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Abstract. We present a variable time step, fully adaptive in space, hybrid method for
the accurate simulation of incompressible two-phase flows in the presence of surface
tension in two dimensions. The method is based on the hybrid level set/front-tracking
approach proposed in [H. D. Ceniceros and A. M. Roma, J. Comput. Phys., 205, 391-
400, 2005]. Geometric, interfacial quantities are computed from front-tracking via the
immersed-boundary setting while the signed distance (level set) function, which is
evaluated fast and to machine precision, is used as a fluid indicator. The surface ten-
sion force is obtained by employing the mixed Eulerian/Lagrangian representation
introduced in [S. Shin, S. I. Abdel-Khalik, V. Daru and D. Juric, J. Comput. Phys., 203,
493-516, 2005] whose success for greatly reducing parasitic currents has been demon-
strated. The use of our accurate fluid indicator together with effective Lagrangian
marker control enhance this parasitic current reduction by several orders of magni-
tude. To resolve accurately and efficiently sharp gradients and salient flow features we
employ dynamic, adaptive mesh refinements. This spatial adaption is used in concert
with a dynamic control of the distribution of the Lagrangian nodes along the fluid in-
terface and a variable time step, linearly implicit time integration scheme. We present
numerical examples designed to test the capabilities and performance of the proposed
approach as well as three applications: the long-time evolution of a fluid interface un-
dergoing Rayleigh-Taylor instability, an example of bubble ascending dynamics, and
a drop impacting on a free interface whose dynamics we compare with both existing
numerical and experimental data.
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1 Introduction

Multi-phase flows are the source of numerous nonlinear processes of both scientific and
technological relevance. These flows are characterized by a complex motion of fluid
interfaces that separate masses of fluids with different material properties and the free
boundaries can undergo significant deformations and topological transitions.

Due to the multi-component nature of the flow, the fluid interfaces are subjected to
surface tension and this interfacial force plays a fundamental role in nearly all multi-
phase flows of physical interest. Moreover, multiphase flows are typically multi-scale;
the important phenomena of drop coalescence and break-up [1–3] as well as the gener-
ation of short capillary waves [4, 5] are just a few examples that exhibit the presence of
multiple length scales. Therefore, an effective numerical method for the simulation of
multiphase flows is required both to accurately represent the singularly supported inter-
facial forces and all the physically relevant flow quantities and to faithfully capture the
disparate length scales. The method we propose here responds to these requirements in
a computationally efficient and robust manner.

Numerical methods for computing multiphase flows can be broadly divided into two
types: capturing and tracking. In capturing methods, such as the continuum surface
force (CSF) model [6], the level set approach [7,8], the phase field method [9–15], and the
volume-of-fluid (VOF) method [16–19], the fluid interface is implicitly defined through a
globally specified scalar function (the mass density, a signed distance function, an order
parameter, or a volume fraction) which acts as a fluid indicator. These methods capture
the interface motion on an Eulerian grid and handle automatically changes in interfa-
cial topology. Front-tracking methods [20–25] on the other hand, use a separate grid to
explicitly follow the interface motion and thus can achieve, in general, an accurate repre-
sentation of geometric interfacial quantities.

In an attempt to overcome some of the inherent limitations of the aforementioned
methodologies, there has been in recent years an increased attention to develop hybrid
approaches [19, 26–31]. These hybrid strategies seek to exploit the best features of two
different approaches by merging them into one method. The method presented here fol-
lows this philosophy. It originates from the hybrid level-set/front-tracking (LeFT) setting
proposed in [27], from the fast and accurate fluid indicator developed in [30], and from
the adaptive immersed boundary (IB) method first introduced by Roma, Peskin, and
Berger [32] (for a recent, alternative adaptive version of the IB method see [33]). More-
over, the method combines these approaches with a mixed Lagrangian/Eulerian tension
force representation proposed by Shin et al. [34].
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Our approach employs the IB method to couple the explicitly tracked fluid interface
with the Eulerian fluid domain and uses a signed distance (level-set) function as a fluid
indicator. The tension forces and the interfacial geometric quantities are computed from
the tracked interface. Thus, the method retains one of the advantages of front-tracking
which is an accurate computation of interfacial quantities and at the same time benefits
from a continuous, geometry-based fluid indicator, the level-set function. Moreover, this
signed distance function is updated only locally, in a thin neighborhood of the interface,
at optimal computational cost and is computed to machine precision for a piece-wise
linear representation of the fluid interface [30].

One of the main contributions of the current work is to present a variable time step,
fully adaptive in space, hybrid method to resolve accurately and efficiently interfacial
forces and the disparate scales that are typical of many challenging, important two-phase
flows. We achieve this by endowing the LeFT approach with adaptive mesh refinement
(AMR), an efficient and robust semi-implicit time discretization, and a dynamic control of
the distribution of the Lagrangian nodes in the interfacial grid. In addition, the combina-
tion of the accurate level set function with the hybrid force of Shin et al. [34] produces an
unprecedented reduction of spurious currents and the increased resolution afforded by
the AMR yields an accurate area conservation for long time integrations. We restrict the
presentation of the method to two dimensions here but we envision that the full approach
could be extended to three dimensions.

The rest of the paper is organized as follows. In Section 2, we review the hybrid LeFT
setting. This is followed by a short section (Section 3) on the hybrid interfacial force [34]
that we adopt here. The numerical method is described in Section 4 and its performance
and characteristic features are highlighted in Section 5 with physically relevant numerical
examples. Concluding remarks are presented in Section 6.

2 Hybrid formulation for two-phase incompressible flows

To describe the new approach, let us consider a single fluid interface separating two
incompressible fluids of constant but possibly different densities and viscosities and in
the presence of surface tension. The method is built from the hybrid formulation [27] in
which the interface or immersed boundary is explicitly tracked and the signed distance,
level set function φ is used as a fluid indicator. Representing the tracked interface as
X(α,t), where α is a Lagrangian parameter, we have

ρ(φ)[ut+(u·∇)u]=∇·[µ(φ)(∇u+∇u†)]−∇p+ρ(φ)g+fσ, (2.1)

∇·u=0, (2.2)

Xt(α,t)=
∫

Ω
u(x)δ(x−X(α,t))dx, (2.3)

where φ>0 for one of the fluids, φ<0 for the other, and φ=0 along the interface between
the two phases. Here, u, p, g, and fσ are the velocity field, the pressure, the gravitational
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acceleration, and the surface tension force respectively.
The level set function φ is not obtained by solving

φt+(u·∇)φ=0

as it is done usually in level set methods. Instead, it is computed directly but locally
using a fast algorithm for the signed distance [35]. With this approach φ is, up to machine
precision, the signed distance to a piece-wise linear representation of the interface at all
times. It never deteriorates and thus there is no need for re-initialization. We describe in
more detail the computation of φ in Section 4.3.

Note that the δ-distribution in (2.3) is replaced by mollified function δh as done origi-
nally by Peskin’s [20]. We take δh(x)=dh(x)dh(y) with

dh(ξ)=







0.5
[

1+cos
(π

h
ξ
)]

/h, for |ξ|≤h,

0, for |ξ|>h,
(2.4)

where h is a numerical parameter depending on the Eulerian grid mesh sizes ∆x and
∆y. For the computations reported here, h = 2∆x and, to simplify the exposition of the
numerical methodology, it is assumed that ∆x = ∆y. This choice for dh provides good
regularization properties around the interface and it is motivated by a set of compatibility
properties described by Peskin [20]. Alternative discretizations can be found in [32, 36].

