Commun. Comput. Phys. Vol. 9, No. 5, pp. 1152-1164
doi: 10.4208/cicp.191209.111110s May 2011

A Memory-Saving Algorithm for Spectral
Method of Three-Dimensional Homogeneous
Isotropic Turbulence

Qing-Dong Cai'! and Shiyi Chen!-2/*

LLTCS and CAPT, Department of Mechanics and Aerospace Engineering,

College of Engineering, Peking University, Beijing 100871, China.

2 Department of Mechanical Engineering, The Johns Hopkins University,

Baltimore, Maryland 21218, USA.

Received 19 December 2009; Accepted (in revised version) 11 November 2010

Available online 14 January 2011

Abstract. Homogeneous isotropic turbulence has been playing a key role in the re-
search of turbulence theory. And the pseudo-spectral method is the most popular
numerical method to simulate this type of flow fields in a periodic box, where fast
Fourier transform (FFT) is mostly effective. However, the bottle-neck in this method
is the memory of computer, which motivates us to construct a memory-saving algo-
rithm for spectral method in present paper. Inevitably, more times of FFT are needed
as compensation. In the most memory-saving situation, only 6 three-dimension arrays
are employed in the code. The cost of computation is increased by a factor of 4, and
that 38 FFTs are needed per time step instead of the previous 9 FFTs. A simulation of
isotropic turbulence on 20483 grid can be implemented on a 256G distributed memory
clusters through this method.

AMS subject classifications: 80M22, 76F05, 76F65, 65T50

Key words: Spectral method, homogeneous isotropic turbulence, DNS, FFT.

1 Introduction

Homogeneous and isotropic (HI) turbulence has been a paradigm theoretically since it
was introduced by G. L. Taylor [1] and it assumed even greater importance after the fun-
damental work of Kolmogorov [2-4]. Due to predicted “universality” at small-scales,
turbulent motions smaller than those at lengths where production occurs are expected
to be approximately HI in many applications. Nevertheless, even this simplest state of
turbulence has resisted intensive efforts at complete understanding. Large scale direct

*Corresponding author. Email addresses: caiqd@pku.edu.cn (Q.-D. Cai), syc@coe.pku.edu.cn (S. Chen)

http:/ /www.global-sci.com/ 1152 (©2011 Global-Science Press

Q.-D. Cai and S. Chen / Commun. Comput. Phys., 9 (2011), pp. 1152-1164 1153

numerical simulations (DNS) of HI turbulence are urgently needed for the understand-
ing of the small scale behaviors in turbulence. It is well know that the most popular nu-
merical method for the simulation of HI turbulence is pseudo-spectral method [5,6]. The
simulation scales from 643 [7], 1283 [8-10] to 5123 [11-15]. NEC’s Earth Simulator at 36 ter-
aflops led the TOP500 super computing list for two and a half years, from June 2002 until
September 2004, when it was overtaken by IBM’s Blue Gene. The landmark 4096° simu-
lation performed on the Earth Simulator [16-20] remains the highest-resolution compu-
tation of three-dimensional (3D) homogeneous isotropic turbulence conducted to date.

The rapid progress of super computers has made the simulation of turbulence more
and more powerful although it is still far from the resolution of Kolomogorov scale. With
spectral method, the major problem is the large demand of memory instead of CPU time.
For example, in order to simulate a three dimensional incompressible turbulence on a N3
mesh, now the best code needs 12.5 real arrays of size N3, which may still need another
one in 3D fast Fourier transform (FFT) as a work array [11]. After that, the total memory
in bytes will be 4 x 12.5N3 =50N? (assuming only single precision real number is used). If
N=1024, the total amount will be about 54G, if N =2048, this amount will be up to about
429G. This makes it impossible to simulate a 2048° size flow on a 256G memory machine
(the clusters we used have 256G memory, which is a popular configuration for university
machines). In order to do this, we must reduce the number of arrays from 12.5 to at least
to 7, then 4 x 7N® =28N?3, which will be about 241G when N =2048. If additional array
is needed in FFT program, this amount will be 275G, which is a little large. This means
we must design a method with only use at most 7 arrays of size N° in order to finish this
task. From the published papers, such as [15] and others, the number of arrays is more
than ten. Through precise design, a memory-saving algorithm for spectral method of
three-dimensional homogeneous isotropic turbulence is present, and the coding details
are listed in Appendix.

