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Abstract. A new boundary condition, aimed at inhibiting near-wall condensation ef-
fects in lattice Boltzmann simulations of capillary flows in micro-corrugated channels,
is introduced. The new boundary condition is validated against analytical solutions
for smooth channels and demonstrated for the case of three-dimensional microflows
over randomly corrugated walls.
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1 Introduction

The Lattice Boltzmann method was devised as a computational alternative to the solu-
tion of the Navier-Stokes equations for the numerical simulation of macroscopic flows [1].
For the last few years, however, an intense activity has been directed by many groups to-
wards the application of LB techniques to microscopic and nanoscopic flows [2–7]. The
somewhat unanticipated success of LB beyond the macroscopic context is probably due
to the existence of a large body of microfluidic problems, in fact larger than textbook in-
dications, for which continuum hydrodynamics is violated, but somehow mildly, i.e., in a
way which can be mended without necessarily resorting to atomistic simulations (molec-
ular dynamics). This statement can be made a little more precise as follows. The break-
down of hydrodynamics in microfluidic problems is often signalled by the appearance
of infinities/singularities in the corresponding solutions. Moving contact lines, droplet
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break-up and coalescence, are just but a few examples in point [8–10]. It is generally
understood that such infinities are regulated by an atomistic cutoff. Nevertheless, going
all the way down to atomistic simulation proves unpractical for want of compute power.
This no-fly zone offers in principle a rich hunting ground for mesoscopic/kinetic meth-
ods. However, achieving quantitative accuracy is by no means a given, and depends on
a careful application of these methods in the appropriate parameter regime. In this paper
we shall discuss a few aspects related to the specific case of capillary front-propagation
in rough geometries.

2 The method

We use the LB method with the standard Shan-Chen (SC) [11] pseudo-potential forcing.
The corresponding lattice Boltzmann equation takes the following form:

fi(~r+~ci∆t,t+∆t)− fi(~r,t)=
∆t

τ

(
f

eq
i (~r,t)− fi(~r,t)

)
, (2.1)

where fi(~r,t) represents the probability of finding a particle at time t on the lattice site~r,
moving with velocity~ci. The left-hand-side represents the particle free-streaming, while
the right hand side encodes particle collisions in the form of a relaxation on a time scale
τ to the local equilibrium f

eq
i . The latter is given by a Maxwell-Boltzmann distribution

truncated to second order in the local Mach number, and reads as follows:

f
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(
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where wi are the standard weights for the 19-speed 3d lattice considered in this work, and
~~Q =~ci~ci−c2

s I is the quadrupole projector upon the i-the direction, c2
s = ∑i wic

2
ix, being the

lattice sound speed. In the above, ρ=∑i fi is the local fluid density and ~u′=(∑i fi~ci+~Fτ)/ρ
is the local fluid speed, including the contribution of the interparticle-interaction force

~F=−GΨ(~r;t)∑
i

wiΨ(~r+~ci∆t)~ci. (2.3)

In the above, G is the coupling strength, and Ψ is the usual density-dependent pseudo-
potential Ψ(ρ)= (1−e−ρ). As is well known, the SC method provides the two basic fea-
tures of non-ideal fluid behavior, namely a non-ideal equation of state p=ρc2

s +Gc2
s Ψ2/2,

and a non-zero surface tension

γ ∝−
G

2
c4

s

∫
(∇Ψ)2dy,

where y runs across the interface. It is readily shown that for G<−4, the above equation
of state generates coexisting liquid and vapor phases.
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The SC method also allows the definition of a contact angle at the triple contact point
between the liquid/vapor interface and a solid wall. A practical way of modeling fluid-
wall interactions is to set the value of the pseudo-potential at a wall site W to a prescribed
value, specified by a surface-density parameter ρW [12] (not to be identified with the fluid
density at the wall):

Ψ(W)=Ψ(ρW ). (2.4)

Increasing values of ρW code for decreasing contact angles (the fluid is attracted to the
wall), covering the full range 0◦−180◦. A convenient alternative is to set the surface
density through a given surplus/deficit with respect to the surrounding fluid, i.e.,

Ψ(W)≡Ψ(ρW )=Ψ(ρ̄F +∆), (2.5)

where ∆ is the density surplus and bar indicates a weighted average over the fluid sites
F connected to the wall site W. Essentially, this boundary condition keeps a fixed density
gradient at the wall, and again, increasing values of ∆ code for decreasing contact angle.
In particular, for G=−5, the dependence between the contact angle θ and the parameter
∆ is well fitted by the following linear relation:

θ =90(1−1.83∆).

