
Commun. Comput. Phys.
doi: 10.4208/cicp.311009.091110s

Vol. 9, No. 5, pp. 1219-1234
May 2011

Droplet Collision Simulation by a Multi-Speed

Lattice Boltzmann Method

Daniel Lycett-Brown1, Ilya Karlin1,2 and Kai H. Luo1,∗

1 Energy Technology Group, School of Engineering Sciences, University of
Southampton, SO17 1BJ, UK.
2 Aerothermochemistry and Combustion Systems Lab, ETH Zurich,
8092 Zurich, Switzerland.

Received 31 October 2009; Accepted (in revised version) 9 November 2010

Available online 28 January 2011

Abstract. Realization of the Shan-Chen multiphase flow lattice Boltzmann model is
considered in the framework of the higher-order Galilean invariant lattices. The present
multiphase lattice Boltzmann model is used in two-dimensional simulation of droplet
collisions at high Weber numbers. Results are found to be in a good agreement with
experimental findings.
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1 Introduction

1.1 The lattice Boltzmann method

The Lattice Boltzmann method (LBM) is a rapidly developing approach to computational
fluid dynamics (CFD). One of its major advantages over traditional CFD is in the mod-
elling of multiphase flows. In this paper the Shan-Chen multiphase method [1] is used to
study binary droplet collisions. Numerous improvements to this model have been sug-
gested in the literature, including the use of a different equation of state (EoS) [2], and
the increase in the order of isotropy of the force term [3]. The possibilities of combining
different methods will be addressed in this paper to improve stability in the droplet col-
lision simulation. These methods are initially combined with the standard LBM. Higher
order lattices, derived from an entropic viewpoint [4, 5], are then considered.

The LBM originally evolved from Lattice Gas Cellular Automaton (LGCA) methods,
which streamed individual particles along lattice velocities. Another starting point for
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the LBM, used here, is the Boltzmann transport equation, which describes the evolution
of the density function for a gas of point like particles

∂ f

∂t
+v·∇x f +F ·∇p f =

∂ f

∂t

∣

∣

∣

coll
, (1.1)

where F is an external force. In this work the Bhatnagar-Gross-Krook (BGK) collision
term is used on the right hand side of this equation. Discretisation of this equation, de-
tails of which can be found in many papers, including [6], leads to the LBM. The method
involves the streaming of distribution functions between fixed nodes along lattice veloc-
ities vi, and then relaxing these distributions to their local equilibrium, f

eq
i (x,t), at each

lattice node (the forcing term is dropped for the time being),

fi(x+vi,t+1)− fi(x,t)=− 1

τ

[

fi(x,t)− f
eq
i (x,t)

]

, (1.2)

where τ is the relaxation time. Macroscopic quantities are recovered from moments of
the distribution function

ρ=∑
i

fi, (1.3a)

ρu=∑
i

vi fi. (1.3b)

These are used to calculate the equilibrium distribution functions at each node. In two
spatial dimensions, one commonly used lattice has nine velocities, (0,0), (0,±1), (±1,0)
and (±1,±1), and is labeled the D2Q9 lattice. Its equilibrium distribution functions, to
second order in velocity, are given by

f
eq
i =wiρ

(

1+
vi ·u
c2

s

+
(vi ·u)2

2c4
s

− u2

2c2
s

)

, (1.4)

where wi is a weighting function, and cs is the speed of sound related to the reference
temperature T0 as c2

s =T0. This equilibrium is designed in such a way as to reproduce the
isothermal Navier-Stokes equations in the macroscopic limit, at the reference temperature
T0 =1/3.

An alternative derivation of the LBM comes from considering entropy. Equilibrium
distribution functions are derived to minimize a specified entropy function. From this
entropic LBM (ELBM) a systematic method has been developed for producing stable,
higher order lattices [4]. This method is outlined in Section 3.