The outline of the paper is as follows: in the next part, the standard algorithm of
pseudo-spectral method will be introduced briefly, and the idea of our new algorithm
will also be presented as well. Subsequently in the third part, we show the numerical
results and performance. Finally, the summary and discussions are given in the forth
part.

2 Numerical method

Almost all DNS of fluid turbulence are implemented based on the pseudo-spectral
method, which solves the Navier-Stokes equation directly in the Fourier space. We re-
view briefly the standard algorithm [5, 6], and then point out the basic idea of our new
algorithm. The incompressible Navier-Stokes equation can be written as

V-v=0,
ov (2.1)

g—vxw: —VP+vAv+f,

1154 Q.-D. Cai and S. Chen / Commun. Comput. Phys., 9 (2011), pp. 1152-1164

where v is velocity, and v is kinematic viscosity. f is an external force term to be specified,
and P=p+|v|?/2, p is pressure, w =V x v is vorticity vector of flow field. The Eq. (2.1)
can be transformed to spectral space by Fourier transformation
w —P(K)- (vxw) — vk (k1) + P(K) 1, 2.2)

where overcarets denote Fourier coefficients, (m) indicating that the cross times term
v X w is finished in physical space, then the new quantity is transformed to spectral space,
k is wave vector, and k= |k| is wave number. The tensor P(k) is divergence free projector
in spectral space
kik;

k2
The incompressible condition becomes k-¥(k,t) =0 in spectral space. Eq. (2.2) is widely
used in pseudo-spectral method for simulation of isotropic turbulence [5,6,11]. We didn’t
try to change the spectral method itself, however, only intending to realize it in a different
way in order to save memory as much as possible. Certainly, it may need more CPU time
as compensation. The ordinary method usually needs three arrays for velocity vector,
three arrays for vorticity vector and another three for cross times term in Eq. (2.2). With
some work arrays, there are 12.5 N° arrays all together. The computation procedure to
advance one step from ¥" to ¥ is:

P;j(k)=6;— (2.3)

. obtain @" according to @" =ik x ¥";
. transform velocity and vorticity in spectral space to physical space ¥" —v", @" — w";

1
2
3. compute v Xw and transform to spectral space to obtain VX and conducting projection;
4

n+1

. integrate Eq. (2.2) to obtain ¥ and do projection.

This is a general computational procedure to implement pseudo-spectral method, with
9 FFTs in every time step. We label this as 12.5A method according to the number of
N3 arrays used in the code. In order to save memory, first we notice that not all compo-
nents of velocity and vorticity vector are needed because of divergence free condition in
Fourier space. This allows us to use only two arrays for velocity, as we use 9, and 9, for
convenience, and 0, can be gained if needed by

k0 (K,) + k=0 (K, 1)]
ky

Oy (k,t) =— . (2.4)
To avoid the trouble at k, =0, the velocity component 0, at k, =0 plane needed to be
saved separately. In this way, Eq. (2.2) becomes

P = (P10 (vx00)), ~ k6.t + (P(1)

%}:” (P(K) (vxw)), vk (k 1)+ (P(K)£) .

z

xl

(2.5)

Q.-D. Cai and S. Chen / Commun. Comput. Phys., 9 (2011), pp. 1152-1164 1155

The subscript x and z denote the index of component. The most troublesome term in the

above equations is P(k)- (v X w), which can be written out as

[P(k)- (vxw)],=Py(vxw), (2.6)
in addition to
(VX), = Tytwz 020y, (2.7)
(VX @), = 0205 — T2, (2.7b)
(VX @)= 00y — Ty (2.7¢)
Thus we have
S K2 o keky(Trn—Ten) keks(Gr0y— Ton)
[P(k)-(vxw)], (1’k)(vjwz Gawy) - - R (28a)
— kxkz(v Wz —0zW) k kz(zgw\x_m) k2
[Pk)-(vxw)],=— e (1 kz)(vxwy 7y@7). (2.8b)