Given φ, the material quantities are obtained by the relations

ρ(φ)=ρ1+(ρ2−ρ1)Hh(φ), (2.5)

µ(φ)=µ1+(µ2−µ1)Hh(φ), (2.6)

where ρ1, ρ2 and µ1, µ2 are the constant densities and viscosities of the bulk phases,
respectively, and Hh(φ) is a mollified Heaviside function defined by

Hh(ξ)=











0, for ξ <−h,

0.5[1+ξ/h+sin( π
h ξ)/π], for |ξ|≤h,

1, for ξ >h.

(2.7)

We note that for this Heaviside function we have

dHh

dξ
(ξ)=dh(ξ).

In [27, 30] the surface tension force fσ was computed solely from the Lagrangian rep-
resentation of the interface. In this work, we opt instead for the hybrid, Lagrangian-
Eulerian force form proposed in [34] which significantly reduces spurious currents due
to a mismatch in the pressure gradient and the interfacial force. For completeness, we
describe this hybrid force next.
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3 Hybrid interfacial force formulation

We outline here the hybrid force formulation proposed in [34]. Let us begin with the
Lagrangian approach for computing the interfacial force in IB-type methods,

f
L
(x)=

∫

Γ

∂

∂α
(σt̂)δ(x−X(α))dα, (3.1)

where σ is the surface tension coefficient and t̂ is a tangent unit vector. For constant
surface tension, one can write (3.1) as

fL(x)=σ
∫

Γ
κ(α)n̂(α)δ(x−X(α))|Xα(α)|dα, (3.2)

where κ is the mean curvature. Note the extra factor |Xα(α)| in (3.2) which accounts for
the fact that α is just a Lagrangian variable and not necessarily arclength (c.f. [7]). On the
other hand, the Eulerian form of the constant tension force is generally written as

f
E
(x)=σκ

E
(x)∇Hh(φ(x)), (3.3)

where the Eulerian curvature κE is computed from φ by

κE =−∇·
∇φ

|∇φ|
. (3.4)

Following [34], we write
fL(x)=σκL (x)n̂L(x), (3.5)

where

n̂L(x)=
∫

Γ
n̂(α)δ(x−X(α))|Xα(α)|dα. (3.6)

Thus, we have that

κL(x)=
1

σ

f
L
(x)·n̂

L
(x)

n̂
L
(x)·n̂

L
(x)

. (3.7)

We can now use the Eulerian form of the force (3.3) to define a hybrid force:

f
H
(x)=σκ

L
(x)∇Hh(φ(x)) (3.8)

and replace in (2.1) fσ by fH .

4 Numerical method

The numerical method that we introduce in the current work is hybrid in two different
aspects and fully adaptive in space. It is hybrid first because we exploit qualities from
both the IB Method (front-tracking) and from the level set formulation (front capturing)
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and second because the singular interfacial force is computed, as explained previously,
using a mixed Eulerian-Lagrangian formulation.

Full adaptivity is introduced in space both through dynamic control of the Lagrangian
markers, which define the interface, and through Eulerian mesh refinement, which in-
creases locally the resolution on the grid where the flow equations are solved. For the
time discretization, we employ a robust, variable time-step second order semi-implicit
temporal scheme. We highlight that, in contrast to what is done in the compressible flow
context where ”sub-cycling in time” is adopted (e.g., [37]), here all the refinement levels
of the Eulerian mesh evolve in time sharing a common time step.

In the next few subsections, we detail our method specifically designed for a robust
and efficient handling of incompressible two-phase flows.

4.1 Dynamic control of the Lagrangian parametrization

It is well-known that front-tracking methods applied to multiphase flows suffer from
tension-induced numerical stiffness [38–40]. High order spatial derivatives in the in-
terfacial forces and the excessive marker (particle) clustering, typical in those interface
problems, lead to prohibitively small time steps for explicit methods.

An effective approach to relax this numerical stiffness is to use a suitably chosen tan-
gential velocity for the interface markers to control their distribution along the interface
(dynamic interfacial reparametrization [39, 41, 42]) and thus to prevent their excessive
clustering. This idea is a key ingredient in the non-stiff IB-based method in [41] which
was successfully employed to relax the time stepping in the study of the long-time dy-
namics of a sheared interface with uniform surface tension. Alternatively, selective point
deletion and insertion has also been used in this context [43]. However, the stiffness due
to nonuniform (elastic) tension is of a different nature [40] and we do not treat this case
here.

In the present work, to overcome the aforementioned difficulties associated with La-
grangian tracking and the surface tension-induced stability constraint, following the suc-
cess in [41], we employ a dynamically adaptive interface tracking in the form of marker
equidistribution. Following the ideas introduced by Hou, Lowengrub, and Shelley [39] in
the context of boundary integral methods, we use the freedom in selecting the tangential
velocity of the interface markers to control their distribution at all times (kinematically
the markers are only required to move with the normal velocity of the fluid). Thus (2.3)
can be modified to

Xt(α,t)=
∫

Ω
u(x)δh(x−X(α,t))dx+UA(α,t) t̂, (4.1)

where UA(α,t) is arbitrary and determines the parametrization used to describe the inter-
face. For example, a UA can be found to cluster interface markers in a controlled fashion
in regions of high curvature [42] or to keep the markers equidistributed [39, 41]. If the
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markers are equidistributed initially then it is easy to show that

UA(α,t)=−UT(α,t)+
∫ α

0
(sακUN−< sακUN >)dα′, (4.2)

keeps them equidistributed at all times, where

UT = t̂·
∫

u(x)δh(x−X(α,t))dx, UN = n̂·
∫

u(x)δh(x−X(α,t))dx,

sα =
√

X2
α+Y2

α is the arc-length metric, κ is the mean curvature, and < ·> stands for the
spatial mean over one spatial period.

4.2 Non-stiff temporal discretization

The incompressible Navier-Stokes equations are solved by a projection method. Its
time discretization is based on a second order semi-backward difference formula (SBDF or
Gear’s method) and it is inspired by that employed in [13] with some notable differ-
ences. Namely, modifications to deal with variable density, adaptive time-stepping, and
a different pressure update which includes solving the pressure Poisson’s equation with
homogeneous, Neumann boundary conditions.

We employ a linearly implicit approach to discretize the viscous term with variable
viscosity as suggested in [13]. To illustrate the idea of this discretization we consider the
variable (perhaps non-linear) coefficient diffusion equation ut =∇·(χ∇u), where χ > 0.
We rewrite that diffusion equation as

∂u

∂t
=λ∇2u+ f (u), (4.3)

where f (u) =∇·(χ∇u)−λ∇2u and λ is a positive constant to be conveniently chosen.
We now perform the temporal discretization of (4.3) employing the second-order, two-
step Gear’s method for which we treat the first term of the right hand side implicitly and
we extrapolate the second term in time (explicit treatment). If we allow for variable time
steps, the resulting two-step scheme for (4.3) can be written then as

a2un+1+a1un+a0un−1

∆t
=λ∇2un+1+b1 f n+b0 f n−1, (4.4)

where a0 = ∆t2/(∆t0∆t1), a1 =−∆t1/∆t0, and a2 = (∆t0+2∆t)/∆t1 , b0 =−∆t/∆t0 and
b1 = ∆t1/∆t0, with ∆t = tn+1−tn, ∆t0 = tn−tn−1, and ∆t1 = ∆t0+∆t. Note that for fixed
time steps the coefficients above assume their usual, constant values a0 = 1/2, a1 =−2,
a2 =3/2, and b0=−1, b1=2. To obtain u1, the numerical solution at time t= t1, we simply
employ forward Euler’s method which is enough to achieve second-order in time, as
the numerical validation and other results, included further ahead, show. This linearly
implicit strategy for diffusion equations such as (4.3) can be found in [44–46]. We discuss
later the selection of the parameter λ.
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Based on the ideas above, we first rewrite the momentum equation

ρ[ut+(u·∇)u]=∇·[µ(∇u+∇u†)]−∇p+ρg+fH (4.5)

as

ut =λ
∇2u

ρ
−
∇p

ρ
+g+

f

ρ
, (4.6)

where

f=∇·µ(∇u+∇u†)−λ∇2u−ρ(u·∇)u+f
H

.