3 Boundary conditions with rough walls

Due to the limited liquid/vapor density ratios supported by the SC method, both bound-
ary conditions are prone to spontaneous condensation, especially for vapor in deep val-
leys, i.e., light-fluid sites surrounded by a majority of wall sites (see Fig. 1). In fact, such
sites experience enhanced wall-interaction, which eventually leads to condensation be-
fore the capillary front has time to reach the valley. As a result, the valley is literally
hidden (filled up) by the condensed liquid, so that the front can proceed nearly like on a
smooth surface, thereby suffering less mechanical friction than in the absence of conden-
sation.

Figure 1: Spurious condensation of fluid sites surrounded by solid sites.

We wish to point out that the opposite situation, i.e., liquid suffering less friction upon
sliding over a vapour/gas layer, sometimes referred to as ”super-hydrophobicity”, is
ruled out on the basis of the size of our micro-corrugations, which is well above the
nanometric scales usually required for the onset of super-hydrophobicity [13].
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It should also be emphasized that local condensation effects in micro-cavities might
well bear a physical relevance, for fluids sufficiently close to the critical point. Here,
however, we wish to address situations well away from the critical point (such is typi-
cally the case for current experiments), so that local micro-condensation can essentially
be ruled out on a thermodynamic basis. It is only in this respect that such condensation
effects are referred to as ”artificial/spurious” in the present work. As to the relatively
low liquid/vapor density ratios attained in the simulations, it has been shown that above
ρL/ρV >10, the density ratio has negligible effects on the front propagation, so that con-
densation phenomena can safely be neglected [14, 15].

To prevent artificial fill-up, we have modified the boundary condition Eq. (2.5) as
follows. The idea is to apply the density surplus only if the fluid density exceeds a given
density threshold, i.e.,

ρ(W)= ρ̄(F)+∆H(ρ̄(F)−KρL), (3.1)

where the Heaviside function, H, implies that the density surplus applies only to the
sites such that ρ̄(F)>KρL. Here, K is an inhibition parameter and ρL is the (initial) liquid
density. This way, the wall is ”passivated”, in the sense that the interaction between the
vapor and the wall is strongly inhibited. The inhibition parameter K is then calibrated in
such a way as to prevent spurious condensation without affecting the value of the con-
tact angle at a given values of G and ∆. Remarkably, such calibration procedure proves
realizable, in the sense that, with a given G, fixing the density ratio, it proves possible to
find values of ∆ and K such that the desired value of the contact angle is achieved.

3.1 Validation

As a validation test, in Fig. 2, we show the median front position z(t) for the case of two
three-dimensional smooth channels, with the following dimensions and contact angles:

• width W =1.5µm, height H =20µm, length L=120µm, θ =54◦;

• width W =1.4µm, height H =11.4µm, length L=140µm, θ =31◦.

For both channels, we set dx=0.1µm, corresponding to 15×200×1200 and 14×114×1400
uniform lattices. The main parameters are G=−5, ρL =1.9314, ρV =0.156, ∆=0.2339, and
K =0.12 for θ =54◦, and ∆=0.38 and K =0.12 for θ =31◦.

These parameters are chosen in such a way to produce essentially the same results as
with standard BC on smooth walls, while leaving the functional relation between ∆ and
the contact angle, basically intact.

The numerical results are compared against the analytical Washburn solution for a
rectangular microchannel [16–18]

z̃2
− z̃2

0 =cosθ
(
t̃−1+e−t̃

)
, (3.2)

where z̃ and t̃ are dimensionless variables defined as follows:
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Figure 2: Time evolution of the centerline front position for two different contact angles, θ =31◦ and θ =54◦.
LB results versus analytical Washburn solution, Eq. (3.2).

Here ε = H/W is the aspect ratio of the channel cross section, ρ, µ and σ are the fluid
density, viscosity and surface tension, respectively. Despite the relatively low density
ratio ρL/ρV ∼14, excellent agreement is observed in both cases.

4 Three-dimensional microflows with rugged boundaries

Next, we consider a three-dimensional channel with rough top-bottom boundaries, whose
topography is a lattice adaptation of experimental data [19]. The channel dimensions are

(a) Standard BC at time t=147000 (b) Modified BC at time t=147000

Figure 3: Snapshots of the fluid density at time t=147000. Standard wall boundary conditions (a) and modified
(b) are compared. With standard BC, due to condensation in the valley, the front is not slowed-down, while with
modified BC the vapor in the valley does not condensate so that the front suffers a temporary slowing-down.