All terms must be calculated one by one to avoid keeping them all to save memory space,
however, more FFT calculations are needed as we have to use the velocity components
both in physical and spectral space. We only assign one array for vorticity. When we
want to use it anytime, we compute it in spectral space by

Gk t) =ik x V(K 1), 2.9)
which are
d\)x:i(ky’ﬁz_kzﬁy), d)y:i(kz’ﬁx_kxv,\z), d)zzi(kxv,\y_kzv,\x), (2.10)

with an inverse FFT applied to it if we need vorticity in physical space.
The equation for 9, is not listed above because we need not to solve all v, equation at
present, but only those whose wave vectors are at k, =0 plane are solved by:

aﬁy (kx,o,kz,t)
ot

and in this plane, the convection term which is analogue of Eq. (2.8) has only one term
left

= (P(K): (vx @), — VK26 (ke 0,k 1)+ (P(K) £, (2.11)

[P(k)-(@)]y: (G207 —Tyz), when k,=0. 2.12)

The time integration of Egs. (2.5) and (2.11) is achieved by second-order Runge-Kutta
method which have 2nd-order accuracy in time, which is more stable than Crank-
Nicholson scheme for model equation. For Eq. (2.5), we have

1 1 1 1

037 = z?”-l—ZAtRx("), 02=0 -|-2AtRZ("),

1 1 (2.13)
O =91+ AtR (V2), 0'T1=0"+AtR,(V2),

1156 Q.-D. Cai and S. Chen / Commun. Comput. Phys., 9 (2011), pp. 1152-1164

where Ry(+) and R(-) stand for the right-hand-side term of Eq. (2.5), respectively. And
they must be computed on a general basis according to the expansion in Eq. (2.8), which
will be the most time consuming part in the whole computation. The first step in (2.13)
need four arrays to save ﬁx,ﬁz,z?}/ 2 and @;/ 2. Another two arrays are needed to save a
certain vorticity component and 0, the first of which is also used to save the product of
this vorticity component with a velocity component appeared in Eq. (2.8), such as v,w,
v wy, etc. At the second step of (2.13), the new results can be directly added to the arrays
stored as 9, and 9, because the results in n-time level are no longer used further, such that
no additional array is needed. In the whole computation, six N° size arrays are used. As
we mentioned in the above analysis, the v, array can be dropped off. Obviously, this will
need more computation between velocity components if we only save two of the three
velocity components at the same time. Since our objective is to use less than seven arrays,
we keep this one to make the code much easier and more efficient. In fact, we use it as a
work array to store the product of velocity component and vorticity component. Without
this array, we must use the vorticity array itself to store this product, which will require
more computations as when we need to compute vorticity, all velocity components must
be transformed to spectral space, but the product is computed in physical space. 19 FFTs
are needed in each half step, however, with one more work array, 13 FFTs are still needed.
Those two methods above will be cited as 6A method and 7A method respectively. They
use 38 and 26 FFTs per time step. This then explains why the computation can be 26/9 to
38/9 or 2.9 to 4.2 or roughly 3 to 4 times more expensive.

3 Numerical results and performance

The computer we used is an integrated cluster with 256 nodes, and each of them has two
processors. The memory of every node is 1G, all together there are 256G memory.

In order to validate the new code, we compute a 5123 problem with 32 nodes 64 pro-
cesses, which takes about 22 seconds per step. The initial value is the results of 12.5A
method which takes about 5 seconds per step, and a steady spectrum has been reached
already. We compute more steps with 6A method, and draw the spectrum every 50 steps.
Fig. 1 shows the steady spectrum in farther computation to present good agreement
among those spectrum distributions.