Next, for the discretization in time, we employ the extrapolated Gear’s method with
variable time stepping (4.4), treating implicitly all the terms in the right hand side of
(4.6), except for f which we extrapolate in time. The result, along with the incompress-
ibility constraint, express the coupling between the pressure and the velocity which can
be translated into a set of equations given by

a2un+1+a1un+a0un−1

∆t
=λ
∇2un+1

ρn+1
−
∇pn+1

ρn+1
+g+

b1fn +b0fn−1

ρn+1
, (4.7)

∇·un+1 =0. (4.8)

To handle the pressure-velocity coupling (4.7) and (4.8), we propose the projection
method

a2u∗+a1un+a0un−1

∆t
=λ
∇2u∗

ρn+1,0
−
∇pn+1,0

ρn+1,0
+g+

b1fn+b0fn−1

ρn+1,0
, (4.9)

u∗=un+1+
∆t

a2

∇q

ρn+1,0
, (4.10)

∇·un+1 =0, (4.11)

where pn+1,0 and ρn+1,0 are given approximations of the pressure and of the density at
t = tn+1, respectively. Once the provisional velocity u∗ is computed from (4.9) imposing
u∗

.
=un+1 on the boundaries, it is projected onto the space of divergence-free vector fields.

The projection step is accomplished by solving the Poisson equation for q defined by
(4.10) and (4.11) along with homogeneous Neumann boundary conditions ∂q/∂n = 0,
where n is the unit normal exterior to the domain (see [47, 48] for a discussion of the
numerical boundary conditions for the Poisson equation during the projection step).

After solving the Poisson equation defined by (4.10) and (4.11), the new velocity is
then given by

un+1 =u∗−
∆t

a2

∇q

ρn+1,0
. (4.12)
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Substituting (4.10) into (4.9) and subtracting the result from (4.7), after rearranging
the terms, we have an expression for updating the pressure given by

∇pn+1 =∇pn+1,0+∇q−λ
∆t

a2
∇2 ∇q

ρn+1,0

+(ρn+1−ρn+1,0)
(

g−
a2un+1+a1un+a0un−1

∆t

)

. (4.13)

Next, we discuss the selections of pn+1,0 and ρn+1,0. Like in many other projection meth-
ods, we simply choose for the pressure the first order approximation in time pn+1,0 .

= pn.
For the selection of ρn+1,0, there is a variety of second order possible approximations
in time, e.g. based on the extrapolation of the density ρn+1,0 = b1ρn+b0ρn−1 or on the
extrapolation of the interface location via the fluid indicator φ or the interface position
variable X. However, as clearly indicated by the numerical experiments reported later,
the first order approximation in time, ρn+1,0 .

=ρn =ρ(φn), suffices to furnish a second or-
der approximation for the velocity. Considering the aforementioned approximations for
the pressure and for the density and neglecting the O(∆t) terms in (4.13), we obtain the
simpler expression for updating the pressure

pn+1 = pn +q, (4.14)

from which we see that q may be interpreted as a pressure increment. The pressure ob-
tained in this form in general will not be second order accurate (except under very special
circumstances such as periodic boundary conditions on uniform grids).

The SBDF-based, pressure-increment projection method defined by (4.9)-(4.12) with
the updating for the pressure given by (4.14) has some distinct features when compared
to other related second order projection methods, especially for multiphase flows. Most
notably, the linearly implicit treatment of the viscous term results in an effective decou-
pling of the velocity components. This relaxes the viscous term-induced stability con-
straint for small to moderate viscosity jumps and tied with the multi-step strategy re-
duces one velocity update to the solution of two linear, constant coefficient parabolic
problems along with a linear elliptic problem for the pressure. With the intent of provid-
ing some background for the proposed projection method we review briefly some related
approaches.

The idea of a decoupled implicit discretization can already be found in the early sec-
ond order, one-step method of Goda [49] which is based on the alternating direction im-
plicit (ADI) approach. In contrast to our proposed SBDF-based method, Goda’s scheme
requires in 2D the solution of seven partial differential equations (three for each velocity
component plus one for the Poisson equation).

Several multi-step projection methods have also been proposed [50–52]. The SBDF ap-
proach can be found in the methods considered by Karniadakis, Israeli, and Orszag [50]
and by Azaiez [52]. However, these methods were only considered for constant viscos-
ity Stokes flows with a fixed time-step and without extrapolation of the forcing term. A
closer relative to the method proposed here is that introduced in [13] as remarked above.
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Finally, we note that due to our geometrical approach to the computation of the fluid
indicator, a partial differential equation has been eliminated from the traditional multi-
phase flow setting. As a result, only three partial differential equation solves are required
in two dimensions even in the presence of variable material properties. To our knowl-
edge, this is the only multiphase flow method that achieves such an economy.

To finish the presentation of the discretization in time, we turn our attention now to
the evolution of the interface in time. We apply to (4.1) once more the automatic time
stepping, extrapolated Gear’s method

a2Xn+1+a1Xn+a0Xn−1

∆t
=b1Un+b0Un−1, (4.15)

with Uk, k=n,n−1, the modified interface velocity

Uk .
=

∫

ukδh(x−Xk)dx+Uk
A t̂k, (4.16)

where UA is the tangential velocity (4.2) selected to dynamically control the fluid interface
parametrization (to keep Lagrangian markers equidistributed), and t̂ is the tangent vector

t̂=
∂X/∂α

‖∂X/∂α‖
. (4.17)

To complete a typical time step, we update the fluid indicator φn+1 .
=φ(Xn+1) employ-

ing an optimal procedure based on an algorithm stemming from Computational Geome-
try. This is followed by an update of the material properties

ρn+1 =ρ1 +(ρ2−ρ1)Hh(φn+1), µn+1 =µ1 +(µ2−µ1)Hh(φn+1),

where Hh is given by (2.7). Next, we explain the optimal procedure used to update the
fluid indicator.

4.3 Geometry-based fluid indicator and its fast computation

Several approaches that employ the interface position at a given time have been proposed
to update material properties, such as the viscosity and density, which are constant in
the bulk phases [21, 53, 54]. Although clever and functional for many situations, those
approaches were not robust or computationally efficient enough to handle more general
flows or interface geometries.

Since density and viscosity are constants in each of the bulk phases and since the
interface motion is limited by the CFL condition to less than a mesh size in each time
step, it is computationally appealing to update these quantities only in a vicinity of the
interface. In [30], a robust and computationally efficient approach for achieving this was
introduced. The basic idea is to make use of a fast algorithm from Computational Geom-
etry [35] to compute the signed distance to the interface. With this approach, the material
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properties are accurately updated and the computational work of this task is confined to
a narrow band around the fluid-fluid interfaces. Thus, the procedure has optimal cost
(linear in the number of Lagrangian markers) and is easy to implement.

