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Abstract. Variational image segmentation based on the Mumford and Shah model [31],
together with implementation by the piecewise constant level-set method (PCLSM) [26],
leads to fully nonlinear Total Variation (TV)-Allen-Cahn equations. The commonly-
used numerical approaches usually suffer from the difficulties not only with the non-
differentiability of the TV-term, but also with directly evolving the discontinuous piece-
wise constant-structured solutions. In this paper, we propose efficient dual algorithms
to overcome these drawbacks. The use of a splitting-penalty method results in TV-
Allen-Cahn type models associated with different ”double-well” potentials, which al-
low for the implementation of the dual algorithm of Chambolle [8]. Moreover, we
present a new dual algorithm based on an edge-featured penalty of the dual vari-
able, which only requires to solve a vectorial Allen-Cahn type equation with linear
∇(div)-diffusion rather than fully nonlinear diffusion in the Chambolle’s approach.
Consequently, more efficient numerical algorithms such as time-splitting method and
Fast Fourier Transform (FFT) can be implemented. Various numerical tests show that
two dual algorithms are much faster and more stable than the primal gradient descent
approach, and the new dual algorithm is at least as efficient as the Chambolle’s al-
gorithm but is more accurate. We demonstrate that the new method also provides a
viable alternative for image restoration.

AMS subject classifications: 65N22, 65N55, 74S20, 49J40

Key words: Variational models, image segmentation, TV-Allen-Cahn type equations, dual algo-
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1 Introduction

Image segmentation, which aims to extract interesting objects from a given image, is one
fundamental task in image processing and computer vision. Among several popular
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variational models proposed for this purpose [7, 13, 20, 31], the seminal Mumford and
Shah model [31] can be formulated as: given an image f on an open bounded domain
Ω⊆R

2, find a partition Ωi of Ω and an optimal piecewise smooth approximation u of
f such that u varies smoothly within each region Ωi, but rapidly and discontinuously
across the boundaries Γ of Ωi. The partition can be done by solving the minimization
problem:

min
u,Γ

{

EMS(u,Γ) :=µ
∫

Ω\Γ
|∇u|2dx+

ν

2

∫

Ω
|u− f |2dx+|Γ|

}

, (1.1)

where |Γ| is the length of Γ, and µ,ν > 0 are parameters to weight the terms in the func-
tional. This problem involves two unknowns with different nature, and it presents a great
challenge for numerical and theoretical study [2]. One may also refer to [2] for an excel-
lent review of various attempts of approximating, relaxing or simplifying the Mumford
and Shah functional as well as the numerical treatments.

Chan and Vese [13] considered a reduced version of (1.1) by assuming that the given
image f consists of two phases of approximately piecewise constant intensities c1 and
c2 on the subregions Ω1 = inside(Γ) and Ω2 = outside(Γ), respectively. Consequently, a
simplification of (1.1) leads to the Chan-Vese (CV) model:

min
c1,c2,Γ

{

ECV(c1,c2,Γ) :=
ν

2

(

∫

Ω1

|c1− f |2dx+
∫

Ω2

|c2− f |2dx
)

+|Γ|
}

, (1.2)

which, together with numerical implementation by the level-set method [33], has become
a useful variational segmentation tool [32, 39].

Lie et al. [25, 26] proposed a piecewise constant level-set method (PCLSM) for image
segmentation [40] and other interface problems [24, 29], which enjoys some advantages
over the classical level-set method. Different from the CV model, the PCLSM for (binary)
Mumford and Shan image segmentation leads to a fully nonlinear PDE closely related to
the Allen-Cahn equation for phase transition [1]. In contrast to the original Allen-Cahn
equation with Laplace-diffusion, such a PDE involves a nonlinear TV-diffusion opera-
tor, so we term it as TV-Allen-Cahn model. Some algorithms have been developed and
tested for the TV-Allen-Cahn model [11, 14, 24–26, 29, 34, 40]. However, most of them
are based on directly evolving piecewise constant solutions (i.e., the primal variable),
so oftentimes they suffer from numerical difficulties induced by the nonlinearity and
non-differentiability the TV-term. In addition, the time evolution of piecewise-constant-
structured solutions inevitably leads to a much severer restriction to the time step.

