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Abstract. A recent work of Li et al. [Numer. Math. Theor. Meth. Appl., 1(2008), pp.
92-112] proposed a finite volume solver to solve 2D steady Euler equations. Although
the Venkatakrishnan limiter is used to prevent the non-physical oscillations nearby the
shock region, the overshoot or undershoot phenomenon can still be observed. More-
over, the numerical accuracy is degraded by using Venkatakrishnan limiter. To fix the
problems, in this paper the WENO type reconstruction is employed to gain both the
accurate approximations in smooth region and non-oscillatory sharp profiles near the
shock discontinuity. The numerical experiments will demonstrate the efficiency and
robustness of the proposed numerical strategy.
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1 Introduction

Recently, Li et al. [17] proposed a finite volume solver for 2D steady Euler equations. In
the algorithm, the Newton-iteration method is adopted to linearize the Euler equation,
and in each Newton-iteration the multigrid method with block lower-upper symmetric
Gauss-Seidel (LU-SGS) iteration as its smoother is used to solve the linearized system. In

∗Corresponding author. Email addresses: ghhu@math.msu.edu (G. H. Hu), rli@math.pku.edu.cn (R. Li),
ttang@math.hkbu.edu.hk (T. Tang)

http://www.global-sci.com/ 627 c©2011 Global-Science Press



628 G. H. Hu, R. Li and T. Tang / Commun. Comput. Phys., 9 (2011), pp. 627-648

the reconstruction step, the linear reconstruction is employed to describe the variation of
solutions in each cell. To avoid the non-physical oscillations, the Venkatakrishnan limiter
(VL) is adopted to constrain gradients during the reconstruction process.

The limiting strategy is very important for simulations with the finite volume method.
A useful limiter function should be able to remove the non-physical oscillations nearby
the shock profiles and can also preserve the numerical accuracy in the smooth regions.
Moreover, the limiter function should not affect the convergence to the steady state. So
far, many useful limiting strategies for the structured mesh have been proposed, includ-
ing the total variation diminishing (TVD) limiter [8, 9], the slope limiters like minmod
limiter, the superbee limiter, the MC limiter and van Leer limiter (all these limiters can
be found in [15] and references therein). However, since the fixed stencil is used to ap-
proximate the variation of solutions, the numerical accuracy is always degraded when
the above limiter functions are used. To preserve the numerical accuracy, the essentially
non-oscillatory (ENO) method was introduced [10, 11]. In order to reconstruct the ap-
proximate polynomial of solutions on each cell, the ENO methods test different neigh-
boring stencils so that the locally smoothest stencil is selected eventually. By selecting
a convex combination of results obtained from all possible stencils, the weighted essen-
tially non-oscillatory (WENO) methods were proposed, see, e.g., [14,18,27]. These limiter
functions yield satisfactory numerical results on structured meshes.

On unstructured meshes, one of the classical ways to obtain high resolution results
is to use the k-exact reconstruction [1, 24] together with a slope limiter. For example, for
the linear case, it is assumed that the solution is piecewise linearly distributed over the
cell. Such linear approximation is determined by solving a least square system based on
cell averages of the cell and its neighbours. After that, certain slope limiter is used to
guarantee the monotonicity of solutions. On the unstructured meshes, the first imple-
mentation of a limiter function was presented by Barth and Jespersen [3]. The Barth and
Jespersen limiter is used to enforce a monotone solution. However, their method is rather
dissipative which leads to smear discontinuities. Furthermore, the limiter may be active
in smooth flow regions due to the numerical noise, which causes difficulties for steady
state convergence [6]. To improve the differentiability of the limiter in [3], the VL was
proposed in [29] and has been widely used. Similar to the structured mesh case, the theo-
retically predicted accuracy also can not be guaranteed with the fixed stencil when these
limiters are used. Moreover, since the VL does not preserve strict monotonicity, slight
oscillations can be observed near shock discontinuities. To further improve the quality
of numerical solutions for unstructured meshes, the ENO/WENO type reconstructions
may be considered due to their good performance on the structured meshes.