To explain that approach briefly, let the interface Γ be represented by a non self-
intersecting, piecewise linear curve. We define φ as the signed distance function only in
Tγ, a narrow band centered at Γ and of width 2γ>0. Outside this band, φ is continuously
defined to be ±γ, that is

φ(x)=











−γ, if d(x) <−γ,

d(x), if |d(x)|≤+γ,

+γ, if d(x) >+γ,

(4.18)

where the signed distance function d(x) is the Euclidean distance from the given point x

to the fluid interface Γ for which a sign is chosen according to the direction of the normal
to the interface.

To keep φ as a local signed distance function (up to machine precision) around Γ at
all times, we employ a fast algorithm to compute the Closest Point Transform (CPT) due to
Mauch [35]. The CPT finds the closest point on Γ and determines the Euclidean distance
to Γ for all the Eulerian grid points within a specified distance ǫ>0 from Γ.

Since Γ is a piecewise linear curve, the closest point ξ on Γ to a given point x, either
lies on one of the “edges” (links) or at one of the “vertices” (interface points). If ξ lies on
a edge, the vector from ξ to x is orthogonal to the edge. Thus, the set of closest points to
a given edge must lie within a strip defined by the edge itself and by its normal vector.
In particular, the set of closest points within a specified distance ǫ >0 to a given edge is
given by the polygon P seen in Fig. 1.

Figure 1: Polygon P: set of points within distance ǫ to Γ for which the closest point on Γ lies on the edge
Vi→Vi+1.
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(a) (b)

Figure 2: Polygons containing the set of points within distance ǫ to Γ for which the closest point on Γ lies on
either the vertex Vi or Vi+1 [(a) or (b), respectively].

When ξ lies on a vertex, the vector from ξ to x must lie between the normal vectors
to the two adjacent edges at the vertex. Thus, the closest points to a vertex must lie in
a wedge. If the outside (inside) angle formed by the two adjacent edges is less then π
then there are no points of positive (negative) distance from the vertex. The set of closest
points, within a specified distance ǫ > 0, is contained by polygons P like those shown in
Fig. 2. The vertex opposite to Vi in Fig. 2(a) is determined by taking the intersection be-
tween the lines which are perpendicular to the edges intersecting at Vi (similarly, at Vi+1

in Fig. 2(b)). Note that, given ǫ such that 0<γ< ǫ, the union of all polygons constructed
as above will contain the band Tγ.

From the previous considerations, a simple procedure for updating φ in a neighbor-
hood of Tγ can be devised: In a first pass, after updating the location of Γ, we tag all Eule-
rian grid points xij belonging to the union of all strips and wedges (by setting (.xij)=+∞).
Then, in a second pass, we compute the CPT for all such points xij, and simultaneously
apply the cutoff given by (4.18).

This procedure is executed at every time step, after the interface position has been
updated. At t=0, we must have a fluid indicator function φ satisfying (4.18) so that only
a local correction is needed subsequently. This initial φ can be obtained by computing
at t = 0 the signed distance at every point in the Eulerian grid and then by applying
the cutoff to it. We emphasize that this procedure has linear computational complexity
in the number of interfacial markers and, since it takes into account the full extent of
the interface to compute the signed distance, it correctly handles situations when two
disparate interface segments lie too close to each other, such as in the near merging or in
the near self-intersection cases.

Finally, we point out the hybrid aspect of our approach: The fluid indicator, efficiently
computed from tracked Lagrangian markers, is a continuous function whose zero level
set is given, clearly, by the fluid interface. Details on the computation, including an
algorithm and an efficient procedure to determine whether or not an Eulerian grid point
belongs to each polygon P, can be found in [30].
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4.4 Adaptive spatial discretization

The presence of a fluid interface acting with a singular force leads to large gradients
localized in a vicinity of the free boundary. Moreover, surface tension can induce the
production of focused centers of vorticity and to other small scale phenomena whose
adequate capturing often demands computationally prohibitive fine resolutions to uni-
form grid approaches. This problem can be overcome with a judicious use of a local mesh
refinement technique.

Following the adaptive version of the IB method introduced by Roma et al. [32], we
employ here the hierarchical grid structure proposed by Berger and Colella [55]. In our
fully adaptive computational scheme, regions of the flow bearing special interest are cov-
ered by block-structured grids, defined as a hierarchical sequence of nested, progres-
sively finer levels (composite grids). Each level is formed by a set of disjoint rectangular
grids and the refinement ratio between two successive refinement levels are constant and
equal to two. Ghost cells are employed around each grid, for all the levels, and under-
neath fine grid patches to formally prevent the finite difference operators from being re-
defined at grid borders and at interior regions which are covered by finer levels. Values
defined in these cells are obtained from interpolation schemes, usually with second or
third order accuracy, and not from solving the equations of the problem. The description
of composite grids is given in greater details in [55].

Composite grid generation depends on the flagging step, i.e., on determining first the
cells whose collection gives the region where refinement is to be applied. Here, we mark
for refinement a neighborhood of all interface points (uniform covering of the interface).
Once the collection of flagged cells is obtained, grids in each level are generated by ap-
plying the algorithm for point clustering due to Berger and Rigoutsos [56]. Regridding
is performed as often as regions of high vorticity or interface points are “about to leave”
the finest level.

We use a staggered (composite) grid, i.e., pressure and other scalar variables are
placed at the centers of the computational cells, the first component of vector variables
are placed at the middle of the vertical edges, and the second component are placed at the
middle of the horizontal ones. The discretizations of the Laplacian, gradient, and diver-
gence differential operators are performed by standard compact second-order difference
stencils which are centered respecting the locations where variables are placed. Variables
are interpolated to the middle of cell edges or to cell corners as required by the difference
stencils by simple averaging their values from the nearest computational cells (e.g. to
computed the non-linear term by the centered, standard second-order discretization).

We employ multilevel-multigrid methods to solve both for the provisional vector
field, u∗ in (4.9), and for the pressure increment q, computed from (4.10) and (4.11). We
employ a V-cycle schedule from the finest to the base level of the composite grid, switch-
ing to a W-cycle schedule from the base level to the coarsest multigrid level underneath,
with one relaxation on each level, upwards and downwards. Detailed descriptions of the
Eulerian composite grid and of the basic ideas of the multilevel-multigrid methodology
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employed can be found in [32, 57].

After generating new grid hierarchy, pressure, velocity components, and forces, for
all needed time steps, are either interpolated from the old grid hierarchy, where old and
new grid hierarchies do not overlap, or directly copied from it, otherwise. Before taking
the next time step, we perform a projection to ensure that the discrete incompressibility
constraint holds on the new grid hierarchy.

We note that, although in gas dynamics problems refinement in time comes naturally
along with refinement in space, this is not the approach we employ in the current work.
All grids, in all levels, evolve together in time, with the time step of the finest level. In
the incompressible case, there is not a finite limit to the speed at which disturbances can
propagate in the flow. Since each part of the incompressible flow influences all other parts
instantaneously, it is not clear how different time steps could be used on the different
grids.