As we have pointed out, 6A method is time-consuming, because more FFTs are
needed. We compare the computational time at different grid size in Fig. 2. All com-
putations used 4 or 8 processors, which may come from 4 or 8 different nodes. If we use
4 nodes, the total memory is 4GB, it will be 8G when 8 nodes are used altogether. The 6A
method takes more time than that of 12.5A one, and 8-node computation is a little faster.
The abnormal time cost of 12.5A method at grid size 512 by using 4 node is because of
the large demand of memory (about 6.75GB), which has exceeded 4GB, the swap space
has been used. It is also noticed that the computation with 4 nodes (when the whole 4GB
memory is available) need more time than that using 8 nodes.

Q.-D. Cai and S. Chen / Commun. Comput. Phys., 9 (2011), pp. 1152-1164 1157

1 —

TATTTm
L

0.1

|

0.01

Ll

0.001

E(K)

UL B L

0.0001

10°

PRI A AERTTTT EAERTIIT |

LEERLL

6 el vl P
10

10 100
k

[N

Figure 1: Energy spectrum on 5123 grid, the computation is implemented on 32 nodes with 64 processes. First,
a steady spectrum is gained by 12.5A method, then 6A method is implemented to forward 1500 steps with the
same time step At=0.0004, outputting the spectrum every 50 steps, we get 30 distributions of energy spectrum.
Draw them together, the consistence means the spectrum is still stable. If we compute from the same initial
condition with only 6A method, we will get the same results.

100000 o
10000 o

1000

100

Time per Step (ms)

—o— 4X2 (6A)
—o— 8X1(6A)
—a— 4X2 (12.5A)

104 —v— 8X1(12.5A)

1

160

Grid Size
Figure 2: Computational time per step for different grid size. The computation is with #=4 or 8 nodes and
np=8 processes. The 12.5A method is more efficient than 6A one as expected. For 5123 grid, the 12.5A

method needs much more time because of inadequacy of memory, and at the same time, swap space is used.
As for 6A method, the memory is still enough.

The purpose to develop this 6A method is to reduce the demand of memory in classi-
cal spectral method. We can solve 512% problem with only 4 nodes (every node starts two
processors), whose total memory is 4GB. The needed memory is 5123-4-(6+1) =3.76GB
(the extra one is used in FFT). From the report of machine, the memory we used is 3.84GB,
which almost reach the top limit of 4 nodes (4GB). The 1024% simulation will need 32
nodes, and 2048% simulation must use all 256 nodes. Table 1 shows the computational
time per step for those three situations. Theoretically, those three cases have the same
load on each node. Furthermore, the computational time should be same. However, the
communication is quite different, as more time is needed when grid size becomes larger.
In our computation, the 2048% case only runs about 20 steps to obtain the results about
performance. The other two cases, 5123 and 10242 ones, run to the final convergent re-
sults with steady spectrums. Fig. 3 shows the development procedures of spectrums in

1158 Q.-D. Cai and S. Chen / Commun. Comput. Phys., 9 (2011), pp. 1152-1164

Table 1: Computation time per step with 6A method.

grid size 5123 | 10243 | 20483
number of nodes 4 32 256
number of process | 8 64 512
time (second) 164 180 283

5123 and 1024% simulations. The spectrums at low wave number are almost the same.
More high wave number energy is resolved in 10243 case. The final convergent spectrum
is shown in Fig. 4. According to above memory estimation, we may solve 4096> simu-
lation with a 1.6TB-memory machine with present method, while the original spectral
method must use at least 3.16TB-memory machine. Upon using the Earth Simulator in
computations [16, 18], the authors had to reduce partly the precision of arithmetic from
double to single in order to allocate sufficient memory for their 4096° simulation. If the
proposed scheme is used, that compromise will not be necessary.

| ——— 3 1 —

T IRRTTT MW

>
L

0.1 o —§ 0.1

-

0.01 = 0.01

0.001 3 0.001

E(k)
E(k)

T T

0.0001 3 0.0001

LRALLL B R LU L IR L R e

FRRTTTT RRTTTT IR ATTTT MR |

T
|
S

7 Lol M | P -7 sl Lol il

1 10 100 10 100
k k

Figure 3: Spectral developments of 5123 (left) and 10243 (right) simulations, the arrows show the direction of
the spectrum developments.