Motivated by the success of dual algorithms for image restoration [8, 12, 19], we pro-
pose in this paper two efficient dual algorithms to overcome the aforementioned draw-
backs of the primal approaches. The key idea is to introduce an auxiliary valuable and
use a splitting-penalty method, which results in a minimization problem of Rudin-Osher-
Fatemi (ROF) [35] type. Accordingly, this forms the base to implement efficient dual algo-
rithms. It is worthwhile to point out that the splitting-penalty approach has been around
as early as Courant [15] in 1943, and has been applied in various context of image restora-
tion [16, 19, 41, 43]. Indeed, it has proven to be an effective tool for convex optimization.
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However, we realize that for this application, the splitting-penalty technique leads to TV-
Allen-Cahn type models associated with ”double-well” potentials different from the one
(i.e., (φ2−1)2 with φ being the phase function) in the original Allen-Cahn equation, so the
penalty parameter is not necessary to be sufficiently large (slightly bigger than the param-
eter µ in (2.9) below), which should be in contrast to the usual penalty approach. In this
paper, we first extend the Chambolle’s dual algorithm [8] to such TV-Allen-Cahn type
models. More importantly, we propose a new dual algorithm based on an edge-featured
penalty of the dual variable, which only requires to solve a vectorial Allen-Cahn type
models with linear ∇(div)-diffusion rather than fully nonlinear diffusion in the Cham-
bolle’s approach. Consequently, more efficient algorithms can be implemented on the
new model such as an operator-splitting in time and FFT in space as suggested in this
paper.

The rest of the paper is organized as follows. In Section 2, we briefly describe the
PCLSM and the TV-Allen-Cahn equation for binary image segmentation. Then we apply
a splitting-penalty method to obtain TV-Allen-Cahn type models in primal variable with
various potentials. We demonstrate that the models produce desirable segmentation re-
sults as the TV-Allen-Cahn equation associated with the usual ”double-well” potential.
We present in Sections 3 and 4 the dual algorithms based on Chambolle’s idea, and the
new dual algorithm using a penalty of the dual variable along edges and implemented
by an operator splitting in time and FFT in space. In Section 5, we test the algorithms
on various images, and demonstrate the dual algorithms are much faster than the primal
approaches, and the new algorithm slightly outperforms the dual algorithm based on
Chambolle’s approach in most experiments. We conclude the paper with some discus-
sions on the applications of the new algorithm to image restoration.

2 PCLSM and TV-Allen-Cahn type models

We start with a brief description of the PCLSM [25,26] for the minimization problem (1.2).
Different from the classical level-set method, the PCLSM identifies the contour Γ as

the discontinuity of a piecewise constant level-set function (or phase function):

φ(x)=

{

1, x∈ inside(Γ),

−1, x∈outside(Γ).
(2.1)

Hence, the approximation u can be expressed as

u= c1
1+φ

2
+c2

1−φ

2
≈ f , (2.2)

and the length of Γ can be characterized by the total variation of the level-set function φ,
defined as

TV(φ)=
∫

Ω
|Dφ|=sup

p∈S

∫

Ω
φdivpdx, (2.3)
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where

S :=
{

p=(p1,p2)∈C1
c (Ω;R2) : |p|=

√

p2
1+p2

2 ≤1, ∀x∈Ω
}

. (2.4)

Consequently, the two-phase piecewise constant Mumford and Shah model (1.1) is re-
duced to the minimization problem (cf. [25]):







min
c1,c2,φ

{

TV(φ)+
λ

2

∫

Ω
|u− f |2dx

}

, λ>0,

subject to φ2 =1.

(2.5)

The constraint is imposed to ensure there is no vacuum and overlapping between dif-
ferent phases, that is, each point x ∈Ω can take one and only one phase value. In [26],
the constraint was treated by the augmented Lagrangian technique. Here, we use the
penalty method, so the constrained minimization problem (2.5) can be approximated by
(cf. [25]):

min
c1,c2, φ

{

L(c1,c2,φ) :=TV(φ)+
λ

2

∫

Ω
|u− f |2dx+

µ

4

∫

Ω
(φ2−1)2dx

}

, λ, µ>0, (2.6)

where u is given by (2.2). The optimality conditions lead to

∂L(c1,c2,φ)

∂φ
=−div

( ∇φ

|∇φ|
)

+λ(u− f )
∂u

∂φ
+µφ(φ2−1)=0, (2.7a)

∂L(c1,c2,φ)

∂ci
=

∫

Ω
u

∂u

∂ci
dx−

∫

Ω
f

∂u

∂ci
dx=0, i=1,2. (2.7b)

For fixed φ, the approximation u and the phase intensities c1,c2 can be updated by (2.2)
and by solving the simple system (2.7b), respectively. Hence, the effort needs to be de-
voted to the nonlinear stiff PDE (2.7a) with fixed c1 and c2. Most of the existing methods
are based on evolving the gradient descent flow

∂φ

∂t
=div

( ∇φ

|∇φ|
)