Many works have been done for using WENO methods as the limiting strategy. In [26],
a Hermite WENO scheme is proposed for the one-dimensional problems, and it is used
as limiters for Runge-Kutta discontinuous Galerkin method. Then Luo et al. [21] give an
implementation of Hermite WENO-based limiter on the unstructured grids. In [22, 33],
the WENO type methods are also adopted as the limiting strategy to the discontinuous
Galerkin method. With the help of the WENO method, all these methods demonstrate
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not only desired numerical accuracy in the smooth region, but also the non-oscillatory
sharp shock profiles nearby the discontinuity. However, it is pointed out in [2] that for
the ENO schemes, even small changes of the data will force a switch from one candi-
date (a stencil) to another. This digital switching prevents convergence of the scheme for
steady state flows. Similar conclusion that ENO schemes are not suitable for obtaining
the steady state flows can also be found in [23]. Although Weighted ENO schemes can
partly resolve this issue, some unsatisfied results also be observed for solving steady state
problems. For example, in [33], the residual of the system can not be reduced to the ma-
chine accuracy smoothly, and the results obtained with the third-order scheme is worse
than that obtained with the second-order scheme. This may be explained as negative ef-
fect given by WENO schemes, and compared with the low-order numerical schemes, the
high-order schemes are much more sensitive to such digital switching.

Recently, Liu et al. [19, 20] and Xu et al. [30] proposed the hierarchical WENO recon-
struction methods, which are adopted by Hu et al. [13] to design high-order residual dis-
tribution (RD) schemes for solving the steady Euler equations. It is seen in [13] that with
the hierarchical WENO reconstruction, the steady state flows can be achieved success-
fully with the third-order scheme. The residual of the system is reduced to the machine
accuracy smoothly within a few iterations. However, the hierarchical WENO reconstruc-
tion can not strictly guarantee the monotonicity of numerical solutions. Consequently,
slight oscillations were observed nearby the shock discontinuities.

In this paper, we will present a robust and effective finite volume solver based on the
WENO reconstruction to solve the steady Euler equations. The algorithm is based on the
solver proposed in [17], where as the VL was used to constrain gradients on each cell.
The algorithm in [17] suffers from problems mentioned above. To obtain the high quality
of numerical solutions, the WENO type reconstruction will be used in this paper. In [17],
a very large reconstruction patch for linear case is adopted to ensure stability. The prin-
ciple for choosing patch P(K) is as the following. For a cell K, the cell has one common
vertex with K is chosen to be one component of the reconstruction patch of K. In this pa-
per, based on the consideration of the algorithm efficiency, a much smaller patch is used.
More precisely, for the cell K, the cell has one common edge with K is chosen to be one
component of the reconstruction patch of K. Then with cell averages of those cells in the
patch, the linear reconstruction is implemented for each cell K∈P(K). After looping all
reconstruction patches in the meshes, each cell has 3 or 4 approximate polynomials. The
final approximate polynomial in each cell is given by the convex combination of these
candidates according to certain smoothness indicator. It is observed from the numerical
experiments that the proposed linear finite volume solver is not sensitive to the influence
on the differentiability of numerical scheme which is introduced by the WENO method.
The system residuals of all numerical experiments can achieve machine accuracy in a few
Newton-iterations. Besides the steady state convergence, the proposed solver can keep
desired convergence order in the smooth region, and at the same time remove spurious
oscillations nearby the shock and/or discontinuity region. It is shown in the final section
that the quality of numerical results of the linear case is improved significantly in com-



630 G. H. Hu, R. Li and T. Tang / Commun. Comput. Phys., 9 (2011), pp. 627-648

parison with that in [17]. Since the smaller patch is used and the behavior of Newton
iteration is improved, the increment of CPU time is not significant compared with the
algorithm with the VL.

In the rest of this paper, the numerical discretization for the Euler equations will be
described in the next section. In Section 3, the linear reconstruction and the WENO lim-
iting strategy will be introduced. Then the Newton-iteration and the multigrid method
for solving the resulting nonlinear system will be discussed in Sections 4. Numerical
experiments will be carried out in Section 5.

2 The finite volume discretization for Euler equations

The compressible inviscid steady Euler equations can be written as

∇·F(U)=0, (2.1)

where U is the vectors of the conservative variables and F is the inviscid flux. We consider
the ideal flows with U and F defined as

U =









ρ
ρu
ρv
E









, F(U)=









ρu ρv
ρu2+p ρuv

ρuv ρv2+p
u(E+p) v(E+p)









, (2.2)

where ρ is the density, u=(u,v) is the velocity, p is the pressure, and E is the total energy.
Finally we close the system by using the equation of state

E=
p

γ−1
+

1

2
ρ(u2+v2),

where γ=1.4 is the ratio of specific heats for air.