E(k)

T
1 10 100
k

Figure 4: Spectral developments of 1024 simulation for the convergent result, the spectra reach a steady state
after about 3000 steps. N is time step.

Q.-D. Cai and S. Chen / Commun. Comput. Phys., 9 (2011), pp. 1152-1164 1159

Table 2: Computation time per step on PKU-HP clusters with 5123 mesh, 12.5A, 7A, and 6A methods are
employed respectively.

number of process | 2x1 4x1 8x1 16x1 32x1 2x2 4x2 8x2 16 x2
12.5A time (second) 302.8 336 173 9.0 44 292.0 25.0 12.9 6.4
Memory(MB) 3791 1900 972 529 320 | 1898x2 972x2 529x2 320x2

7A time (second) 156.5 83.6 441 219 11.3 111.0 58.8 29.8 14.8
Memory(MB) 2124 1065 554 321 215 | 1065x2 554x2 321x2 215x2
6A time (second) 216.0 1155 609 303 15.5 148.6 79.2 40.4 20.1

Memory(MB) 1867 936 490 289 199 936x2 490x2 289x2 199x2

Table 3: Computation time per step on PKU-HP clusters with 10243 mesh, 12.5A, 7A, and 6A methods are
employed respectively.

number of process | 16 x1 32x1 64x1 | 16x2 32x2 64x2
12.5A time (second) 816 402 201 470.0 28.4 13.7
Memory(MB) 3669 1890 1022 | 1890x2 1022x2 692x2

7A time (second) 2015 1022 513 134.0 67.2 32.4
Memory(MB) 2004 1057 606 | 1057x2 606x2 484x2
6A time (second) 2802 1412 717 182.8 922 44.3

Memory(MB) 1747 928 541 928 x2 541x2 442x2

We run our codes on PKU-HP clusters also, which have 128 nodes, each of which has
two processors with 4G memory. The performances of three different methods, 12.5A,
7A, and 6A methods, are shown in Table 2 and Table 3 for 5123 case and 10243 case re-
spectively. 12.5A method is the original one [11], 7A and 6A methods are the new imple-
mentations of the original method, the first one has 7 N3-arrays, the second has 6. Except
for the three special cases (marked with boldface) for 12.5A method, the performance of
parallel computations is very good, the time for every step is almost exactly bisected as
the computational resource is doubled. Two bold cases in Table 2 show much longer time
needed in computation with 12.5A method for 2x 1 and 2 x 2 processors. 2 x 1 means that
there are 2 nodes in the computation, and 1 process each node. 2 x 2 means there are 2
nodes in the computation, and 2 processes each node. From the reports about memory,
we can find that the memory is almost reaching the top limit of 4G in each node. The
usage of swap space makes the efficiency lower. For 10243 simulation, the same situa-
tion appears in 16 x 2 simulation. From Table 2 and Table 3, the required memory of the
6A method is only half of that of the 12.5A method, which permits us to simulate much
larger cases with the same computer.

4 Conclusions and discussion

A new implementation algorithm of the pseudo-spectral method is proposed in this pa-
per. The advantage of this approach lies in memory saving. In fact, by using second-order

1160 Q.-D. Cai and S. Chen / Commun. Comput. Phys., 9 (2011), pp. 1152-1164

Runge-Kutta time integration and careful programming, we found that only 6 arrays are
needed for time evolution of the three-dimensional Navier-Stokes equations. We have
coded the memory-saving pseudo-spectral method with six arrays while using Message
Passing Interface and obtaining simulation results, which are identical to those from the
standard 12.5-arrays code for system sizes of 5123, 10243 and 2048%. We have also sim-
ulated flows with 2048% mesh points using a machine with 256 GB memory, which nor-
mally have a memory requirement larger than 400 GB. Typically, the computational speed
for the 6 array spectral code is 3-4 times slower than that for a 12.5 array calculation with
the same computer resource. For this reason, we have developed different spectral codes,
which can vary the number of arrays to cope with different memory and computational
speed requirements.