4.5 Pressure-increment projection method

We end this section with a summary of a typical time step. For simplicity, we drop the
i, j spatial indices. From computed values of pn, the pressure at time t = tn, of Xk and
of uk, k = n,n−1, the interface position and the velocity field at times t = tn and t = tn−1

respectively, we update the pressure, the interface position, and the velocity field, by
solving

a2u∗+a1un+a0un−1

∆t
=λ

Lu∗

ρn
−

Gpn

ρn
+g+

b1fn+b0fn−1

ρn
, (4.19)

u∗=un+1+
∆t

a2

Gq

ρn
, (4.20)

D ·un+1 =0, (4.21)

pn+1 = pn+q, (4.22)

a2Xn+1+a1Xn+a0Xn−1

∆t
=b1Un+b0Un−1, (4.23)

φn+1 .
=φ(Xn+1), (4.24)

where L, G, and D are the centered second order Laplacian (at the cell edges), gradient
(at the cell edges), and divergence (at the cell centers) difference operators, respectively,
and the parameters ai, i =2,1,0, and bj, j=1,0, are as in (4.4). The forcing term f in (4.19)
is a second order discretization of its continuous counterpart appearing in (4.6). The
modified interface velocity Uk, k=n,n−1, is given by

Uk =h2 ∑
x

ukδh(x−Xk)+Uk
A t̂

k
, (4.25)



H. D. Ceniceros et al. / Commun. Comput. Phys., 8 (2010), pp. 51-94 65

and the geometry-based fluid indicator at time t = tn+1, φn+1, is obtained by application
of the CPT algorithm (Section 4.3). The updated material properties are given by ρn+1 =
ρ1 +(ρ2−ρ1)Hǫ(φn+1) and µn+1 =µ1+(µ2−µ1)Hǫ(φn+1), where Hǫ is given by (2.7).

It is well known [54], that the IB setting produces small amplitude mesh-scale os-
cillations in the interface position variables. When derivatives are computed from the
interface position to obtain geometric quantities and tension forces, these oscillations are
amplified by numerical differentiation and if left unattended can quickly lead to numer-
ical instability. To eliminate the growth of these small amplitude mesh-scale oscillations
we apply the fourth order filter [58]

Xk←
1

16
(−Xk−2+4Xk−1+10Xk+4Xk+1−Xk+2). (4.26)

The filter is applied every ten time steps to the fluid interface markers. As noted in [59],
the fourth order filter (4.26) effectively eliminates mesh-scale oscillations without com-
promising the accuracy of the solution. In contrast, the second order 1-2-1 filter, which is
frequently used in the literature, introduces excessive numerical diffusion.

4.6 Time-stepping strategy

The time step is constrained by advection (CFL), gravity, surface tension, and interface
motion. The SBDF-based projection method employed here removes the viscous con-
straint as we further explain below. By similar arguments to those presented by Kang,
Fedkiw, and Liu [60] we write

∆t

2

(

νa+
√

ν2
a +(2νg)2+(2νs)2

)

<1, (4.27)

where the constraints from advection, gravity, and surface tension are given by

νa =
|u|max

∆x
+
|v|max

∆y
, νg =

√

g

∆y
, and νs =

√

σ|κ|max

min{∆x,∆y}2ρmin
.

From the interface motion, we have the constraint

∆tνk =∆t
max{|U|,|V|}

min{∆x,∆y}
≤ ck <1, (4.28)

which prevents Lagrangian points from moving more than one mesh cell per time step.
Observe that (4.27) will be satisfied if we select ∆tνa ≤ ca, ∆tνg ≤ cg, and ∆tνs ≤ cs with
constants such that ca+cg+cs <1. This follows immediately from the fact that

√

ν2
a +(2νg)2+(2νs)2 <νa +2νg +2νs.
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From the observations above, we take the time step given by

∆t=min
{

caν−1
a ,cgν−1

g ,csν
−1
s ,ckν−1

k

}

, (4.29)

where ca+cg+cs <1.
Due to the equidistribution of Lagrangian points, the time step constraint induced by

uniform surface tension gets milder because the usually excessive Lagrangian clustering
is prevented [41]. Only when surface tension is extremely large (as it is the case in one
of the tests presented here, large Laplace number flows), the surface tension-induced
constraint becomes dominant and ∆t could be as small asO(max{∆x,∆y}2). On the other
hand, under mild to moderate tension forces the time step isO(max{∆x,∆y}) which also
keeps the errors in space and in time of the same order. Aided by extensive numerical
experimentation, we select conservative values of the constants c in (4.29) so that we
comply with the stability constraints even when ∆t is kept fixed for a few (typically 10)
time steps at time (to avoid the degradation of the order in time of the scheme).

We have observed in our computations that the proposed SBDF-based projection
method, with the decoupled, linearly implicit treatment of the viscous term is effective in
relaxing the stability constraint induced by the viscous dissipation for small to moderate
viscosity differences. Assuming, as we may here, that the fluid interface is diffuse so that
the velocity remains smooth across it (albeit with large gradients) and using incompress-
ibility we have that vxy =−uxx and uxy =−vyy. Employing these identities and ux =−vy

we can write the viscous term (V1,V2)=∇·
[

µ(∇u+∇u†)
]

in component form as

V1 =∇·(µ∇u)−µxvy+µyvx, (4.30)

V2 =∇·(µ∇v)−µyux+µxuy. (4.31)

As remarked earlier, the linearly implicit approach can effectively eliminate the quadratic
stability constraint that the terms ∇·(µ∇u) and ∇·(µ∇v) induce in an explicit
method [44]. With an explicit treatment of the first order derivative terms in (4.30)-(4.31),
as in effect is the case for the proposed the time-discretization, one would expect a CFL
condition of the form ∆t≤C|∇µ|−1h. This is a mild constraint if |∇µ| is small. However,
in the interfacial region of a two-phase flow |∇µ|=O(|µ1−µ2|/h) which would imply
a quadratic stability constraint. But the level curve φ = 0 is also a level curve of µ and
hence the first derivative terms in (4.30)-(4.31) evaluated at φ = 0 are actually tangential
derivatives of v and u, respectively. That is, in the interfacial region we can write

V1 =∇·(µ∇u)+|∇µ|t·∇v, (4.32)

V2 =∇·(µ∇v)−|∇µ|t·∇u, (4.33)

where

t=
(µy,−µx)

|∇µ|
, (4.34)
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defines a tangent vector to the level curve φ = 0. In contrast to the normal derivatives,
t·∇u and t·∇v are smooth and small so long as the curvature is not too high. This much
smaller tangential derivatives might explain why we observe a milder stability constraint
for small to moderate viscosity differences.

Finally, we note that the parameter λ in (4.19) is chosen as λ=2‖µ‖∞. For this partic-
ular choice we were guided by both our own numerical experimentation and by a recent
analysis of Xu and Tang [61] of a related, linear semi-implicit method for continuum epi-
taxial growth models.

5 Numerical results

We present in this section results from numerical experiments designed to test the capa-
bilities of the proposed adaptive, hybrid method.

First, we perform an accuracy test in the presence of a fluid interface in a two-phase
flow with different material properties. We then look at the ability of the method to
reduce spurious currents. We do this with two tests: i) we depart from rest with a circular
interface with and without equidistributed Lagrangian markers and ii) we depart from
rest with an initially elliptical interface and we measure the spurious currents after the
steady state has been reached. The former is for assessing the effects of the hybrid force
formulation while the latter is meant to evaluate the combined effects of both the dynamic
Lagrangian equidistribution and the hybrid force formulation when there is an initial
transient phase and a non-circular interface.