−λ(u− f )
∂u

∂φ
+µ(1−φ2)φ, (2.8)

which is closely related to the Allen-Cahn model for phase transitions [1] but with a non-
linear TV-diffusion operator rather than a linear Laplace-diffusion. To distinguish them,
we term it as the TV-Allen-Cahn model. The presence of nonlinear diffusion induces
some numerical difficulties, but since the TV-term has the capability to preserve discon-
tinuities and edges, the model (2.8) might avoid mesh refinement as usually required
for phase-field models [17, 36]. Some algorithms have been developed and tested for
numerical solution of (2.8), see, e.g., [11, 14, 24–26, 29]. However, direct evolution of the
primal variable φ might suffer from numerical difficulties due to the nonlinearity and
non-differentiability of TV(φ) in (2.6). Note that the denominator of the TV-term has to
be computed approximately by a regularized one:

|∇φ|β =
√

φ2
x+φ2

y+β
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for some β > 0. In addition, time evolution of piecewise-constant-structured solutions
inevitably leads to a much severer restriction to time step. The dual algorithms have
been proven to be efficient to overcome these difficulties. So far, much progress has been
made in dual methods for the ROF model [8, 12]. Most notably, Chambolle [8] provided
a convergence analysis for the proposed dual algorithm. In addition, by introducing
the auxiliary variable: q =∇φ to handle the TV-term (see (3.5) below), splitting-penalty
and/or augmented Lagrangian type methods have been developed in [16, 19, 41, 43] for
the ROF model. Interestingly, using the augmented Lagrangian method, Tai and Wu [41]
presented a uniform framework to derive the dual algorithms [8,12] and splitting-penalty
based methods [16, 19, 43].

The Chambolle’s dual algorithm essentially relies on the explicit solvability of the
primal variable in terms of the dual variable, which may not be possible for the segmen-
tation problems. Recently, Bresson et al. [6] extended the Chambolle’s method to TV-L1

minimization problem by introducing an auxiliary variable to split the L1 data fidelity
term into a quadratic one and an L1-term of the new variable. With this treatment, the
main subproblem (a TV-L2 minimization problem) can be solved efficiently by using
Chambolle’s dual algorithm. Following this idea, we introduce an auxiliary v=φ to han-
dle the nonlinearity induced by the constraint φ2−1=0 in (2.6), and treat the constraint
v = φ by a penalty method. This leads to TV-Allen-Cahn type equations in primal vari-
able φ obtained from (2.5) with constraints different from φ2−1=0 (i.e., with the potential
different from the usual ”double-well” in the Allen-Cahn equation). Hence, the penalty
constant is not necessary to be sufficiently large in contrast to the usual penalty method.

Our starting point is to introduce an auxiliary variable and rewrite (2.6) into

min
c1,c2, φ,v

{

TV(φ)+
λ

2

∫

Ω
|u− f |2dx+

µ

4

∫

Ω
(v2−1)2dx

}

, subject to v=φ. (2.9)

This constrained problem can be approximated by penalizing the constraint:

min
c1,c2, φ,v

{

TV(φ)+
λ

2

∫

Ω
|u− f |2dx+

µ

4

∫

Ω
(v2−1)2dx+

θ

2

∫

Ω
(v−φ)2dx

}

, (2.10)

where the penalty parameter θ > 0. It is clear that if θ is sufficiently large, the problem
(2.10) can accurately approximate (2.6).

However, we next show that for θ≥µ, the model (2.10) is also robust for segmentation,
which leads to TV-Allen-Cahn type equations involving a potential different from the
usual ”double-well” one. As for the splitting technique in [6], we seek the minimizer
(φ,v,c1,c2) separately as follows:

(a) Fixing v, c1 and c2, we search for φ as a solution of

min
φ

{

TV(φ)+
λ

2

∫

Ω
|u− f |2dx+

θ

2

∫

Ω
(v−φ)2dx

}

. (2.11)
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(b) Fixing φ, c1 and c2, we search for v as a solution of

min
v

{µ

4

∫

Ω
(v2−1)2dx+

θ

2

∫

Ω
(v−φ)2dx

}

. (2.12)

(c) Fixing φ and v, the approximation (c1,c2) of the intensities can be computed by
(2.7b).

It is clear that the gradient descent flow of (2.11) takes the form

∂φ

∂t
=div

( ∇φ

|∇φ|
)

−λ(u− f )
∂u

∂φ
+θ(v−φ), in Ω, (2.13)

and the optimality condition of (2.12) implies

v3+(r−1)v= rφ, with r=
θ

µ
. (2.14)

Hereafter, we assume that r≥1, and find that the unique real root of (2.14) is

v=Gr(φ) :=
3

√

rφ

2
+

√

r2φ2

4
+

(r−1)3

27
+

3

√

rφ

2
−

√

r2φ2

4
+

(r−1)3

27
. (2.15)

It is apparent that
r
(

Gr(φ)−φ
)

=Gr(φ)−G3
r (φ). (2.16)

Eq. (2.13) can be reformulated as

∂φ

∂t
=div

( ∇φ

|∇φ|
)

−λ(u− f )
∂u

∂φ
+µ

(

1−G2
r (φ)

)

Gr(φ), 1≤ r≤∞. (2.17)

It can be regarded as a modified TV-Allen-Cahn model associated with the ”double-well”
potential:

Wr(φ)=
∫ φ

−1

(

1−G2
r (ϕ)

)