In this paper, we solve Eq. (2.1) in domain Ω := R
2−Ωc, where Ωc denotes the do-

main occupied by the airfoil, which is the body of the aircraft in the two-dimensional
case. Since the problem domain is unbounded, the commonly used strategy is to solve
the problem in the domain Ω̄ := Ω

⋂

{| x |< R} and adopt the far field vortex correction
technique to remedy the error introduced by the abrupt domain truncation. For the de-
tails, we refer to [6, 17] and references therein.

The cell-centered scheme is adopted to discretize the continuous equation. Let T
be a triangular partition of Ω̄, and K ∈ T be one cell in the partition. We assume the
intersection of two different cells can only be either an edge or a vertex. Let nij denote the
outer unit normal on the edge eij, pointing from Ki to Kj. Applying the Gauss formula to
(2.1) gives

∮

∂Ki

F(U)·nds=0, (2.3)
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where n is the unit out normal of ∂Ki. By introducing the numerical flux, (2.3) can be
approximated as

∮

∂Ki

F(U)·nds≈ ∑
eij∈∂Ki

∫

eij

F̄(Ui,Uj)·nijdl =0, (2.4)

where F̄(Ui,Uj) denotes the numerical flux. In this paper, HLLC flux [5] is used.
To get the second-order accuracy, the linear distribution of solutions on each cell

should be determined. In the next section, the linear reconstruction used in [17] will
be summarized first, and then the WENO type limiting strategy will be introduced.

3 The solution reconstruction

3.1 The linear reconstruction

In fact, the linear reconstruction used in this subsection belongs to category of the k-exact
reconstruction. For the detailed description of k-exact reconstruction, we refer to [1] and
references therein. In this section, we just give the implementation of k-exact reconstruc-
tion for the linear case.
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Figure 1: (a): the reconstruction patch P(K) = {K,K1,K2,K3} used for the least square reconstruc-
tion. (b): four patches, {K,K0,K1,K2}, {K,K0,K0,0,K0,1}, {K,K1,K1,0,K1,1}, and {K,K2,K2,0,K2,1},
which are used for the WENO reconstruction in the cell K. (c): the reconstruction patch P(K) =
{K,K1,K2,K3,K4,K5,K6,K7,K8,K9,K10,K11} used in [17].

First, the reconstruction patch is given for certain cell K. The following principle is
used: the cell which has one common edge with K is selected to be one component of
PK. The patch PK = {K,K0,K1,K2} is demonstrated in Fig. 1 (a). Note that in [17], the
reconstruction patch in Fig. 1 (c) is used.

Expanding the approximate function h(x,y) at the centroid (xK,yK) of the cell K by
using Taylor expansion, and truncating after the linear terms, we get the following ap-
proximate polynomial:

h(x,y)≈ a0 +a1(x−xK)+a2(y−yK). (3.1)

The classical k-exact reconstruction actually minimize the difference of cell average of
reconstructed function h(x,y) and original function U over each cell in PK. However, the
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following relation exists for the linear function h(x,y) in the cell K: the cell average of
function h(x,y) is equal to the functional value on the centroid of the cell. That means if
the cell average is conserved during the reconstruction, a0 in (3.1) is known in advance,
and equal to the cell average over the cell K. So the problem becomes the minimization
of the difference between the functional values on the centroid of neighbours K0, K1 and
K2 and the values of original function U on the centroids of these neighbours, say,

min
a1,a2

∑
∀Kl∈P(K)

∥

∥

∥

a0,l−a0−a1xK,l−a2yK,l

dK,l

∥

∥

∥

2

2
, (3.2)

where a0,l is the cell average over the cell Kl,l =0,1,2, and xK,l =(xl−xK), yK,l =(yl−yK)
and dK,l means the length between the centroids of the cell Kl and the cell K.

By solving (3.2), we can get the linear distribution of numerical solutions in the cell
K. In the next subsection, the WENO limiting strategy is introduced to generate the final
distribution in the cell K.

3.2 The WENO reconstruction

A good limiting strategy should remove the numerical oscillations effectively, keep the
mean value of the variables in each cell, and keep the numerical convergence order
around the theoretical one. It will be seen from the numerical simulations that WENO
reconstruction which will be described in this subsection satisfies the above three require-
ments successfully.