We continue probing the capability of the proposed adaptive tracking method with a
popular test for multiphase flow methods; a straining, vortex flow affecting an initially
circular interface [18]. The given flow field produces substantial interfacial stretching and
the formation of a thin, high curvature tail. We monitor closely the loss of mass (area)
during the interfacial deformation. The area is computed in this and in all the numerical
examples from the interface position variable X by applying Stokes theorem and approx-
imating the resulting integral (with periodic integrand) with the trapezoidal rule. For
consistency with the proposed methodology, the given flow field is interpolated on the
interface via Peskin’s delta interpolation and evolved according to (4.23) and (4.25). Both
dynamic Lagrangian equidistribution and several levels of refinement are employed.

Following the accuracy and performance tests above, we present a simulation of
Rayleigh-Taylor instability. The fluid interface in an unstably stratified flow develops
the characteristic mushroom-like structure of this fundamental instability. However, the
proposed adaptive, hybrid method is able to capture with unprecedented detail and ac-
curacy a much more complex evolution with includes near pinch-off events and the for-
mation of extremely thin filaments. The high-resolution computation presented here in-
dicates that the apparent topological singularity that occurs in the inviscid case [62] is
prevented in the presence of viscous effects.

The rising motion of a single buoyant bubble is then simulated, providing an excellent
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test for more quantitative comparisons involving two-phase flows. The last numerical
experiment is a simulation of an impinging drop onto a free surface. We compare our
numerical results for this simulation with both experimental data reported in [63] and
recent numerical results [31].

In the numerical simulations that follow, we refer to the composite adaptive meshes
using the notation m×nLp which stands for a mesh with an m×n coarsest (base) level and
p levels of refinement (total, from the coarsest to the finest level). We also take the num-
ber of interface (Lagrangian) markers Nb to be m2p for a given m×nLp adaptive Eulerian
mesh, unless stated otherwise. Dynamically, with equidistribution of Lagrangian mark-
ers, Nb is doubled whenever the average Lagrangian spacing, ∆s, becomes larger than
h/2. This would be the case for example of an interface that becomes highly stretched.

5.1 Accuracy test

We begin with a test to measure the numerical rate of convergence of the proposed
method in the case of a two-phase flow with different material properties in an unsta-
bly stratified setting. We will look at both a region surrounding the fluid interface and
a region far from it. Initially, the unstably stratified two-phase flow is at rest and the
interface is given by

X(0)=
(

α,0.025cos(2πα)
)

, 0≤α≤1. (5.1)

At the boundaries of the rectangular domain Ω = [0,1]×[−1.5,1.5], the velocity satisfies
the homogeneous Dirichlet condition at the north and at the south borders, and periodic
condition in the horizontal direction. The acceleration of gravity is taken to be g = 103

cm/s2. The heavier fluid, at the top, has mass density ρ1 = 1.2̄ g/cm3. The fluid at the
bottom has mass density ρ2 =1.1 g/cm3. Thus, the Atwood number A defined as

A=
ρ1−ρ2

ρ1+ρ2
(5.2)

is equal to 0.1. Both fluids have the same viscosity 10−4 Pa·s and the surface tension
coefficient is τ =0.005 dyn/cm2.

The accuracy of the method is investigated separately both on a neighborhood of the
fluid interface, Ω1 =[0,1]×[−0.3,0.3], and on a region Ω2 =[0,1]×[−1.3,−0.6]

⋃

[0.6,1.3],
placed in the interior of the domain where the bulk flow is relatively smooth, away from
the fluid interface.

We compute the numerical solution up to t=0.2s in a sequence of progressively finer
composite grids with two refinement levels. Both regions Ω1 and Ω2 are located away
from coarse-fine level (grid) interfaces to avoid interpolation errors at those locations. A
typical composite grid employed is shown in the Fig. 3.

For each run, the spatial grid is obtained by doubling the number of computational
cells in all the refinement levels of the composite grid used in the previous case, keeping
the region of the domain covered by the second level fixed. The composite grids range
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Figure 3: Typical adaptive mesh employed in the accuracy test.

from 64×192L2 to 512×1536L2, where in the notation m×n L2 the symbol “L2” means
that one level of refinement is used over a base level which has m by n computational cells
(a total of two refinement levels). On each of the subdomains Ω1 and Ω2, we compute the
difference between the numerical approximations obtained in two successive runs. We
do this by first averaging the finer composite grid solution at the staggered-grid velocity
locations of the next coarser composite grid, and then we compute the difference between
that average and the computed coarser grid solution. These differences are employed to
estimate the numerical ratios of convergence, given in Table 1.

Table 1: L∞ error approximations and numerical convergence ratios in the strips Ω1 e Ω2 on a sequence of
progressively finer adaptive meshes.

Ω1 r
Ω1

Ω2 r
Ω2

‖u
128× 384L2

−u
64×192L2

‖
∞,Ωi

2.55675×10−2 - 7.13599×10−4 -

‖u
256× 768L2

−u
128×384L2

‖
∞,Ωi

5.52438×10−3 4.63 5.13459×10−4 1.39

‖u512×1536L2−u256×768L2‖∞,Ωi
2.68285×10−3 2.05 1.74846×10−4 2.95

As the results in Table 1 suggest, the overall scheme presents a first order behavior
close to the fluid interface (as inherited from the IB Method) and a tendency toward
second order away from it. Fig. 4 depicts the interface locations at the initial and final
computation times (t=0s and 0.2s).
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Figure 4: Initial and final interface locations.

5.2 Reduction of spurious currents

A common test for the accuracy of the surface tension representation in multiphase flow
methods is a static cylindrical droplet [19,34,54,64]. That is, the exact solution is u=0 and
thus the droplet should not move. However, when the surface tension is sufficiently high
and there is significant, numerically introduced anisotropy in its representation, artificial
nonzero velocities can be generated. These spurious currents, while small in magnitude,
could affect the accuracy of computations for large tension forces and relatively coarse
grids. This numerical problem has been well documented for both tracking methods (see
for example [54]) and volume-of-fluid methods [65].

This simple flow is characterized by a Laplace number, La = σρD/µ2, where is the
diameter of the drop, and by ρ1/ρ2, and µ1/µ2. Here we fix the viscosity and density
ratios to one, following [19, 34]. A dimensionless measure of the strength of the spuri-
ous currents is the capillary number Ca =Umaxµ/σ, where Umax is the magnitude of the
maximum velocity for a given simulation. The computational domain is a square of size
2D. The drop is placed at the center of the square and periodic boundary conditions are
adopted.

To evaluate the effectiveness of the proposed hybrid approach in reducing spurious
currents we perform three series of tests. Two of them start with the traditional setting
of a circular interface at rest; one test is done with equidistribution of Lagrangian points
and the other one without. The third series corresponds to an initially elliptical interface
configuration, also at rest initially. This last and more stringent series of tests allows us
to investigate also the onset and the intensity of the spurious currents when the steady
state is reached after the transient dynamics and when the interface is non-circular. In all
the cases ρ1/ρ2 =µ1/µ2 =1.
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5.2.1 Case one: Circular droplet with equidistributed points

We perform two runs starting with a circular interface with equidistributed Lagrangian
markers and the equidistribution is maintained dynamically, via (4.1)-(4.2). In the first
run, we use a composite grid 16×16 L2 and vary La in multiples of 10 from 1.2 to 12000.
We measure the strength of the spurious currents at time t = 250tc , where tc = µD/σ is
the characteristic time scale, by determining ‖u‖∞. Table 2 displays the maximum mag-
nitude of the spurious currents, Ca = µ/σ‖u‖∞ , for the different La. The corresponding
Ca’s obtained using the standard Lagrangian force are also included in the middle col-
umn as a reference. While Ca is about 5×10−4 with the Lagrangian force at high La, the
magnitude of the spurious currents are virtually eliminated when the hybrid force formu-
lation is used in conjunction with dynamic Lagrangian equidistribution in this particular
example. Ca is close to machine precision and is, for some cases, over six orders of mag-
nitude smaller than that reported in [19, 34, 64] for the same values of La and grids with
equivalent resolution.