1.2 Droplet collisions

The study of binary droplet collisions has many important applications across different
scientific areas, from understanding cloud formation in climate theory, to engineering ap-
plications, such as turbine blade cooling, spray coatings and spray combustion in diesel
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Figure 1: Regimes of binary droplet collision outcomes (from [9]).

internal combustion engines. Modeling of multiphase flows with traditional CFD is chal-
lenging as it requires the tracking of the interface between the different phases. This
becomes increasingly difficult in regimes where two interfaces split or meet and merge
together, as is the case with droplet collisions. The LBM however, does not require the
explicit tracking of interfaces, and therefore has no additional difficulty associated with
modeling droplet collisions.

Many comprehensive experimental studies of binary droplet collisions are available [7,
8], including one by Qian and Law [9]. Various regimes of droplet collisions are identified
by two dimensionless parameters, the Weber number We,

We=
2RρU2

σ
, (1.5)

where R is the droplet radius (identical for both droplets in this equation), U is their
relative velocity and σ is the surface tension of the liquid, and the impact parameter B,

B=
χ

2R
, (1.6)

where χ is the separation between the centres of the droplets, perpendicular to their
direction of motion. Different regimes for the droplet collisions are found, and a general
representation of these regions is given in Fig. 1.

The difficulty in reproducing the results of Fig. 1 with the LBM is associated with
reaching the relevant values for the Reynolds number, given by

Re=
2RU

νl
, (1.7)

where νl is the kinematic viscosity of the liquid, and for the density ratio and Weber num-
ber. In experiments, these values are typically of the order of a thousand for Reynolds
number and density ratio between the phases, and of the order of a hundred for Weber
number.
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A number of studies have been done on droplet collisions using the LBM. Inamuro et
al. [10] used the projection method [11] applied to the free energy model. They produced
results of droplet collision at a Reynolds number of the order 2000 and at Weber numbers
up to 100, observing regimes (III), (IV) and (V) with good agreement to theory [7]. How-
ever regime (II) is not observed and while it is stated that their method can reach density
ratios up to 1000:1, the droplet collision results are only given at 50:1. Luo et al. [12] used
the Shan-Chen single component multiphase (SCMP) method with a multiple-relaxation-
time scheme. They achieved Reynolds numbers up to a few hundred, and Weber number
up to 100, but also only did so at a density ratio of around 50 : 1. Regimes (I), (III), (IV)
and (V) were observed but regime (II) was not.

To achieve the experimental values of density ratio, increased stability is required.
Section 2 outlines the Shan-Chen model, and existing methods of its improvement. De-
tails of the ELBM are given in Section 3, and its application to the Shan-Chen model
described in Section 4. How to combine these different methods is discussed, and the
results of these combinations are given in Section 5. Finally, conclusions are drawn in
Section 6.

2 Multiphase LBM

2.1 The Shan-Chen model

The original idea for multiphase flow in LBM was based on a two component LGCA
model [13, 14], and involved two particle distribution functions, each having its own
LBGK equation, with an additional term, Si, introduced to represent the interaction be-
tween the two components

fi(x+vi,t+1)− fi(x,t)=− 1

τ

[

fi(x,t)− f
eq
i (x,t)

]

+Si, (2.1)

Shan and Chen modelled this perturbation term by a force Fi (see [1])

Si = Fi ·vi, (2.2)

derived from an interaction potential

V(x,x′)=Gσσ̄(x,x′)ψσ(x)ψσ̄(x′), (2.3)

where Gσσ̄ is a Green’s function, which controls the strength of the interaction, and
whether it is attractive or repulsive, and ψ is an effective number density. The differ-
ent fluid components are represented by σ and σ̄. In a SCMP system, this is simplified
to

Gσσ̄(x,x′)=G(x,x′). (2.4)
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This potential produces a change of momentum at each lattice site

dP

dt
(x)=−ψ(x)∑

i

G(x,x+vi)ψ(x+vi)vi, (2.5)

resulting in

ρu′ =ρu+τ
dP

dt
. (2.6)

The equilibrium distribution functions are then calculated from Eq. (1.4), using the new
velocity u′. If the nearest neighbour lattice sites only are used in the force calculation,
then