Appendix

Detailed description of the programming

In our code, we use six N® arrays and two N? arrays as follows:

complex, allocatable, dimension (:,:,:) :: VX,VZ,VXB,VZB
complex, allocatable, dimension (:,:) :: VYO,VYBO
complex, allocatable, dimension (:,:,:) ;1 WO,VY

N? arrays are used to store velocity component 9, at k, =0 plane. The memory of N?
arrays can be neglected compared with N°® ones. In the following statement, we use VX«
vy to show that velocity component v, is saved in array VX. The computation procedures
of the 6A method to advance ¥" to ¥"*! (which is the implementation of Eq. (2.13)) are:

1. Known ¥"*: VX094, VY20, VZ—0},

and VYO0« 0y (kx,0,kz);

2. VXB« 0%, VZB« 9", and an N? array VYBO is used to store 0Oy (kx,0,kz), then implement the
first step of Eq. (2.13) as:

(a) Note that the initial values of velocity ¥" are stored in arrays VXB, VZB and VYBO0. The
whole velocity information is saved in VX, VY and VZ also;

(b) Viscous terms in Egs. (2.5) and (2.11): VXB«— VXB —(vk?At/2)x VX, VZB«+ VZB
—(vk?At/2)% VZ, VYBO+— VYBO —(vk?At/2)* VYO,
(c) Convection terms in Egs. (2.5) and (2.11):

i. Terms which contain wy in Egs. (2.8) and (2.12):
A. Obtain @y according to Eq. (2.10), WO «— @y;
B. FFT1: Wy —wy, WO «—wy;
C. Compute the contributions Ry :kkaW/kz, and R, = —(l—kg/kz)@ in
Eq. (2.8)
e FFT,: zﬁy—wy, VY —0y;

Q.-D. Cai and S. Chen / Commun. Comput. Phys., 9 (2011), pp. 1152-1164 1161

D.

e Compute vywy— VY, FFT3: vywy —0ywx, VY «—Tywy;
e Update the right side hand term:

—
Uywy
k2’

VZB<—VZB—<;At<1];))W

VXB—VXB+ (%Athkz)

Compute the contributions Ry = —kxkyvzwx/k , and R, = —kykzm/kz in
Eq. (2.8), and R)=0,wy in Eq. (2.12)

e FFTy: 9,—v,, VZ «—uvy;

e Compute vywy— VY, FFTs5: vywy— o0y, VY «— 0,0y,

e Update the right side hand term:

1
VXB —VXB— 5tk) =5

VZB—VZB— (kykz)v‘;;)x,
VYBO— VYBO+ (zAt)sz\x,

ii. Terms which contain wy, in Eq. (2.8)

A.

mOnw

Transforming the velocity component v, to spectral space, FFTq: v;—93;, VZ
0z,

Compute 9y according to Eq. (2.4), VY <90,

Obtain @, according Eq. (2.10), WO « @y;

FFT7: (IJy—m)y, WO —wy;

Compute the contributions Ry = —(1—k§/k2)?fw\y, and R, :kxkzsz\y/kz in
Eq. (2.8)

e FFTg: 0, —v;, VZ «—uvy;

e Compute v:wy — VY, FFTg: v:wy—Tzwy, VY «—Uwy;

e Update the right side hand term:

VXB—VXB— (%At(g))vzw/,

'Uzw}/

1

. Compute the contributions Ry = —kxkzzm/kz, and R, = (l—k%/kz)@ in

Eq. (2.8)
o FFTig: 0y — vy, VX 0y,
e Compute vxwy, — VY, FFT11: vxwy— 0wy, VY — Uxwy;
e Update the right side hand term:
Kz’