To implement the WENO reconstruction for the cell K, first we need to give different
reconstruction patches. In this paper, the patches {K, K0, K1, K2}, {K, K0, K0,0, K0,1},
{K, K1, K1,0, K1,1},{K, K2, K2,0, K2,1} are selected for the cell K, which are shown in
Fig. 1 (b).

Then for each patch, the reconstruction procedure described in the last subsection is
implemented to generate the approximate linear function h(x,y) in the cell K. After that,
there are four candidates hi(x,y),i=0,1,2,3 of linear functions for the cell K.

Different from ENO reconstruction, which choose the smoothest reconstructed poly-
nomial among candidates, WENO reconstruction uses certain convex combination of
all candidates as the final approximate function. First we follow [12] to introduce the
smoothness indicator for the polynomial h(x,y) on the cell K

S= ∑
1≤|α|≤k

∫

K
|K||α|−1

(

Dαh(x,y)
)2

dΩ, (3.3)

where α is a multi-index and D is the derivative operator. With (3.3), the weight of can-
didate polynomial hj(x,y) can be defined as

ωj =
ω̃j

∑
3
i=0ω̃i

and ω̃i =
1

(ǫ+Si)β
, (3.4)
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where ǫ is a positive parameter, and we follow [12] to choose ǫ = 10−4 and β = 2 in the
implementation.

The final approximate polynomial for the cell K is given as

h∗(x,y)=
3

∑
i=0

ωihi(x,y). (3.5)

Since the cell average is conserved by each candidate in the cell K, and the final ap-
proximate polynomial is actually the convex combination of these candidates with the
summation of the weights be 1, the polynomial h∗(x,y) also conserves the cell average in
the cell K.

The convergence of the WENO reconstruction is studied by using the smooth function
f =sin(πx)cos(2πy) on the domain [0,1]×[0,1]. The mesh is generated by EasyMesh [25].
The reconstruction is implemented on six successively refined meshes, and numerical
convergence is studied with the L2 norm of the error between the analytical value and re-
constructed one. From results shown in Table 1, we can see that the linear reconstruction
with VL degraded the convergence order, while the WENO reconstruction worked very
well: even higher convergence order than that obtained without limiting strategy is ob-
tained. For the method without limiting procedure, that means the linear reconstruction
is implemented on the patch (Fig. 1 (a)), and the reconstructed linear polynomial is used
directly to calculate the numerical flux without any constraint on the polynomial.

Table 1: L2 error and convergence order of linear reconstruction with WENO limiting strategy (WENO), without
limiting procedure (N-L.), and with VL (VL).

No. of cells Err. (WENO) Order Err. (N-L.) Order Err. (VL) Order
64 5.95e-02 5.07e-02 5.73e-02

256 1.46e-02 2.0 1.25e-02 2.0 1.45e-02 2.0
1024 3.00e-03 2.3 3.10e-03 2.0 4.21e-03 1.8
4096 6.03e-04 2.3 7.70e-04 2.0 1.31e-03 1.7

16384 1.31e-04 2.2 1.92e-04 2.0 4.30e-04 1.6
65536 3.13e-05 2.1 4.79e-05 2.0 1.46e-04 1.6

Note that the reconstruction patch of the boundary cell is smaller than that of the cell
inside the domain. Because one edge of the boundary cell locates on the boundary, there
are only two direct neighbours for the boundary cell, while for the cell inside the domain,
there are three direct neighbours. As our numerical experience, the small reconstruction
patch of the boundary cell will cause the degradation of the numerical accuracy and the
instability of the algorithm. To fix this problem, much more neighbours should be added
in the reconstruction patch of the boundary cell. In our algorithm, those cells which have
at least one common vertex with the boundary cell are added in the patch. So the number
of neighbours becomes 6 or 7. From the numerical experiments in Section 5, we can see
that such selection works very well.
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4 Newton iteration and the multigrid method

Note that the system (2.4) is nonlinear, we use the Newton-iteration method to linearize
it as

∑
eij∈∂Ki

∫

eij

F̄(n) ·nijdl+ ∑
eij∈∂Ki

∫

eij

(∂F̄(n)

∂Ui
δU

(n)
i

)