G(x,x′)=

{

G, |x−x′|≤ |vi|,
0, |x−x′|> |vi|,

(2.7)

and Eq. (2.5) becomes
F(x)=−Gψ(x)∑

i

ψ(x+vi)vi, (2.8)

and can now be approximated by

F(x)≈−c2
s Gψ(x)∇ψ(x). (2.9)

Using this form of the interaction force, the resulting EoS of the system becomes

P=ρc2
s +

Gc2
s

2
ψ(x)2, (2.10)

where the second term on the right hand side alters the ideal gas EoS as a result of the
interaction force. With the correct choice of G this term can lead to phase separation. For
this phase separation to occur a suitable ψ(ρ) must be chosen, and G must be negative
and below a certain critical value. The original choice was [1]

ψ(ρ)=ρ0

(

1−e
− ρ

ρ0

)

, (2.11)

where ρ0 is a reference density. This is a monotonically increasing function of density
and therefore provides the correct form for the pressure to induce phase separation. It
also has the advantage that it becomes constant at high density and therefore prevents
high density areas collapsing. Improvements to this basic model are discussed in the
following section.

2.2 Grid refinement and isotropy

One major problem affecting the above multiphase model, and others, is the formation
of spurious velocity currents at curved interfaces. These velocities increase with the den-
sity ratio, with the resulting instabilities severely limiting the density ratios that can be
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achieved. One current explanation for these velocities lies in the discretisation of the cal-
culation of the force term which lacks sufficient isotropy [15]. The order of isotropy can
be increased by relaxing the nearest neighbour constraint in the force term

F =−Gψ(x)∑
i

w(|vi|2)ψ(x+vi)vi, (2.12)

where w(|vi|2) is a weighting function, different from that used in the calculation of the
equilibrium distribution functions, and is introduced here to be equivalent to the function
G(x,x′). This can be approximated by

Fα =−Gc2
s

2
ψ∂αψ− Gc4

s

4
ψ∂α∆ψ+O(∂5). (2.13)

From the definition
∂βPαβ =−Fα+∂α(c2

s ρ), (2.14)

the pressure tensor is now given by

Pαβ =
(

T0ρ+
GT0

2
ψ2+

GT2
0

4
|∇ψ|2+

GT2
0

2
ψ∆ψ

)

δαβ−
GT2

0

2
∂αψ∂βψ+O(∂4). (2.15)

The velocities vi in Eq. (2.12) can be extended to give any required order of isotropy, with
increasing orders decreasing the spurious velocities, and increasing stability [3, 15]. This
allows higher density ratios to be reached, although it does incur some computational
overhead.

Another method involves refining the grid, while keeping the surface tension and the
density ratio in the system constant. This cannot be done with the original force equation
as density and surface tension are not independently tunable. Introducing a second term
into the force equation gives [3]

F =−ψ(x)∑
i

w(|vi|2)
[

G1ψ(x+vi)+G2ψ(x+2vi)
]

vi. (2.16)

There are now two tunable parameters in the system, G1 and G2, allowing the EoS, and
therefore the density ratio and the surface tension, to be controlled separately. Surface
tension is related to the width of the interface and this method allows the interface to be
spread over a larger number of interface points, while keeping its width proportional to
the size of the system. In this way stability is increased by spreading the density drop
over a larger number of grid points. Having introduced this more general equation for
the force, the pressure tensor is now given by

Pαβ =
(

T0ρ+
A1T0

2
ψ2+

A2T2
0

4
|∇ψ|2+

A2T2
0

2
ψ∆ψ

)

δαβ−
A2T2

0

2
∂αψ∂βψ+O(∂4), (2.17)

resulting in the surface tension

σ=−A2T2
0

2

∫ ∞

−∞
|∂yψ|2dy, (2.18)
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where

A1 =G1+2G2, A2 =G1+8G2. (2.19)

It can be seen that it is now possible to vary the surface tension and therefore the interface
width, while keeping the density ratio constant, by changing G1 and G2 in such a way as
to change A2 keeping A1 constant.