For our second run, we fix La=12000 and increase the spatial resolution by using the
adaptive capability of the proposed method (respecting the time stepping constraints).
The composite grids have a base level (coarsest level) of 16×16 and the finest level covers
entirely the circular interface. We consider from one up to five levels of refinement which
give equivalent uniform grids of sizes 16×16 to 256×256. The results summarized in
Table 3 show that the delicate balance between the pressure gradient and the tension force
is maintained up to machine precision on the adaptive composite grid, even at modest
resolution, with the hybrid force setting. On the other hand, the use of the standard

Table 2: Magnitude Ca of the spurious currents on a composite grid 16×16 L2 for different La. Lagrangian
equidistribution.

La=
σρD

µ2 Ca=
µ
σ‖U‖∞ (Lagrangian) Ca=

µ
σ‖U‖∞ (Hybrid)

1.2 5.11×10−3 6.81×10−9

12 5.20×10−5 1.50×10−10

120 5.08×10−4 2.22×10−12

1200 5.08×10−4 9.57×10−13

12000 5.16×10−4 7.73×10−14

Table 3: Magnitude Ca of the spurious currents on a sequence of adaptive grids for La = 12000. Lagrangian
equidistribution.

Mesh Ca= µ
σ‖U‖∞ (Lagrangian) Ca= µ

σ‖U‖∞ (Hybrid)

16×16 L1 5.22×10−4 8.37×10−13

16×16 L2 4.45×10−4 7.73×10−14

16×16 L3 2.91×10−4 3.08×10−14

16×16 L4 1.53×10−4 9.50×10−15

16×16 L5 9.02×10−5 5.55×10−15
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Lagrangian formulation (3.2) in this case results in spurious currents whose magnitude
is O(10−4) as Table 3 demonstrates.

The two previous runs show that the spurious currents are in effect eliminated by the
proposed approach for this special case of an initially circular interface. The Lagrangian
equidistribution is preserved dynamically, via (4.1)-(4.2), and thus the required pressure-
force balance is achieved at machine precision.

To measure the percentage of area loss, we define

Aloss(t)=
A(t)−A(0)

A(0)
×100, (5.3)

where A(t) is the area of the circular droplet at time t. Table 4 compares the area loss at
t = 250tc for the hybrid force (HF) and the standard Lagrangian force (LF) formulations
using dynamic Lagrangian equidistribution for both and for La=12000. The hybrid force
formulation yields consistently a smaller area loss than the Lagrangian force formulation
and at high resolutions that difference can be about one order of magnitude or better.
This behavior is the same for the set of La tested (1.2–12000).

Table 4: Percentage of area loss Aloss(250tc) for La=12000 for hybrid and Lagrangian force formulations using
Lagrangian equidistribution for both.

Mesh Hybrid (%) Lagrangian (%)
16×16 L1 1.905 2.240
16×16 L2 0.292 0.557
16×16 L3 0.048 0.230
16×16 L4 0.009 0.099
16×16 L5 0.002 0.049

5.2.2 Case two: Circular droplet with non-equidistributed points

We start with Lagrangian markers distributed non-uniformly along the circular droplet
according to

Xk(0)=0.2
(

cosθk,sinθk

)

, 0≤ k< Nb ,

where θk = kθ+0.4sin(2kθ) with θ =2π/(Nb−1).
We perform two series of computations which mirror those of the previous case, 5.2.1.

The results are summarized in Table 5 and Table 6.
A comparison of Table 2 to Table 5 and Table 3 to Table 6 shows the impact of the non-

uniformly distributed Lagrangian points on the intensity of the spurious currents for this
case; Ca increases at least five orders of magnitude. This dramatic difference could be
attributed to the unusual precision with which equidistribution yields the curvature (ten-
sion force) for this special, constant curvature case. But even without equidistribution,
the hybrid force formulation produces currents which are between one and two orders
of magnitude smaller than those obtained with the standard Lagrangian force.
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Table 5: Magnitude Ca of the spurious currents on a composite grid 16×16 L2 for different La. Non-uniformly
distributed Lagrangian markers.

La= σρD

µ2 Ca= µ
σ‖U‖∞(Lagrangian) Ca= µ

σ‖U‖∞(Hybrid)

1.2 1.53×10−2 4.07×10−4

12 1.00×10−4 1.23×10−5

120 1.86×10−3 4.25×10−5

1200 2.04×10−3 4.14×10−5

12000 1.60×10−3 9.18×10−5

Table 6: Magnitude Ca of the spurious currents on a sequence of adaptive grids for La=12000. Non-uniformly
distributed Lagrangian markers.

Mesh Ca= µ
σ‖U‖∞(Lagrangian) Ca= µ

σ‖U‖∞(Hybrid)

16×16 L1 2.22×10−3 4.28×10−4

16×16 L2 1.60×10−3 5.24×10−5

16×16 L3 5.26×10−4 1.72×10−5

16×16 L4 2.06×10−4 5.53×10−6

16×16 L5 6.69×10−5 1.59×10−6

There is no apparent difference vis a vis area conservation with respect to the results
presented in Table 4. That is, the hybrid force formulation yields a smaller area loss and
at high resolutions, the area (mass) conservation is at least one order of magnitude better
than that with the standard Lagrangian formulation. It is clear that the hybrid force
formulation alone makes a significant difference in the reduction of spurious currents
and can also improve area conservation appreciably.

5.2.3 Case three: an initially elliptical interface

We present now a more stringent test to better evaluate the combined effectiveness of the
hybrid force formulation and the equidistribution of the proposed methodology. Initially,
the interface has an elliptical shape with horizontal and vertical semi-axes equal to 0.6D
and 0.4D, respectively. The domain is again a square of size 2D. We fix the Laplace
number to 250 and measure the spurious currents at time t = 500tc, when ‖un+1‖∞−
‖un‖∞ is O(10−6) (our definition of steady state) where tc =µD/σ.

We perform two series of runs both with initially equidistributed Lagrangian points
but in one series equidistribution is enforced dynamically, as proposed in the method,
whereas in the other it is not and the Lagrangian points move freely according to the
flow’s tangential velocity. Tables 7 and 8 show the results for this test with the dynamic
Lagrangian equidistribution and without it, respectively. In these tables, sd stands for
the standard deviation of the mean Lagrangian particle distance. With equidistribution
enforced dynamically, the spurious currents are two orders of magnitude smaller than
those without. There does not seem to be an appreciable difference in area conservation
for these two cases. As a reference, Ca when the standard Lagrangian force is used is
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Table 7: Amplitude of the spurious currents for an initially elliptical interface on a sequence of adaptive meshes
for La=250 with dynamic Lagrangian equidistribution.