·nijdl

+ ∑
eij∈∂Ki

∫

eij

(∂F̄(n)

∂Uj
δU

(n)
j

)

·nijdl =0, (4.1)

where F̄(n) = F̄
(

U
(n)
i ,U

(n)
j

)

. The Ui is updated by

U
(n+1)
i =U

(n)
i +τiδUi(n), (4.2)

where τi is a relaxation parameter on Ki.
The numerical differentiation method is used to calculate the Jacobian of numerical

flux ∂F̄/∂Ui and ∂F̄/∂Uj, say, the element in the Jacobian matrix is approximated as:

∂F̄l

∂Ui,m
≈

F̄l

(

U
(n)
i,m +εU

(n)
i,m ,U

(n)
j,m

)

− F̄l

(

U
(n)
i,m ,U

(n)
j,m

)

∣

∣εU
(n)
i,m

∣

∣

,

∂F̄l

∂Uj,m
≈

F̄l

(

U
(n)
i,m ,U

(n)
j,m +εU

(n)
j,m

)

− F̄l

(

U
(n)
i,m ,U

(n)
j,m

)

∣

∣εU
(n)
j,m

∣

∣

,

where ∂F̄l/∂Ui,m means the derivative of the l-th element of vector F̄ respect to the m-
th element of vector Ui, and ε is chosen as 10−6 in our implementation which is about
half-word length of the machine epsilon.

In fact, (4.1) is a singular system. We regularize it by using the local residual [17]:

α‖R
(n)
i ‖l1 δU

(n)
i + ∑

eij∈∂Ki

∫

eij

(∂F̄(n)

∂Ui
δU

(n)
i

)

·nijdl

+ ∑
eij∈∂Ki

∫

eij

(∂F̄(n)

∂Uj
δU

(n)
j

)

·nijdl =− ∑
eij∈∂Ki

∫

eij

F̄(n) ·nijdl, (4.3)

where α is a positive constant and

R
(n)
i := ∑

eij∈∂Ki

∫

eij

F̄(n) ·nijdl. (4.4)

To solve the final linear system (4.3) efficiently, the geometrical multigrid method is
adopted. We follow [6] to choose the coarse element patch. Fig. 2 shows the element
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Figure 2: Element patches near the airfoil body of NACA 0012 generated by the aggregation from a quasi-
uniform mesh. It shows the element patches on four continuous levels.

patches generated on four continuous levels. In each coarse meshes, we choose the block
LU-SGS method proposed by Chen and Wang [7] as the smoother to damp out the nu-
merical error. Finally, the V-cycle type iteration is adopted in the implementation of
multigrid method.

In the implementation, the number of iterations in the multigrid is set to be 2, and we
can see that it works very well for all numerical examples reported in next section.

5 Numerical results

In this section, the significant improvement of the quality of numerical results with the
WENO reconstruction compared with that in [17] is demonstrated. First, a convergence
test of the subsonic flows is implemented to show that the theoretical convergence order
could be obtained. Then we take a convergence test of the transonic flows which shows
that the non-physical oscillations are removed completely. Results of several testes with
different free-stream configurations and different geometrical configurations are demon-
strated at the end of this section to show the robustness of our algorithm.
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In the numerical simulations, we always use α=2 (see (4.3)), τi =τ=1 (see (4.2)), β=2
(see (3.4)), and the smoothing steps in the multigrid solver is 2. It is found that our algo-
rithm is not sensitive to selection of those parameters. If the convergence of the algorithm
is not smooth for certain simulation, the suggestion is to increase the value of α and to
decrease the relaxation parameter τ. For β in the WENO reconstruction, appropriately
large β can enhance the ability of the algorithm to capture the shock profiles. However,
too large β may affect the steady state convergence of the algorithm. We state again that
in our simulations, the parameters α=2, τ =1 and β=2 work very well for all cases.

The codes are based on the Adaptive Finite Element Package (AFEPack) developed
by Li and Liu [16]. It will be observed that the residual in all experiments are reduced
to 10−12. All simulations are implemented on the ThinkPad T60 laptop with CPU core
speed 1.83 GHz, and 2.5 Gigabytes memory.

In all numerical experiments in this section, we used following quantities as the initial
guess of the Newton iteration: the density ρ=1, the velocity V=(u,v)=(cosθ,sinθ), where
θ is the attack angle. The other quantities such as pressure p and energy e are determined
by ρ, V and the Mach number.