VZB—VZB+ (%At(:i)) ey,

VXB+« VXB— (%Athkz)

1162

Q.-D. Cai and S. Chen / Commun. Comput. Phys., 9 (2011), pp. 1152-1164

iii. Terms which contain w; in Eq. (2.8)

A.

w

mmUN

Transform the velocity component v, to spectral space, FFTip:0x — 0y, VX

— Ux;

Transform the velocity component v, to spectral space, FFTi3:v,—9,, VZ

«—0g;

Compute 9y according to Eq. (2.4), VY —0y;
Obtain @, according Eq. (2.10), WO « @;
FFT14: @; —w;, WO «—wy;

Compute the contributions Ry = (1fk§/k2)@w\z, and R, = kakz@-w\z/kz in

Eq. (2.8)
e FFT5: zﬁy—wy, VY —y;
e Compute Uywz — VY, FFTi6: vywzezﬁw\z, VY Hz@;
e Update the right side hand term:
2

VXB—VXB+ (%At(l—%))@,

—_—
Uyw;

VZB—VZB— (%Athkz) ==

Compute the contributions Ry :kxkym/kz, Rzzkykzzgoz/k2 in Eq.

and R) = —0y; in Eq. (2.12)
e FFTq17: 9y — vy, VX 1y,
e Compute vyw,— VY, FFTig: vyw; — 0xws, VY «— 0yws;
e Update the right side hand term:
Uxw;

K27
Uxw;

K2’

1 —

VYBO« VYBO— (EAt) ez,

VXB— VXB+ (%Athky)

VZB—VZB+ (%Atkykz)

(d) Restore velocity field: FFTqi9: 0§ — 0%, VX « 0%,

y

(e) Compute 0y according to Eq. (2.4), VY <9y,

(2.8),

3. After first half step, we got ¥'/2, VXB « /%, VZB «0/2, VYBO «9,/2, and 9" is still
saved at VX « 0%, VZ <07, VY <0}, VYO «0}(kx,0,kz). The implementation of the second
half step of Eq. (2.13) is almost the same with that of the first half step. The difference is that
change At/2 to At, all quantities at n time level are substituted by that at n+1/2 level. And
all update procedures should be done to VX, VZ and VYO0 directly.

4. Eventually, we get velocity ¥"F1: VX « o+l VZ 80+ VY 81 VY0 Hﬁ;"‘l(kx,o,kz).

y

There are 38 FFTs (19 in half step 2 and another 19 in step 3) in one time step. If we have
one more N° array WT, before FFTy, insert WT+« 9., then FFT¢ and FFTg are not in need

Q.-D. Cai and S. Chen / Commun. Comput. Phys., 9 (2011), pp. 1152-1164 1163

anymore. Before FFT1y, insert VZ« 9, (the source code is "VZ=WT”, to store 9, in array
VZ) and WT+ 9y, then FFT1,, FFT13, FFT17 and FFTyg are all neglectable. Such that there
are 26 FFTs in one time step for 7A method. In a practical simulation, we can use 6A or
7A method according to the memory of computer. Obviously, if the memory permits us
to use more arrays, we can design more effective algorithms.

Acknowledgments

We appreciate Prof. Lin-Bo Zhang at LSSC for providing the super computer to us. Also
we acknowledge CCSE of Peking University to provide HP clusters. Finally, we thank
the support from National Natural Science Funds for Distinguished Young Scholar group
under Grant No. 10921202 and National Climb Plan under Grant No. 2009CB724100.

References

[1] G. I Taylor, Statistical theory of turbulence, Proc. Roy. Soc. London. A., 151 (1935), 421-444.

[2] A.N. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very
large Reynolds number, Dokl. Acad. Nauk. SSSR., 30 (1941), 301-305. also: Turbulence and
stochastic process: Kolmogorov’s ideas 50 years on, Pro. Math. Phys. Sci., 434 (1991), 9-13.