This idea can be extended so that the interface resolution can be increased, increas-
ing stability, while keeping density ratio and surface tension constant. This is done by
slightly modifying Eq. (2.11) to give

ψ(ρ)=
√

ρ0

(

1−e
− ρ

ρ0

)

, (2.20)

and rescaling co-ordinates by

y′=ρ0y. (2.21)

It can then be shown [3] that the interface width can be changed by varying ρ0, keeping
density ratio and surface tension constant, as long as A2 is varied according to

A2 =
A′

2

ρ2
0

. (2.22)

The results presented in [3] give a near ten times reduction in velocities for a doubling of
the grid size, although each increase in grid size incurs additional computational cost.

Finally, another improvement to the Shan-Chen model was suggested by Yuan and
Schaefer [2]. This involved changing the functional form of ψ to achieve a more realistic
equation of state. Rearranging Eq. (2.10) gives

ψ(ρ)=

√

2(P−ρT0)

GT0
. (2.23)

In this equation the pressure can be substituted with any form of the EoS, for example
the Carnahan-Starling EoS [17]

P=ρRT
1+ bρ

4 +
( bρ

4

)2−
( bρ

4

)3

(

1− bρ
4

)3
−aρ2. (2.24)

Note that with Eq. (2.23) in the force calculation, Eq. (2.12), the parameter G now cancels
out, and the phase change is controlled by the temperature in the EoS. The advantage
of using the CS EoS is a large increase in the density ratio achievable, with almost no
increase in computational time. The liquid to gas density ratio achieved while using this
equation is over 1000 :1, approaching the density ratio observed in realistic systems.
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3 Multi-speed lattices from the ELBM

One limiting factor on both the Weber and Reynolds numbers attainable in a lattice Boltz-
mann simulation is imposed by the magnitude of the flow velocity achievable. Reynolds
number depends linearly on velocity, but Weber number has quadratic dependence, and
therefore increases significantly with increases in relative droplet velocity. However, the
use of the standard LBM is limited in that respect because of the incomplete Galilean
invariance manifested in cubic deviations in higher-order equilibrium moments. This
restricts the velocities in simulations to u <0.1, which, in particular, causes a severe lim-
itation on the Weber number in the droplet impact simulation. It is therefore useful to
investigate LBMs that can support higher values of the flow velocity.

Recently [4, 5] a systematic derivation of higher-order lattices suitable for hosting
lattice Boltzmann models has been established. In particular, higher-order complete
Galilean invariant LB models (free of the cubic error of the standard LB) have been
suggested in any spatial dimension. In this paper, we use the D2Q25 lattice in two di-
mensions, established as a tensor product of two copies of one-dimensional velocity sets
{0,±1,±3}. It was shown in [4, 5] that the D2Q25 lattice admits two non-equivalent LB
models corresponding to the reference temperatures

T0 =1∓
√

2

5
. (3.1)

The weights of the velocities in one dimension, corresponding to the above two values of
the reference temperature are

W0 =
4

45
(4±

√
10), W1 =

3

80
(8∓10), W3 =

1

720
(16∓5

√
10). (3.2)

To extend this lattice to two dimensions velocities are obtained from the tensor product
of the one dimensional lattice with itself. Weights are similarly obtained from products
of the one dimensional weights, and in this case are given by algebraic products of corre-
sponding one-dimensional weights

W(0,0) =W0W0, (3.3a)

W(0,±1) =W(±1,0) =W0W1, (3.3b)

W(0,±3) =W(±3,0) =W0W3, (3.3c)

W(±1,±1) =W1W1, (3.3d)

W(±1,±3) =W(±3,±1) =W1W3, (3.3e)

W(±3,±3) =W3W3. (3.3f)

In the sequel, we use the higher reference temperature which corresponds to the larger
value of the speed of sound. This choice is motivated by the fact that we are interested in
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simulating droplet collisions at larger Weber numbers. Finally, the equilibrium popula-
tions are used in the form

f
eq
i =Wi

[

1+
viαuα

T0
+

uαuβ

2T2
0

(viαviβ−T0δαβ)+
uαuβuγ

6T3
0

viγ(viαviβ−3T0δαβ)
]

. (3.4)

The D2Q25 LB model just described is fully Galilean invariant (unlike the D2Q9 model),
allowing for larger values of the velocity to be used in a simulation, and admits the en-
tropy function which is a prerequisite for stability.