(a) Standard BC at time t=154000 (b) Modified BC at time t=154000

Figure 4: Snapshots of the fluid density at time t=154000. Standard wall boundary conditions (a) and modified
(b) are compared. The effect shown in Fig. 3 is further highlighted here, with standard BC, the front moves
ahead of the corrugation while with the modified BC, the front slows down and undergoes a (temporary) pinning
in the micro-corrugation.
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as follows; width W = 3.1µm, height H = 24.5µm (mean height), length L = 413µm. We
use a discretization step dx=0.516µm, corresponding to 48 nodal points across the main-
stream direction. A liquid fluid is continuously injected at the inlet with a prescribed
density ρL, corresponding to the equilibrium density of the liquid, while at the outlet a
developed flux condition is imposed (zero longitudinal density gradient). The liquid-
vapor interface is maintained by a super-critical value of the coupling strength G =−5
and a contact angle θ = 47◦. The values of the liquid and gas densities are set to their
equilibrium values, ρL =1.9314 and ρV =0.156, respectively (in lattice units).

In Fig. 3, we show a snapshot of the fluid front at time t = 147000, close to a deep
corrugation. From this figure we see that, with standard boundary conditions, due to
condensation in the valley, the front goes over the hidden valley with no appreciable
slow-down. With the modified boundary conditions, however, the vapor in the valley
does not condensate so that, when the front comes to this location, it suffers a temporary
slowing-down due to the geometrical corrugation.

This effect is further highlighted in Fig. 4, which show the fluid front at t=154000, i.e.,
7000 time-steps later. From these figures it is apparent that, with standard BC, the front
moves ahead of the corrugation with no additional drag, while with the modified BC, the
front slows down and undergoes a (temporary) pinning in the micro-corrugation.

Local condensation effects may produce appreciable changes in the long-term evo-
lution of the front, see Fig. 5. Fig. 5 refers to a microchannel with rough top and bot-
tom walls, the channel dimensions being: Width W = 1.4µm, Height H = 11.4µm (mean
height), Length L = 140µm. The walls of the channel are made of PDMS and the fluid
injected into the channel is ethanol. The contact angle of ethanol on PDMS is experimen-
tally estimated to be 64◦. The parameter setting for the Shan-Chen model is as above,
namely: G=−5, ρL =1.9314 and ρV =0.156, ∆=0.163, and K=0.12, in order to reproduce
the experimental contact angle. We use a discretization step dx = 0.1µm, corresponding
to a 14×114×1400 lattice. The correlation length of the random profile is h∼13 microns,
hence well grid-resolved.

In Fig. 5, we compare the front position as a function of time for both the standard
and modified wall boundary condition for this second channel. As one can see, with the
standard wall conditions, the front is propagating faster than with the new conditions
proposed here. In fact, consistently with two-dimensional findings, it propagates slightly
faster than the Washburn solution for a smooth channel of equal dimensions.

Although the correlation length of the random profile is well resolved in the grid,
we are nonetheless left with local discrete staircasing effects at the scale of a few lattice
sites, hence comparable or smaller than the interface width. Indeed, the r.m.s. of the
profile is about 5 lattice spacings, hence quite comparable with the interface width. In
order to appraise the sensitivity of the front propagation to grid discreteness, we have
repeated the same simulation at a doubled resolution (dx=0.05µm). The results, shown
in Fig. 6, show that indeed, a better resolution of the wall roughness yields an increase of
dissipation, thereby resulting in a more marked slowing-down of the front. However, the
overall picture remains basically unchanged, with the surface randomness accounting for
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Figure 5: Time evolution of the front with standard and modified boundary condition for the second microchan-
nel, with W=1.4µm, H=11.4µm, L=140µm and contact angle 64◦. Numerical results are also compared with
the analytical Washburn profile obtained for θ =64◦.

Figure 6: Time evolution of the front with higher resolution W = 1.4µm, H = 11.4µm, L = 70µm and contact
angle 64◦. Numerical results are compared with the analytical Washburn profile obtained for θ =64◦.

about 5−10% slowing-down over a time span of about 0.5ms. This slowing-down results
from the cumulative effects of the sequence of micro-pinning events, the undulations in
the trajectory z(t), associated with the local corrugations.

5 Conclusions and outlook

In conclusions, we have introduced a new boundary condition aimed at taming spu-
rious condensation effects in lattice Boltzmann simulations of capillary flows in micro-
corrugated geometries. In addition, to better resolve the corrugations versus the inter-
face width, high-resolution parallel simulations [20] will be required. The new boundary
condition has been validated against the analytical Washburn solution for smooth chan-
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nels and demonstrated for the case of three-dimensional capillary microflows over ran-
domly corrugated walls. The simulations indicate an appreciable, although not dramatic,
slowing down of the front, due to the surface roughness. For the geometry in point, no
hard-pinning events have been detected. The new boundary condition has been postu-
lated on the basis of empirical, yet physically plausible, grounds. In fact, the inhibition
parameter K might be associated with some form of chemically heterogeneous coating of
the micro-corrugations. Nevertheless, a more systematic theoretical derivation remains
to be developed for the future.
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