Gr(ϕ)dϕ, 1≤ r≤∞, (2.18)

in contrast to the usual ”double-well” potential: W(φ)=(φ2−1)2/4 corresponding to the
TV-Allen-Cahn model (2.8). From a slightly different point of view, Eq. (2.17) is the gradi-
ent descent flow of (2.5) but with a different constraint to the piecewise constant level-set
function φ, and accordingly with the penalty term µ

∫

Ω
Wr(φ)dx in place of µ

∫

Ω
W(φ)dx

in (2.6).
One verifies that

G1(φ)= 3
√

φ, Gr(φ)=φ+O
(

r−
3
2
)

, r≫1, (2.19)

which implies

lim
r→∞

{

(

1−G2
r (φ)

)

Gr(φ)
}

=(1−φ2)φ, lim
r→∞

Wr(φ)=W(φ). (2.20)
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In addition, we find from (2.14) that

dGr

dφ
=

r

r−1+3G2
r (φ)

,

which indicates that for r > 1, Gr(φ) is sufficiently smooth, so is Wr(φ). In Fig. 1(a), we
plot the graphs of several samples of Wr(φ) with φ∈ [−1.5,1.5] and for r=1,2,5,10,50,300
from bottom to top by solid lines, and plot the graph of W(φ) marked by ”◦”. We see that
the ”double wells” with r > 1 are smooth, and W300(φ) is almost indistinguishable from
W(φ)=W∞(φ).

To illustrate the performance of the TV-Allen-Cahn type models (2.17) in terms of the
choice of r, we discretize it by an explicit scheme:

φn+1−φn

τ
=div

( ∇φn

|∇φn|β

)

−λ(un− f )
cn

1 −cn
2

2
+µ

(

1−G2
r (φn)

)

Gr(φn), (2.21)

where

|∇φn|β =
√

(φn
x)

2+(φn
y)2+β

for some small β >0. The equation is equipped with the Neumann boundary condition:
∂φ/∂n=0 as usual, and the divergence term is discretized by a central difference scheme
as in [32] (cf. pp. 103). Note that given φn, the values of un, cn

1 and cn
2 are evaluated by

(2.2) and (2.7b). We use the annulus-square image in Fig. 1(d) as an example, and choose
the parameters: λ = 1, µ = 200,τ = 5e−5 and β = 1e−6. We take the initial value of φ to
be 2 inside the red box, and −2 outside (see Fig. 1(d)). To measure the convergence and
accuracy, we define pixel-wise errors

Emax{φn+1,φn}=max
i,j

|φn+1−φn|, (2.22a)

E{|φn|,1}=max
{∣

∣max
i,j

|φn|−1
∣

∣,
∣

∣min
i,j

|φn|−1
∣

∣

}

. (2.22b)

In Fig. 1(b) and 1(c), we record the history of Emax{φn+1,φn} and the errors E{|φn|,1} to
the targeted piecewise constant function (2.1). We observe a similar convergence behav-
ior for all cases except for r = 1. Notice that in case of r = 1, the potential Wr(φ) is not
differentiable at φ=0. We plot in Fig. 1(f) the profile of the phase function φ at 180 steps,
which shows a good approximation of the piecewise constant level-set as expected. In
Fig. 1(e), we depict the boundaries after segmentation, which indicates a quite accurate
detection for r=10 at 180 steps.

As with ROF model based image restoration, the primal approach is born with slow
convergence and severe restriction on time stepping size, although some improvement
can be made by using, e.g., the AOS scheme [27, 28, 44]. Moreover, in this context, it is
also quite sensitive to the choice of φ0 (refer to the second numerical example in Section
5). We next introduce two dual algorithms to overcome these shortcomings.
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3 Dual algorithm based on Chambolle [8]

Now, we are in a position to present the fast dual algorithms for the minimization prob-
lem (2.10). Since the subproblem (2.12) can be solved analytically, we only need to focus
on the subproblem (2.11).

As u is a linear function of φ, the subproblem (2.11) with fixed c1,c2 and v can be
solved by using Chambolle’s dual algorithm. More precisely, the level-set function φ is
computed by

φ=C(p,v,c1,c2) :=
1

λ(c1−c2)2/4+θ

(λ(c1−c2)

2
f −divp+θv−λ

c2
1−c2

2

4

)

, (3.1)

and the dual variable p=(p1,p2) satisfies

∇H−|∇H |p=0, (3.2)

where

H := H(p,v,c1,c2)=∇
(

divp− λ(c1−c2)

2
f −θv

)

. (3.3)

For fixed c1,c2 and v, the problems (3.2)-(3.3) can be solved by the iteration with p0 =0:

pn+1 =
pn+τH(pn,v,c1,c2)

1+τ|H(pn,v,c1,c2)|
, n=0,1,··· . (3.4)

It is anticipated that the iteration converges for 0 < τ ≤ 1/8 as with the original algo-
rithm for ROF model in [10], and might be sped up by using the technique in [9]. In
addition, one may follow [10] to derive (3.2) by using the Karush-Kuhn-Tucker condi-
tions for inequality constrained optimization problems. However, it can be derived by a
much simper argument as in [41]. For the interested readers’ reference, we briefly sketch
the derivation followed from [41] below. We first convert the subproblem (2.11) into the
following constrained minimization:







min
q,φ

{

∫

Ω
|q|dx+

λ

2

∫

Ω
|u− f |2dx+

θ

2

∫

Ω
(v−φ)2dx

}

,

subject to q=∇φ.