4 Applying multi-speed lattices to the Shan-Chen model

Having established a stable, higher order LBM, it is interesting to investigate its effect
on the stability of the Shan-Chen model. In the D2Q9 model, the nine velocities of the
lattice were also used in the finite difference scheme for evaluating the force at each lattice
point. It was shown in Section 2.2 that the order of isotropy of this calculation could be
increased by considering a larger set of velocities. However, for the D2Q25 lattice, only
the lattice velocities are used in the force calculation.

Figure 2: Verification of the Laplace law for droplets on the D2Q25 lattice.

To validate the realization of the Shan-Chen ELBM model on the D2Q25, a Laplace
law test

∆P=
σ

R
, (4.1)

was conducted, by simulating different sized droplets and measuring the change in pres-
sure, ∆P, between the outside and inside of the droplet at equilibrium. The results are
given in Fig. 2. The linear relationship between the pressure change and the inverse
droplet radius 1/R is a good verification of the accuracy of the model. One of the known
issues with the Shan-Chen model is that the linear relationship is usually offset from the
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origin. For example, in a D2Q9 system at the same density ratio (and slightly different
surface tension, due to the reference temperature difference), the equation of the line was
found to be y=0.2502x+0.0003. For the D2Q25 lattice this was y=0.2747x−0.00007, with
the intercept being significantly closer to zero.

A few comments on comparing the D2Q9 and the D2Q25 LB models are in order.
To draw accurate comparisons between this system and the equivalent D2Q9 case, the
parameters of the two systems should be matched as closely as possible. Surface tension,
viscosity, density ratio and grid resolution all influence stability. The temperatures of the
two systems differ, producing different surface tensions

σ=
∫ ∞

−∞
(Pyy−Pxx)dy=−GT2

0

2

∫ ∞

−∞
|∂yψ|2dy, (4.2)

and viscosities

ν=T0

(

τ− 1

2

)

. (4.3)

The temperature in the D2Q9 system is T0=1/3, while that in the low temperature D2Q25
model is T0 =0.3675. As this is only a small difference, the two systems can be compared
fairly using the dimensionless Weber number. In systems where the temperature differ-
ence is larger it would be appropriate to alter the surface tensions to be equal.

One criticism of the Shan-Chen model is that surface tension and density ratio cannot
be varied independently, both depending on the value of G. However, as introduced in
Section 2.2, the grid refinement method allows density ratio and surface tension to be
varied independently. The result of this is that grid resolution can be increased while
keeping surface tension and density ratio the same, spreading the interface out over a
larger number of grid points to increase stability. This method could be used to match
the surface tension between the systems. However, in the case of the high reference tem-
perature D2Q25 lattice used in the sequel, where T0 = 1.6325, the grid size would have
to be changed significantly to match parameters using grid refinement. This will there-
fore not be used in the results below, when comparing stability between the different
systems. Changing the value of the relaxation time even by a small amount can result in
large changes in stability at high density ratios, therefore the difference in viscosities will
be accounted for by comparing Reynolds numbers. While this may make direct compar-
ison between different systems difficult, trends in improvement of stability will still be
clearly observable. Note that, in the framework of the Shan-Chen model, the viscosity of
both the liquid and gas phases is the same and is given by Eq. (4.3), that is, apart from
the relaxation time, it depends only on the reference temperature T0. The corresponding
speed of sound, cs=

√
T0, is estimated as cs=1.278 for the D2Q25 lattice with the reference

temperature T0 =1+
√

2/5. In the simulations below, the relative velocity of the droplets
is considered up to u = 0.6, which corresponds to a Mach number of Ma = u/cs < 0.5.
Therefore, the simulated multi-phase flow can be still regarded as quasi-incompressible.
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5 Combining methods and results

We now have four methods available for improving the SC model, three of which (the
grid refinement, the increased force term isotropy and the CS EoS) are known to individ-
ually make significant improvement to density ratios obtainable, while the higher-order
D2Q25 lattice allows higher values of the velocity in a simulation. Both grid refinement
and increased force term isotropy have been shown to independently reduce spurious
velocities around stationary droplets, and the CS EoS has been shown to be capable of
producing density ratios of over 1000, again for the stationary droplet case. We now
look at the possibilities of combining some of these different methods, and using these
combinations to look at binary droplet collisions.