5.1 Convergence test

Example 5.1. The problem is the two-dimensional steady-state subsonic flow around a
disk at Mach number M∞ =0.38 [4].

This test is implemented using linear reconstruction, WENO type linear reconstruc-
tion and linear reconstruction with VL respectively. The computations are performed on
four successively refined grids, i.e., 16×12, 32×24, 64×48, 128×96 points respectively.
Fig. 3 shows the initial mesh of the whole domain and the detail around the inner circle.
The grids extend about 20 diameters away from the circle.

For the exact solutions of this problem, the mach isolines should be symmetric. As
we can see from the results which are shown in Fig. 4, the quality of numerical results
becomes better and better with the refinement of the mesh.

Since the inviscid subsonic flow is isentropic, the entropy production in the flow fields
can be used to measure the numerical error introduced by the methods. The numerical
convergence is also studied for different reconstruction methods. From the results which
are shown in Table 2, it can be observed that all three reconstruction methods obtained
convergent results; both the numerical accuracy and the convergence order of the algo-
rithm with VL is much lower than that without limiting procedure, while with the refine-
ment of the mesh, the convergence order of algorithm with the WENO reconstruction is
higher than that without limiting procedure, which demonstrates the superconvergence.
Note that for the results in both Tables 1 and 2, the numerical error of WENO reconstruc-
tion method is bigger than other two methods in the coarse mesh, this may be due to the
choice of the weights in the WENO schemes. In [12, 14], the optimal weights are used
in the WENO schemes, and both the numerical accuracy and the convergence order are
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Figure 3: Mesh used in Example 5.1. The left one is entire mesh, the right one is the detail of mesh around
the disk.

Figure 4: Example 5.1: The Mach isolines obtained with WENO reconstruction. Results are shown with mesh
size 16×12 (top left), 32×24 (top right), 64×48 (bottom left), and 128×96 (bottom right) respectively.

excellent. In our paper, we follow [2] to choose the weights, which may affect the nu-
merical accuracy. However, the superconvergence is demonstrated successfully in both
Tables 1 and 2. The high-order WENO reconstruction with optimal weights for steady
state problems will be investigated in our future work.
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Table 2: The L2 entropy errors and convergence orders for the linear reconstruction with the WENO limiting
strategy (WENO), without limiting procedure (N-Lim.), and with VL (VL). The errors are calculated in the
whole domain, 0.5≤ r≤20.

Mesh Err.(WENO) Order Err.(N-Lim) Order Err.(VL) Order
16×12 3.50e-01 1.61e-01 1.91e-01
32×24 8.47e-02 2.0 2.53e-02 2.7 4.82e-02 2.0
64×48 1.40e-02 2.6 4.52e-03 2.5 1.25e-02 1.9
128×96 2.15e-03 2.7 7.92e-04 2.5 3.62e-03 1.8

Note that in both the test in Section 3 which the results are shown in Table 1 and the
test in this example, the convergence orders of the algorithm with WENO reconstruction
are higher than that without limiting procedure. This can be explained that with WENO
method, the stencil which is used to generate the approximate polynomial in each cell is
wider than that without limiting strategy. So with the refinement of the mesh, the much
more reasonable distribution of solutions is obtained with the WENO method.

Example 5.2. The problem is the two-dimensional steady-state, transonic flow around
the NACA 0012 airfoil at Mach number M∞ =0.8 and attack angle 1.25◦.

In this simulation, two shocks exist around the airfoil. The strong shock is located
at the upper boundary of the airfoil, and the weak one is located at the lower boundary.
To study the numerical convergence of the algorithm, the experiment is implemented on
three successively refined meshes. There are 2662 cells, 10648 cells and 42592 cells in three
meshes respectively. The left of Fig. 5 shows the coarse meshes, and the meshes details
around the airfoil are presented on the right.

(a) (b)

Figure 5: Example 5.2: The mesh grids generated using EasyMesh around NACA 0012 airfoil, containing 2662
elements. (a): the mesh in the whole computational domain. (b): the mesh near the body of the airfoil.