(3.5)

Using the notion of augmented Lagrangian method, we obtain

min
φ,q

max
p

{

F(φ,q,p) :=
∫

Ω
|q|dx+

λ

2

∫

Ω
|u− f |2dx+

θ

2

∫

Ω
(v−φ)2dx

+
∫

Ω
p·(q−∇φ)dx+

γ

2

∫

Ω
|q−∇φ|2dx

}

, λ, γ, θ >0, (3.6)

where p=(p1,p2) is the Lagrange multiplier. By the optimality conditions,



L.-L. Wang and Y. Gu / Commun. Comput. Phys., 9 (2011), pp. 859-877 867

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.1

0.25

0.3

0.4

φ

W
r
(

φ)

r=300

r=1

(a) Samples of Wr(φ) and W(φ)

0 200 400 600 800 1000
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

 

 

r=1r=2
r=300 r=∞

(b) Error: Emax{φn+1,φn}
0 200 400 600 800 1000

10
−3

10
−2

10
−1

10
0

10
1

r=2r=∞r=300 r=1

(c) Error: E{|φn|,1}

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

(d) Given image and initial value

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

(e) Segmented Γ (r=10)

0
20

40
60

80
100

0

50

100
−1

−0.5

0

0.5

1

(f) φ at convergence (r=10)

Figure 1: Profiles of the ”double-well” potentials, convergence behavior (from right to left: r = 1,2,∞,5,10,
50,300), and segmented results obtained by (2.21).

∂F(φ,q,p)

∂φ
=λ(u− f )

∂u

∂φ
−θ(v−φ)+divp+γdiv(q−∇φ)=0, (3.7a)

∂F(φ,q,p)

∂q
=

q

|q|+p+γ(q−∇φ)=0, (3.7b)

∂F(φ,q,p)

∂p
=q−∇φ=0. (3.7c)

Eq. (3.2) follows from (3.7b) and (3.7c). Moreover, we find from (3.7a) and (3.7c) that

λ(u− f )
∂u

∂φ
−θ(v−φ)+divp=0. (3.8)
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Figure 2: Profiles of |∇ f |,|∇φ| and |p| obtained by Algorithm 3.1 with λ=1,µ=1e3,r=2,τ =0.1 for N =100

steps. Note: (i) the error Emax[φN ,φN−1] = 2.1e−7, and (ii) as in Fig. 1(f), φ converges to (2.1), so we have

approximately |∇φ|≤2
√

2.
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In view of (2.2), we can express φ in terms of the dual variable p and obtain (3.1). Finally,
scaling out the constant factor

d :=d(c1,c2)=
λ

4
(c1−c2)

2+θ, (3.9)

and applying a semi-implicit scheme to the corresponding gradient descent flow (cf. [8]),
we obtain the scheme (3.4).

As usual, a homogeneous Dirichlet boundary condition: p|∂Ω = 0 can be imposed.
Here, we use a periodic boundary condition for comparison with the new dual algorithm
in the next section. We also note that H can be discretized by finite difference as in [8].

We summarize the dual algorithm for (2.11)-(2.12) as Algorithm 3.1 below.

Algorithm 3.1:

1. Initialization: choose φ0 and set p0 =0.

2. For n=0,1,···,
(i) Compute (cn

1 ,cn
2) by solving the simple system (2.7b) with φ=φn.

(ii) Compute un by

un =
1+φn

2
cn

1 +
1−φn

2
cn

2 .

(iii) Compute vn by vn =Gr(φn) in (2.15).

(iv) Compute pn+1 by (3.4):

pn+1 =
pn+τH(pn,vn,cn

1 ,cn
2)

1+τ|H(pn,vn,cn
1 ,cn

2)| .

(v) Compute φn+1 by (3.1):

φn+1 =C(pn+1,vn,cn
1 ,cn

2).

