/∂t→0, the correlation length asymptotically approaches infinity. The correlation ma-
trix C is symmetric and positive definite, hence the only source for the negative sign of λ4

(see Table 7) is the numerical error. Since the number of modes used for reconstruction of
the velocity field (QR, see the forth column in Table 7) is computed dynamically, the neg-
ative λ4 will restrict the value of QR <4. We can observe that the number of iterations is
correlated with the QR parameter, and for QR =4, the number of iteration is comparable
to what is achieved with x0 =EXT(u).
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Figure 5: Flow simulations in Circle of Willis. Left: effect of improved initial state and convergence of residual
(rk

Ns) in solution with preconditioned conjugate gradient solver. The dash lines correspond to linear least square
approximation for the convergence rate. N=4, P=4, Nel =162,909, ∆t=5.0E−4, preconditioner: low energy.
Right: geometry of the Circle of Willis. Stopping criterion for PCG: rk

< TOL CG=1E−5 (rk
Ns ≈7.9E−12).

In Fig. 5 the convergence of residual is presented. The data corresponds to time step
500; the presented residuals correspond to the u- component of the velocity field; the re-
sults for v- and w- components as well as for other time steps are similar. We observe that
accurate prediction of the initial state for PCG results in significantly faster convergence.
Another observation is that the rate of convergence of the residual is similar for both
choices of the initial state and can be approximated by log10(rk

Ns)∝−0.3k. In simulations
of turbulent flow in the stenosed carotid artery we have observed similar exponential
convergence rate with exponent −0.3. In simulations with the diagonal preconditioner
the convergence rate of the Helmholtz solver was not uniform and oscillated around
log10(rk

Ns)∝−0.021k.

3.4 Acceleration of Poisson solver for the pressure

In order to accelerate convergence of the Poisson solver for the pressure, extrapolation of
the pressure field from the solutions at the previous time step has been applied. In Fig. 6
we compare the number of iterations required by the Poisson solver and plot the conver-
gence of the residual. Computing an initial state for the pressure solver by extrapolation
indeed reduces the number of conjugate gradient iterations. In many numerical experi-
ments we observed that improving the initial state for the Poisson solver by polynomial
extrapolation with N=2, 3 reduced the number of iteration by approximately 50%, how-
ever, for higher order extrapolation (N ≥ 4) the iteration count increased. An additional
observation, which is quite noticeable from Fig. 6, is the different rate of the residual
convergence; such behavior has not been observed in solving the Helmholtz problem.
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500. The dash lines depict the linear least square approximation for the convergence rate. P=4, Nel=162,909,
∆t=5.0E−4, preconditioner: low energy.

3.5 Comparison of ”Method 2” to method proposed in [4]

Here we consider unsteady simulation in the domain of the stenosed carotid artery and
compare the efficiency and accuracy of the solution obtained with the spectral-based ex-
trapolation (Method 2) and with the method proposed in [4]. The simulations are per-
formed with ∆t = 0.00005 and P = 8. To estimate the solution accuracy we compare the
velocity flux at the inlet to flux at the outlets of the domain; larger deviation reflects the
error in enforcing the incompressibility constraint. The results are summarized in Table 8.

The results show that increasing the number of the RHS, L, vectors employed by the
projection method have an adverse effect on the accuracy. We note that in the solution
with lower number of degrees of freedom (e.g., P ≤ 6) the difference between |Qin|−
|Qout| increased slower. Unlike the spectral extrapolation method, where approximation
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Table 8: Turbulent flow simulations in stenosed carotid artery: performance of iterative solver with different
approximation methods for the initial state. L-number of right-hand-sides. Qin-flow rate at the inlet (Qin =
62.04), Qout-sum of the flow rates at the two outlets, Pit, Uit,Vit and Wit-average number of iterations required
for solution of Poisson and Helmholtz equations for pressure and velocity at time steps 100 to 500. P = 8,
∆t=5.0E−4.