Fig. 6 shows the results of the linear WENO reconstruction. The numerical conver-
gence can be read easily from the figure. That is, with the mesh becomes denser, the
shock also becomes sharper. Especially, with the coarse mesh (2662 cells), there is no
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Figure 6: Example 5.2: The results are given by WENO reconstruction. Free stream configuration: Mach
number 0.8, attack angle 1.25◦. There are 2662 cells (top), 10648 cells (middle) and 42592 cells (bottom).
The left column: the mach isolines, and the right column: pressure distribution along the airfoil.
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Figure 7: Example 5.2: The comparison between the Mach isolines obtained with the WENO reconstruction
(right) and the reconstruction with the VL (left). There are 2662 cells (top), 10648 cells (middle), and 42592
cells (bottom) in the domain respectively.

shock along the lower boundary of the airfoil. The shock becomes evident when dense
mesh is used.

Apart from keeping the numerical accuracy as shown in Example 5.1, the results
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Figure 8: Example 5.2: The convergence histories of the algorithm implemented on three successively refined
meshes.

shown in Fig. 6 demonstrate that the algorithm with the WENO reconstruction also
works very well for the cases with shocks in the flow fields. The quality of numerical
results around shock regions is improved dramatically. From the pressure distribution
along the surface of the airfoil as shown in Fig. 6 (right), we can see that the numerical
oscillations are removed completely. From Fig. 7, it is observed that by using the algo-
rithm with the VL, the slight oscillations are still observed around shocks (see Fig. 7 (left)),
while the information around shocks is much more ordered when WENO reconstruction
is used (see Fig. 7 (right)).

Fig. 8 demonstrates the convergence histories of the algorithm implemented on three
successively refined meshes. It is observed that the residual of the systems of all three
simulations is reduced to the machine accuracy successfully, which means that our al-
gorithm is not sensitive to the reconstruction stencil shift when the WENO method is
used.

Examples 5.1 and 5.2 demonstrated the stability and accuracy of the algorithm. With
the WENO reconstruction, the algorithm can persevere the theoretical convergence order,
and at the same time generate the non-oscillatory shock profiles. The following examples
will show the robustness of our algorithm.

5.2 The robustness of the algorithm

To demonstrate the robustness of our algorithm, several numerical experiments will be
executed in this subsection, with different free-stream and geometrical configurations.
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Figure 9: Example 5.3: Results of Mach isolines (top) and pressure distribution along the surface of the airfoil
(bottom) obtained using the algorithm with the WENO reconstruction. Left: NACA 0012 airfoil with Mach
number 0.3 and attack angle 3.0◦. Right: RAE 2822 airfoil with Mach number 0.75 and attack angle 1.0◦

Example 5.3. (a): The airfoil is NACA 0012, with free-stream configuration, Mach num-
ber 0.3, and attack angle 3.0◦. The mesh contains 2662 cells. (b): The airfoil is RAE 2822,
with free-stream configuration: Mach number 0.75, and attack angle 1.0◦. The mesh con-
tains 3444 cells.

Example 5.4. The airfoil is NACA 0012, and the meshes contain 2662 cells. The free-
stream configuration is (a): Mach number 0.85, and attack angle 1.0◦, and (b): Mach
number 0.99, and attack angle 0.0◦.

Example 5.5. (a): Two airfoils in the flow fields: NACA 0012 and RAE 2822. The free-
stream configuration: Mach number 0.75, and attack angle 1.0◦. The mesh contains 7870
cells. (b): Two NACA 0012 airfoils in the flow fields. The free-stream configuration: Mach
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Figure 10: Example 5.4: Same as Fig. 9, except for the free-stream configurations: NACA 0012 airfoil with
Mach number 0.85 and attack angle 1.0◦ (left), and Mach number 0.99 and attack angle 0.0◦ (right).

number 0.85, and attack angle 1.0◦. The mesh contains 2662 cells. The mesh contains 4360
cells.