3. Goto 2 till some stopping rule (e.g, Emax[φn+1,φn]< ε, for some ε>0) is met.

4 Dual algorithm based on edge-featured penalty and FFT

The previous dual approach for (2.11) requires to solve the nonlinear PDE (3.2), whose
leading operator is highly nonlinear. In this section, we propose a new model for the
dual variable with a linear leading operator, which allows for the use of more efficient
numerical algorithms. The key idea is based on an edge-featured penalty of the inequality
constraint |p|≤1 in the definition of the TV-norm. It is important to observe that (cf. [10])

|p|=1, if H 6=0; |p|<1, if H =0. (4.1)
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Moreover, we find from (3.1), (3.3) and (3.9) that H=d∇φ. As φ is designed to characterize
the piecewise constant structures of the given image f , we have |H |=O(|∇φ|)=O(|∇ f |).
Indeed, their profiles in Fig. 2 justify this observation. Consequently, we treat the point-
wise inequality constraint by penalizing |p| = 1 strongly near sharp edges, and very
weakly in the homogeneous regions. More precisely, we propose to approximate the
subproblem (2.11) by the following minimization problem:

min
φ

max
p

{

∫

Ω
φdivpdx+

λ

2

∫

Ω
|u− f |2dx+

θ

2

∫

Ω
(v−φ)2dx− 1

4

∫

Ω
g(|∇ f |)(|p|2−1)2dx

}

, (4.2)

where g(s) is a smooth function of s∈ [0,∞), such that g(0)=0 and g(s)≫1 for s≫1. In
this paper, we take

g(s)=αln(1+s), s≥0, (4.3)

where α is a positive constant.
The optimality condition with respect to φ yields φ=C(p,v,c1,c2) defined in (3.1), and

the one with respect to p gives

−∇φ+g(|∇ f |)(1−|p|2)p=0. (4.4)

In view of (3.1) and (3.3), its gradient descent form is

∂p

∂t
=d−1H(p,v,c1,c2)+g(|∇ f |)(1−|p|2)p, (4.5)

where H and d are given in (3.3) and (3.9), respectively. We can view (4.5) as a vectorial
Allen-Cahn type model with ∇(div)-diffusion.

To resolve (4.5) efficiently, we adopt a splitting scheme (or operator splitting, cf. [30,
37]), and solve the following two subproblems consecutively and recursively at each time
step:

∂p

∂t
=d−1H(p,v,c1,c2), (4.6a)

∂p

∂t
= g(|∇ f |)(1−|p|2)p. (4.6b)

Let pn be the approximation of p at tn =n∆t. Formally, the second-order splitting scheme
can be carried out as follows:

(a) Solve Eq. (4.6b) for t∈ (tn,tn+∆t/2) :

p̃= pnexp
(

g(|∇ f |)(1−|pn|2)∆t

2

)

. (4.7)

(b) Solve Eq. (4.6a) for t∈ (tn,tn+∆t) by using the Crank-Nicolson type scheme (see,
e.g., [38]):

p̂− p̃

∆t
=

1

2d

(

H(p̂,v,c1,c2)+H(p̃,v,c1,c2)
)

. (4.8)
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(c) Find pn+1 by solving (4.6b) for t∈ (tn +∆t/2,tn+1) :

pn+1 = p̂ exp
(

g(|∇ f |)(1−|p̂|2)∆t

2

)

. (4.9)

It is seen that with a linearization, Eq. (4.6b) becomes a simple ordinary differential equa-
tion. By imposing a periodic boundary condition for p (see [41,43] for similar imposition),
the linear equation (4.8) can be solved efficiently by using the Fourier-Galerkin method
and FFT. One may refer to [42] for the implementation of FFT in Matlab.

We replace Step (iv) in Algorithm 3.1 by the splitting-FFT scheme and summarize the
full algorithm for the minimization problem (2.10) in Algorithm 4.1 below.

Algorithm 4.1

Just replace Step (iv) in Algorithm 3.1 by the splitting-FFT scheme for (4.5), and remain the other
steps. More precisely,

(iv) Compute pn+1 by



























p̃=exp
(

g(|∇ f |)
(

1−|pn|2
)∆t

2

)

pn,

− ∆t

2dn
∇

(

divp̂
)

+ p̂= p̃+
∆t

2dn
∇

(

divp̃
)

− ∆t

dn
sn,

pn+1 =exp
(

g(|∇ f |)
(

1−| p̂|2
)∆t

2

)

p̂,

where

dn =
λ

4
(cn

1−cn
2 )2+θ, sn =

λ(cn
1−cn

2 )

2
∇ f +θ∇vn.

The second equation is solved by the Fourier-Galerkin method with FFT.

We point out that due to the use of FFT, this algorithm is competitive to the primal
approach and the dual Algorithm 3.1 in terms of computational complexity.

5 Numerical results

The preliminary experiments in Section 2 have shown that the TV-Allen-Cahn type mod-
els (2.17) with various choices of r (i.e., ”double-well” potentials) are robust for binary
image segmentation. In this section, we further test the models on several typical images
with an emphasis on comparing the performance of the foregoing three algorithms, that
is, the primal approach (2.21), the dual Algorithm 3.1 and the dual Algorithm 4.1. We as-
sess their performance by examining the rate of convergence, decay of numerical energy
and quality of segmentation.