[3] A. N. Kolmogorov, On degeneration of isotropic turbulence in an incompressible viscous
liquid, Dokl. Acad. Nauk. SSSR., 31 (1941), 538-540.

[4] A.N. Kolmogorov, Dissipation of energy in locally isotropic turbulence, Dokl. Acad. Nauk.
SSSR., 32 (1941), 16-19. also: Turbulence and stochastic process: Kolmogorov’s ideas 50
years on, Pro. Math. Phys. Sci., 434 (1991), 15-17.

[5] S. A. Orszag, Numerical simulation of incompressible flows within simple boundaries: I.
Galerkin (spetral) representations, Stu. Appl. Math., 50 (1971), 293-327.

[6] C.Canuto, M. Y. Hussaini, A. Quarteron, and T. A. Zang, Spectral Methods in Fluid Dynam-
ics, Springer-Verlag, 1987.

[7] E. D. Siggia, Numerical study of small-scale intermittency in three-dimensional turbulence,
J. Fluid. Mech., 107 (1981), 375-406.

[8] R. M. Kerr, Higher-order derivative correlations and the alignment of small-scale structures
in isotropic numerical turbulence, J. Fluid. Mech., 153 (1985), 31-58.

[9] R. M. Kerr, Velocity, scalar and transfer spectra in numerical turbulence, J. Fluid. Mech., 211
(1990), 309-332.

[10] Z.-S. She, E. Jackson, and S. A. Orszag, Intermittent vortex structures in homogeneous
isotropic turbulence, Nature., 344 (1990), 226-228.

[11] S. Chen, and X. Shan, High-resolution turbulent simulations using the connection machine-
2, Comput. Phys., 6 (1992), 643-646.

[12] S. Chen, G. D. Doolen, R. H. Kraichnan, and Z. S. She, On statistical correlations between
velocity increments and locally averaged dissipation in homogeneous turbulence, Phys. Flu-
ids. A., 5 (1993), 458—463.

[13] L. P. Wang, S. Chen, J. G. Brasseur, and J. C. Wyngaard, Examination of hypotheses in the
Kolomogorov refined turbulence theory through high-resolution simulations, part 1. veloc-
ity field, J. Fluid. Mech., 309 (1996), 113-156.

1164 Q.-D. Cai and S. Chen / Commun. Comput. Phys., 9 (2011), pp. 1152-1164

[14] P.K. Yeung, and Y. Zhou, Universality of the Kolmogorov constant in numerical simulations
of turbulence, Phys. Rev. E., 56 (1997), 1746-1752.

[15] P. K. Yeung, and Y. Zhou, Numerical study of rotating turbulence with external forcing,
Phys. Fluids., 10 (1998), 2895-2909.

[16] M. Yokokawa, K. Itakura, A. Uno, T. Ishihara, and Y. Kaneda, 16.4-Tflops direct numerical
simulation of turbulence by a Fourier spectral method on the Earth Simulator, in: Conference
on High Performance Networking and Computing, Proceedings of the 2002 ACM/IEEE
conference on Supercomputing, Baltimore, Maryland, 2002, 1-17.

[17] T. Ishihara, K. Yoshida, and Y. Kaneda, Anisotropic velocity correlation spectrum at small
scales in a homogeneous turbulent shear flow, Phys. Rev. Lett., 88 (2002), 154501.

[18] Y. Kaneda, T. Ishihara, M. Yokokawa, K. Itakura, and A. Uno, Energy dissipation rate and
energy spectrum in high resolution direct numerical simulations of turbulence in a periodic
box, Phys. Fluids., 15 (2003), L21-L24.

[19] T. Gotoh, D. Fukayama, and T. Nakano, Velocity field statistics in homogeneous steady
turbulence obtained using a high-resolution direct numerical simulation, Phys. Fluids., 14
(2002), 1065-1081.

[20] Y. Kaneda, and T. Ishihara, High-resolution direct numerical simulation of turbulence, J.
Turbul., 7 (2006), N20.