The results of Examples 5.3-5.5 are shown in Figs. 9-11 respectively. The following
observations can be made from these results: (i) The algorithm with the WENO recon-
struction can handle problems with a large range of free-stream configurations, e.g., from
subsonic case with Mach number 0.3 or even lower to transonic case with Mach number
0.99, and different attack angles. For the cases with multi-airfoil in the flow fields, it also
works very well. Furthermore, for all numerical experiments, it is no need to adjust the
parameters in (4.3), (4.2), (3.4). (ii) From the pressure distribution along the surface of
the airfoils, we can see that our algorithm can remove the non-physical oscillations com-
pletely, which is a significant improvement compared with that given in [17] where the
VL is used. (iii) All simulations can achieve the steady state successfully. More precisely,
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Figure 11: Example 5.5: Same as Fig. 9, except for the free-stream configurations: one NACA 0012 airfoil and
one RAE 2822 airfoil in the flow fields with Mach number 0.75 and attack angle 1.0◦ (left), and two NACA
0012 airfoils in the flow fields with Mach number 0.99 and attack angle 0.0◦ (right).

for every simulation, the residual of the systems is reduced to the machine accuracy with
a few iterations.

5.3 Remarks on the efficiency of the algorithm

Examples 5.1-5.5 show the convergence and the robustness of the our proposed algo-
rithm, with the significant improvement of the quality of the numerical results with the
help of the WENO reconstruction. However, since the WENO method is used, the imple-
mentation efficiency in the reconstruction step is much degraded. When the VL is used,
just one 2×2 system needs to be solved for each cell in the Newton-iteration, while it is
four when the WENO method is used. Consequently, there is a large increment of the
CPU time when the WENO reconstruction is used. However, it should be pointed out
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Figure 12: Convergence history (left) and CPU seconds (right) of the algorithm in Example 5.3 (b) (top) and
Example 5.4 (a) (bottom).

that the change of the overall CPU time is not significant, mainly because the WENO re-
construction improves the convergence of the Newton-iteration method. For instance, in
Example 5.3 (b), the convergence history of the algorithm is shown in Fig. 12 (top). From
the result we can see that around 70 iterations can make the residual convergent to ma-
chine accuracy, while for the same example, around 250 iterations are needed in [17]. That
is, the algorithm with the WENO reconstruction can save about 70% iterations as com-
pared with that use the Venkatakrishnan limiter. The other comparison is given by Fig. 12
(bottom) where the convergence history for Example 5.4 (a) is shown. In [17], almost 90
iterations and around 25 CPU seconds are needed to make the residual convergent to
the machine accuracy, while the iterations becomes 60 when the WENO reconstruction is
used, and CPU seconds is around 30. In other word, around 30% iterations are saved for
Example 5.4 (a) with the WENO reconstruction. The speed up for the Newton-iteration
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method is also observed for all other simulations in Examples 5.2-5.5. With the improve-
ment of Newton-iteration method when WENO reconstruction is used, the increment of
CPU time is not significant.

To enhance the efficiency of the algorithm with the WENO reconstruction, we also
used the idea that the WENO method is implemented only in the ”trouble cells”, say,
in the cells which the discontinuities are detected. With this strategy, quite a lot of CPU
time is saved during the reconstruction step. However, the quality of numerical results
is degraded, and the convergence to the steady state may not be achieved if there exist
strong shocks in the flow fields.

6 Conclusions

In this work, we mainly improved the algorithm proposed in [17] by using the WENO
reconstruction. The algorithm uses the Newton-iteration and multigrid method to solve
the linearized Jacobian matrix. The block LU-SGS iteration is adopted as the smoother of
the multigrid algorithm. The WENO reconstruction is used to generate the approximate
polynomial in each cell. The local Jacobian matrix of the numerical fluxes are computed
using the numerical differentiation, which can simplify the implementation significantly.
With the WENO reconstruction, the quality of numerical results is improved dramati-
cally. The numerical accuracy is presented in the smooth regions, and the non-physical
oscillations are removed effectively at the same time. The numerical simulations also
demonstrate the robustness of the proposed algorithm.

It is not straightforward to extend the algorithm to higher order WENO reconstruc-
tion. In fact, the WENO reconstruction affects the differentiability of the numerical
schemes, and it may also affect the convergence of the solution to the steady state. From
results given in this paper, we can see that the residual of each simulation is reduced to
the machine accuracy. But this is not the case if the high-order WENO reconstruction
is used. In [13], Hu et al. presented a high order solver for the steady Euler equations
where the quadratic reconstruction is employed, and the hierarchical WENO reconstruc-
tion technique is used to limit the approximate polynomial in each cell. With the help of
the hierarchical reconstruction method, the convergence to the steady state of the numer-
ical scheme is improved. However, the quality of the numerical results is affected by the
hierarchical reconstruction. This issue will be investigated in our future projects.
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