We first look at combining a different EoS with other methods. It is important to note
that when calculating the force term in each of the other three methods not only near-
est neighbour points are used. For grid refinement next nearest neighbours are included
in the calculation, for increased isotropy the number of points used increases with the
desired order of isotropy, and the points used for the higher speed lattices depend on
the lattice. The derivation for different EoS assumes nearest neighbours terms only are
included. This assumption is not true for the three other methods, and it is therefore
possible that combining EoS with these methods will not produce an improved result.
Our tests have indeed shown that when the CS EoS is used with any of the other three
methods, the density ratio, and Reynolds and Weber numbers achievable, are lower than
when the EoS is used as the sole improvement to the SC model. Therefore, in the re-
mainder of this work, the original SC EoS will be used. The three remaining methods
have been tested in various combinations for the improvement of the stability of the
Shan-Chen multiphase model-increased force term isotropy [3, 15], grid refinement [3],
and higher velocity lattices [4]. The results from the two combinations of methods are
given in Tables 1 and 2, along with those for the grid refinement alone, for comparison.

Table 1: Highest stable density ratio for droplet collision at u = 0.1, for different combinations of methods of
improving the basic Shan-Chen multiphase model.

Method Highest Density Ratio
D2Q9: Grid refinement 1840
D2Q9: Grid refinement with 14th order force term isotropy 3590
D2Q25: Grid refinement 2070

Table 2: Highest stable Reynolds and Weber numbers for droplet collisions, at a density ratio of 1000, for
different combinations of methods of improving the basic Shan-Chen multiphase model.

Method Highest Re Highest We
D2Q9: Grid refinement 72 14
D2Q9: Grid refinement with 14th order force term isotropy 123 31
D2Q25: Grid refinement 71 38
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Figure 3: Coalescence (square), separation (cross) and intermediate regimes (crossed square) (separation fol-
lowed by re-coalescence) for droplet collisions, using grid refinement and the D2Q25 lattice.

Highest density ratios were found for collisions with each droplet moving at u =0.1, by
increasing the value of G, it should however be noted that differences in T0 do give differ-
ences in surface tension and viscosity, and therefore comparison between density ratios
are at slightly different Reynolds and Weber numbers. The initial lattice size used was
100×100. For the case of grid refinement, this was increased to 200×200, while keeping
the properties of the system constant by setting G2 = G/2 and G1 = 0. This doubling of
lattice size results in the halving of ρ0.

Density ratio was then set to 1000 for all the models, and droplet velocity increased
to find the highest stable Weber and Reynolds numbers. This provides a more accurate
comparison between the methods, as dimensionless parameters are compared at equal
density ratios.

It can be seen that the D2Q25 lattice has given an increase in attainable Weber number,
when combined with grid refinement. Looking specifically at the comparison between
the grid refinement method alone, and the grid refinement method with the D2Q25 lattice
at the higher reference temperature, the highest stable Weber number is seen to increase
by nearly a factor of three, at nearly the same Reynolds number. The higher Weber num-
ber is due to the much higher velocities, up to u =0.6, which can be stably simulated on
the D2Q25 lattice (the Weber number increasing as the square of the relative velocity of
the droplets), however there is a trade off from the increase in surface tension, due to the
higher value of T0. The Reynolds number is about the same at this higher velocity, due to
the higher temperature increasing the viscosity of the system.