In the first experiment, we still test the 100×100 annulus-triangle image with the same
initial value (cf. Fig. 1(d)), and take the parameters: λ=1,µ=500,r=2 in (2.17), α=20 in
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(4.3) and β = 1e−6 in (2.21). To set up a relatively fair rule for comparison, we take the
artificial time-marching step size τ or ∆t to be comparable with values 1e−3,1e−4,5e−5
and 1e−5 for the primal approach and Algorithm 4.1. As the factor d(≈2500) in (3.9) is
scaled out in Algorithm 3.1 (cf. (3.4)), there holds the relation between the time steps of
two algorithms: τ≈d∆t. Accordingly, we choose τ=2.5,0.25,0.125 and 0.025 in Algorithm
3.1.

We quantify the comparison by recording in Fig. 3: (i) maximum pixel-wise errors
between two consecutive steps: Emax{φn+1,φn}; (ii) history of converging to the piecewise
constant function (2.1) by examining E{|φn|,1} (cf. (2.22)); and (iii) decay of numerical
energy of the cost functional in (2.10).

We visualize from Fig. 3 that two dual algorithms converge much faster than the pri-
mal approach. In other words, the phase function φ evolves more rapidly to the targeted
piecewise constant level-set function by dual methods. Moreover, we see that Algorithm
4.1 produces relatively accurate approximations than the other two methods. We remark
that (i) for τ = 1e−3, the primal approach fails to converge due to the restriction of the
CFL condition; (ii) the dual Algorithm 3.1 still converges with a choice of τ bigger than
the critical value 1/8 (cf. [8] for the ROF model). However, the convergence rate and ac-
curacy deteriorate, when τ >1/4 (note: the choice of τ≤1/4 is shown to be numerically
stable in [8]).

Next, we test an image used in [3,6] for discussing the global minimization issue of the
variational segmentation using CV-model and the classical level-set method. As shown
in [3], the minimization algorithms based on some commonly-used explicit or implicit
time evolution of the gradient descent flow often get stuck with a local minimizer, and
therefore leads to a rather unsatisfactory segmentation of the narrow L-band in Fig. 4(a).
In this test, we choose the parameters and time steps in two dual algorithms as λ=1,µ=
200,r = 2,∆t = 1e−5,τ = 1/8 and α = 1e3, and take two typical initial values (cf. Fig. 4(a)
and notice that the one at the bottom-left corner is similar to that in [6]).

We observe from Fig. 4 that the numerical phase function φ evolved by the dual algo-
rithms converges very fast to the piecewise constant level-set function even with initial
conditions far from the targets. Unfortunately, the primal approach (2.21) does not con-
verge even for various attempts of different sets of parameters and time steps. However,
the dual algorithms are very reliable and produce accurate segmentation with around
130 steps (see Fig. 4(b)). As with the previous example, two dual algorithms enjoy almost
the same convergence behavior, but Algorithm 4.1 seems to be slightly accurate. Hence,
they are indistinguishable when we plot the boundaries of the segmented image, and the
profiles of φ. In fact, similar performance is observed in the following tests involving
relatively complicated images (see Fig. 5 for the newspaper segmentation, and Fig. 6 for
the two-cell image with noise).

In particular, we point out that the noisy two-cell image of the same size in Fig. 6(a)
was tested in [21], where the term

∫

Ω
(|∇φ|2−1)2dx was added to penalize the classical

level-set function so as to eliminate the re-initialization process. The explicit evolution of
the primal variable in [21] required at least 800 iterations to reach a meaningful segmen-
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(a) Primal: Emax{φn+1,φn}
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(b) Algorithm 3.1: Emax{φn+1,φn}
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(c) Algorithm 4.1: Emax{φn+1,φn}
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(d) Primal: E{|φn|,1}
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(e) Algorithm 3.1: E{|φn|,1}
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(f) Algorithm 4.1: E{|φn|,1}
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(g) Primal: decay of energy
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(h) Algorithm 3.1: decay of energy
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(i) Algorithm 4.1: decay of energy

Figure 3: Comparison of the convergence rate with respect to the time-marching step n for three different time
step sizes. Row 1: the maximum point-wise errors between two consecutive steps: Emax{φn+1,φn}. Row 2: the
convergence rate of |φn| to 1 measured by E{|φn|,1}. Row 3: Decay of numerical energy of the cost functional
in (2.10) of three algorithms.
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(c) φ at convergence

Figure 4: Segmentation by Algorithms 3.1 and 4.1 with two different choices of initial values (note: the primal
approach fails to converge for both options): (a) given image f and two samples of initial values; (b) segmented
boundary Γ i.e., φ=0 at 130 steps; (c) profile of φ at 130 steps.
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(c) φ at convergence.

Figure 5: Segmentation by Algorithms 3.1 and 4.1 with λ=1,µ=1e3,r=10,α=1e3,τ=1/8 and ∆t=1e−5: (a)

given image f and φ0; (b) segmented boundary Γ i.e., φ=0 at 110 steps; (c) profile of φ at 110 steps.
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(c) φ at 80 steps

Figure 6: Segmentation by Algorithms 3.1 and 4.1 with the same parameters as in Fig. 5: (a) given image f

and φ0; (b) segmented image with marked Γ at 80 steps; (c) Profile of φ at 80 steps.