L |Qin|−|Qout| Pit Uit Vit Wit

successive RHS method
0 0.0104 19.5 16 17 14
4 0.0107 11.8 7.6 8.2 6.1
8 0.0114 10 4.9 5.2 3.9

16 0.016 9.3 3.3 3.5 2.5
32 0.489 8.8 3.2 3.3 2.5
64 unstable

spectral extrapolation method
Nu(Np) |Qin|−|Qout| Pit Uit Vit Wit

4(2) 0.0104 9.4 2.3 2.4 2.3
4(3) 0.0104 9.7 2.3 2.3 2.3

of the degree of freedom (uap)
n+1
i depends on (uap)

n−k
i , k=0,··· ,N−1 only, the projection

method is a global method: the approximation of degree of freedom (uap)
n+1
i depends

on (uap)
n−k
j , k=0,··· ,L−1, j=0,··· ,Ndo f −1, hence it is more vulnerable to accumulation

of the numerical error. Moreover, the accuracy of the approximation is adversely affected
by the numerical errors in the Gram-Schmidt orthogonalization. It is expected (and also
consistent with our results) that these numerical errors will grow with L and Ndo f .

In simulations with relatively low number of the RHS vectors the accuracy is not de-
graded, however, due to frequent restarts required by the projection method, the average
number of iterations remains high. We want to emphasize that in simulations of an un-
steady pipe flow in a small domain the projection method was more efficient than the
spectral extrapolation in approximating the orthogonal to the main flow velocity compo-
nents. The non-zero values of these velocity components are due to numerical error only,
which can be amplified by the spectral extrapolation.

Combinations of the technique proposed in [4] with the spectral- and POD-based ex-
trapolation are possible. Such combinations reduce the peak number of iterations which
is present due to the restart of the Gram-Schmidt orthogonalization, and allow the use of
lower number of the right-hand-sides. In some tests we have performed such combina-
tion leads to a slightly better overall performance than using either of the methods, but
in other tests it leads to slightly worse overall performance.

4 Limitations

The two extrapolation-based predictors of the numerical solution at time step tn+1 have
several limitations, namely:
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• High-order extrapolation (typically with N>4) may increase the iteration count. As
we have already mentioned, such behavior is due to the high Lebesgue constant associ-
ated with interpolation on a uniform grid (constant ∆t).

• Application of the extrapolation techniques for problems converging to steady state,
may also increase the iteration count. This is due to amplification (by extrapolation) of
the truncation error of order O(TOL CG). Such error is the result of terminating the PCG
solver before the residual reaches rk =0.

• Application of uap=POD1(u) operator in problems where the flow is unidirectional
typically increases the number of PCG iterations for velocity components orthogonal to
the flow direction. For example, consider a 3D simulation of a pulsatile flow in a tube,
where the exact solution is u=[0,0,w(t,x)]. According to uap =POD1(u), only one corre-
lation matrix is constructed, and, consequently, the number of the POD modes used for
velocity reconstruction (QR) will be the same for all velocity components. We have ob-
served that this will reduce the number of iterations required to compute the w-velocity,
however, the number of iterations to compute the u- and v- components may increase.
In fact, the non-zero solution for u- and v- is due to numerical error only, hence the ex-
trapolation of these velocity components leads to the error amplification. The alternative
POD-based method, denoted earlier as POD2 has some advantages, since it allows re-
construction of the velocity vector components using separate sets of the temporal and
spatial modes. We have observed that due to dynamic evaluation of the QR parameter
the number of POD modes employed for reconstruction of the streamwise (w-) velocity
is typically three to four, whereas the number of modes for reconstruction of the other
two velocity components is one.

5 Conclusions

In this paper we have tested two extrapolation-based methods for accurate prediction
of the initial state for the iterative solver. Both methods lead to significant reduction in
the iteration count. Their performance has been studied in conjunction with the high-
order spectral element spatial discretization, however, these techniques are general and
can be employed with other discretization methods. For example, the proposed tech-
niques have been successfully applied in simulation of a propagation of electrical signal
in the heart, specifically in solution of the so-called bi-domain problem [13], where finite-
element discretization and variable time step were employed. Over 50% savings in com-
putational time has been reported, and it was observed that the best overall performance
was achieved using Method 2 presented in this paper with the extrapolation performed
in the physical space.

Research on application of methods aiming to accurately predict the solution at time
step tn+1 should be extended to fully-implicit Navier-Stokes and other mechanics solvers
for non-linear problems where a large time step can be adopted. The accuracy of the
initial guess in such problems is crucial for the fast convergence of the iterative solver



626 L. Grinberg and G. E. Karniadakis / Commun. Comput. Phys., 9 (2011), pp. 607-626

and it would be interesting to investigate if POD-based extrapolation is a more effective
in that case unlike the cases we examined here corresponding to relatively small time
steps.
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