Using the grid refinement with the D2Q25 lattice, droplet collisions at high Weber
numbers for varying impact parameters can be looked at in an attempt to reproduce the
results of Fig. 1. The head on collision cases are more stable than for impact parameters
approaching 1. This is due to the separation that can occur, being less stable than the
coalescence case. It was therefore necessary to decrease the density ratio slightly, to 500:1,
to produce the results in Fig. 3.
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Figure 4: Lattice Boltzmann simulation of droplet coalescence, point ”A” of Fig. 3, We = 37.0, B = 0.25,
corresponding to Regime (III) of the experimental results in [9].

Figure 5: Lattice Boltzmann simulation of off-centre separation, point ”B” of Fig. 3, We = 34.9, B = 0.67,
corresponding to Regime (IV) of the experimental results in [9].

Points A and B in Fig. 3 corresponding to coalescence and separation, respectively,
are shown in Fig. 4 and Fig. 5. Point C shows an intermediate step observed between
separation and coalescence, where the droplets separate briefly, but then re-coalesce, as
shown in Fig. 6. The approximate line dividing coalescence and separation is qualita-
tively similar to that observed by Qian and Law [9]. It is possible that the transition from
coalescence to head on separation is being observed at low impact parameters, however
this requires a further investigation. In the current two-dimensional simulation, a fully
reflexive separation was not observed, further investigation into this regime is required.

For a density ratio of 500 : 1, the highest stable Weber number reached was We=127.
At this higher Weber number a different type of separation was observed, with droplets
separating from either end, leaving a 3rd central droplet. This is shown in Fig. 7. This
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Figure 6: Droplet separation and re-coalescence, point ”C” of Fig. 3, We=39.3, B=0.17.

Figure 7: Head on separation and slow re-coalescence, We=127.2, B=0.0.

head-on collision and separation case agrees qualitatively with experimental observa-
tions. In the present simulation the head on separation was followed by a slower process
of re-coalescence which could be due to the two-dimensional feature of the LB model
used. Clearly, more studies to clarify this point are needed in the future.

6 Conclusions

Starting from the Shan-Chen multiphase model, different improvements and their com-
binations have been considered. Spurious velocities around curved interfaces are known
to cause instability, preventing the original Shan-Chen model from achieving high den-
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sity ratios. Methods that were previously known to reduce these velocities and there-
fore increase the density ratios achievable were re-examined. These included grid refine-
ment [3], higher order force term isotropy [3, 15], and the inclusion of a more realistic
EoS [2]. Finally, a new method for developing lattices with larger velocity sets was con-
sidered in detail and combined with the Shan-Chen model.

The density ratio of about 1000 required to simulate realistic multiphase systems has
been achieved in different ways. The CS EoS was previously known to produce high
density ratios, however it was found that due to the nearest neighbour assumption in the
force term, this method could not be successfully combined with any of the other three.
On the other hand, it has been shown that combining grid refinement with a higher ve-
locity lattice or higher order isotropy in the force term can produce density ratios similar
to those seen with the CS EoS. Future studies on using EoS when points beyond nearest
neighbours need to be included in the force calculation are necessary.

At a fixed density ratio of 1000, different combinations of methods were investigated.
It has been shown that the multi-speed lattice allowed higher Weber numbers to be
reached, by relaxing the constraint on velocities. When combined with grid refinement,
the high-speed lattice can give roughly a factor of three increase in the Weber number
over that possible with grid refinement alone. While Reynolds numbers remain low in
all systems, this is a known problem with the single relaxation time LBM. Incorporating
higher velocity lattices into a recently proposed quasi-equilibrium LBM [16] should allow
higher Reynolds numbers to be reached, and will be considered in the future. It would
also be worth studying further lattices derived from the entropic method, and looking at
both their high and low temperature cases.

Finally the combination of the D2Q25 lattice with grid refinement was used for a
preliminary study of the different droplets collision regimes for varying Weber number
and impact parameter. This has shown good qualitative agreement with existing experi-
mental results; however investigations at more realistic Reynolds numbers are required.
Additionally the three-dimensional case needs to be considered, which will be possible
using the recently introduced Galilean invariant lattice Boltzmann model [18].
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