(a) Given image f and initial value (b) u at 35 steps (c) u at 40 steps

Figure 7: Segmentation by Algorithms 4.1 with λ=1,µ=1e3,τ=1e−5,α=2e3 and r=10: (a) given image and
two different initial conditions; (b) segmented image u for the initial value given by bigger box at 35 steps; (c)
segmented image u for the initial value given by smaller box at 40 steps. Note: the errors E{|φn|,1} for (b)
and (c) are 1.16e−1 and 5.61e−2, respectively.

tation. However, both dual algorithms provide accurate segmentation with 80 iterations,
as shown in Fig. 6.

Finally, we use Algorithm 4.1 to segment the image in Fig. 7(a) with quite a num-
ber of cells of different sizes but without noise. For two choices of initial values, the
dual Algorithm 4.1 produces very fast and reliable segmentation. We see that though at
around 40 steps, the errors E{|φn|,1} are of accuracy about one or two significant digits,
the segmentation of the set Γ is quite satisfactory.
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6 Extensions and discussions

It is seen that Algorithm 4.1 is very efficient for the subproblem (2.11). It only requires
to solve a vectorial Allen-Cahn type equation with leading linear differential operator,
so more efficient algorithms can be implemented. The previous study and numerical
results demonstrate that it provides a viable alternative to the Chambolle’s algorithm [8].
We next show that it is also competitive for solving the ROF model.

As the Chamoblle’s approach was originally proposed for the ROF model [35], it is de-
sirable to compare the performance of both dual algorithms for image restoration. Given
a noisy image f defined on an open bounded domain Ω⊆R

2, the ROF model restores f
by solving the minimization problem:

min
u

{

TV(u)+
1

2δ

∫

Ω
|u− f |2dx

}

, δ>0. (6.1)

Like (2.11) and (4.2), a key idea to minimize (6.1) is to consider the following new mini-
mization problem:

min
u

max
p

{

∫

Ω
udivpdx+

1

2δ

∫

Ω
|u− f |2dx− 1

4

∫

Ω
g(|∇ f |)(|p|2−1)2dx

}

. (6.2)

Consequently, the optimality conditions lead to

u= f −δdivp, (6.3)

and
∇

(

δdivp− f
)

+g(|∇ f |)(1−|p|2)p=0. (6.4)

Like (4.5), we consider the gradient flow

∂p

∂t
=δH(p)+g(|∇ f |)(1−|p|2)p, (6.5)

where H(p) =∇(divp)−∇ f /δ. Similarly, it can be solved efficiently by using a time-
splitting scheme and FFT as in (4.6a)-(4.9).

Recall that in [8], the ROF model (6.1) is solved by the iteration:

pn+1 =
pn+τH(pn)

1+τ|H(pn)| , n=0,1,··· , (6.6)

and u is updated by (6.3).
We test two dual algorithms on lena-512×512, and as usual the peak signal-to-noise

(PSNR) is used as a criteria for the quality of restoration:

PSNR=10log10

2552

1
mn ∑i,j(ui,j− fi,j)2

, (6.7)
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(a) Original image (b) Noisy image f (c) u-Chambolle (d) u-new algorithm

Figure 8: Image restoration based on the ROF model with solutions by the Chambolle’s dual approach and
the proposed new algorithm: (a) Original image: lena-512×512; (b) Noisy image generated by the normal
imnoise function in Matlab with ”Gaussian”, zero mean and variance 0.02; (c)-(d): Restored images obtained
by Chambolle’s method and the new dual algorithm with δ = 30,τ = 1/8,∆t = 1e−2 and g(s) = 0.6 4

√
s. The

iteration is stopped by El2(un+1,un)≤ 1e−3. The iteration numbers and PSNR for (c)-Chambolle: 101 and
29.21, and for (d)-new algorithm: 89 and 29.16, respectively.

where m×n is the size of the image. Moreover, we use the relative dynamic error:

El2(un+1,un) :=
‖un+1−un‖l2

‖un+1‖l2

<ǫ, (6.8)

for a prescribed tolerance ǫ, as the stopping rule. We see from Fig. 8 and the caption
therein that with the same error tolerance, Algorithm 4.1 converges relatively faster with
almost the same PSNR values. Such a behavior is consistent with the numerical experi-
ments for image segmentation in the previous section.

Much of our previous study has been focused on the binary image segmentation.
It is interesting to discuss the extension of the algorithms to multi-phase segmentation
by using the Mumford and Shah model and PSCLM in [26], but it is much more chal-
lenging and involved. We leave this topic to a future work. Indeed, it is worthwhile
to mention some recent advances in multi-phase segmentation in terms of developing
new algorithms and using more general models such as the Potts-type models (see,
e.g., [4, 5, 18, 22, 23] and the references therein).
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