Mesh sd (t=0.0) sd (t=500tc) Aloss(500tc)% Ca= µ
σ‖U‖∞

24×24 L1 8.21×10−7 1.40×10−5 0.3760 4.97×10−7

24×24 L2 2.76×10−8 1.94×10−6 0.0525 2.14×10−7

24×24 L3 8.79×10−10 2.45×10−7 0.0067 7.53×10−8

24×24 L4 2.76×10−11 3.24×10−8 0.0010 4.33×10−8

Table 8: Amplitude of the spurious currents for an initially elliptical interface on a sequence of adaptive meshes
for La=250 without enforcing dynamic Lagrangian equidistribution.

Mesh sd (t=0.0) sd (t=500tc) Aloss(500tc)% Ca=
µ
σ‖U‖∞

24×24 L1 8.21×10−7 2.05×10−3 0.1060 1.06×10−5

24×24 L2 2.76×10−8 1.01×10−3 0.0229 4.27×10−6

24×24 L3 8.79×10−10 5.02×10−4 0.0035 2.75×10−6

24×24 L4 2.76×10−11 2.52×10−4 0.0011 1.53×10−6

O(10−4) for this test. Thus, the combined hybrid force-equidistribution yields spurious
currents nearly four orders of magnitude smaller in this more general case.

In summary, the combined hybrid force formulation and the dynamic Lagrangian
equidistribution yield a significant reduction of the spurious currents, of at least four
orders of magnitude, over the standard Lagrangian force computation and can also im-
prove area conservation appreciably at high resolutions. Interestingly, for the standard
Lagrangian force computation the uniformity or the lack thereof in the initial distribu-
tion of interface points does not seem to affect the order of magnitude of the spurious
currents.

5.3 Deforming vortex flow

We consider now a test that has become prototypical for multiphase flow methods [18,
66–69]. It consists of an initially circular interface which is affected by a given straining
flow. This test was first considered by Rider and Kothe [18] and the velocity field is one
proposed by Bell, Colella, and Glaz [70]. Introducing a cosine time factor to reverse the
flow as in [66–69], the straining flow is given in terms of the stream function

ψ(t,x,y)=
1

π
sin2(πx)sin2(πy)cos(πt/T), (5.4)

where T is the period after which the interface returns to its initial shape and u =−ψy,
v = ψx. The computational domain is Ω = [0,1]×[0,1], the initially circular interface has
a radius of 0.15 and its disk center is placed at (0.50,0.75), and T = 8. The straining ve-
locity field gives rise to a highly stretched and deformed interface with thin pointed tail.
As the interface continues to be affected by the flow it evolves into an elongated, thin
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Table 9: Standard deviation from Lagrangian equidistribution for α=4.0

Mesh Standard Deviation (t=0) Standard Deviation (t=1)

32×32 L5 2.49×10−17 6.02×10−5

32×32 L6 2.17×10−17 2.13×10−5

32×32 L7 3.00×10−17 7.51×10−6

coiled filament. The purpose of this test is usually two-fold: to asses the ability of the
given method to capture accurately the thin elongated filaments and the high curvature
regions and to track the extent of area loss under such a severe interfacial deformation.
Naturally, an accurate tracking method such as ours outperforms capturing-based ap-
proaches in the former. Thus, our main intent in this test is really to show the power of
the proposed adaptive approach. With it, it is also possible to efficiently reduce mass loss
to unprecedented low levels with a number of computational cells equivalent to those of
a relatively coarse resolution.

We evolve the interface according to (4.23) and (4.25) with UA≡0 as there is absence of
surface tension and Lagrangian clustering in this case provides natural adaption at high
curvature regions. We employ four Lagrangian points per Eulerian mesh cell. Table 9
shows that the Lagrangian point equidistribution is maintained in time up to truncation
error.

Figure 5: Interface and 32×32 L5 composite grid at t=0, t=4, and t=8.

Fig. 5 shows the interface as well as the composite grid structure (32×32L5) at t =0,
at t = 4 when it reaches its maximum deformation, and at the final time t = 8 when it
completes a full period. The high curvature tip and tail of the elongated interface are
accurately and efficiently resolved with adaptive strategy. The adaptive mesh 32×32L5
provides a fine resolution equivalent to that of a 512×512 uniform grid but at a fraction
of the uniform grid cost. The area is preserved remarkably well despite the extreme
interfacial deformation even with the relatively coarse 32×32L4 as Fig. 6 indicates. With
32×32L4 the area variation throughout the entire period is less than 0.007% while that
for 32×32L5 is well below 0.001%.



76 H. D. Ceniceros et al. / Commun. Comput. Phys., 8 (2010), pp. 51-94

Figure 6: Percentage of relative area loss for composite grids 32×32 L4 and 32×32 L5.

5.4 Rayleigh-Taylor instability

The Rayleigh-Taylor (RT) instability [71, 72] which occurs at the interface of two fluids
with different densities when the heavier fluid is accelerated into the lighter fluid is one
of the fundamental instabilities in fluid dynamics [73]. The RT instability is believed to
play a crucial role in the process of mixing which is important to a wide variety of ap-
plications, including industrial fuels, micro-emulsions, explosions and implosions. Due
to its fundamental relevance and applications, several numerical studies have been per-
formed [24, 74–83] and the RT instability has also served as a test case for numerical
methods of multiphase flows [17, 19, 62, 84, 85].

In the presence of surface tension, the simulations of the RT instability are particularly
challenging. To date there is only a handful of numerical studies of the effect of interfa-
cial forces on the long time dynamics of a fluid free boundary undergoing RT instability.
For inviscid 2D flows, at small to moderate Atwood numbers, the interface develops thin
fluid fingers that subsequently roll-up and appear to eventually collapse with the adja-
cent fluid interface giving rise to a topological singularity [62]. A relevant question is
how small but finite viscosity would affect such a singular event and to what extent com-
monly observed drop formation in RT simulations is numerically induced rather than
a consequence of the underlying model. To try to answer these questions, we consider
the same single-mode setup and flow parameters used in [62] but with nonzero, small
viscosity.

The flow parameters are given (in cgs units) as follows [62]: the mass density of the
heavier fluid (at the top) is ρ1=1.2̄ while that of the lighter fluid (at the bottom) is ρ2=1.1.
The Atwood number (5.2) is −0.1. The two fluids are viscosity matched and µ1 = µ2 =
10−4. The surface tension coefficient is σ =0.005 and the “gravity acceleration” is chosen
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as g = 10 (100 times smaller than its actual value). Initially, the flow is at rest and the
interface is given by

X(0)=
(

α,0.1cos(2πα)
)

, 0≤α≤1. (5.5)

At the boundaries of the rectangular domain Ω = [0,1]×[−1.5,1.5], the velocity satisfies
the homogeneous Dirichlet condition at the north and at the south borders, and periodic
condition in the horizontal direction.

Fig. 7 shows snapshots of the fluid interface undergoing RT instability. As the free
boundary is accelerated downward, symmetric high curvature points develop and sub-
sequently evolve into two small fluid fingers. After this, the fingers begin to roll-up and
the interface develops the mushroom-shape structure characteristic of the RT instability.
The interface profile up to about t =1.40 is remarkably close to that of the inviscid flow,
Fig. 4 in [62] and is in accord with single-mode experiments for a similar Atwood num-
ber [86]. Also, as in the inviscid case [62], there are traces of capillary waves emanating
from the fingers. These small-scale structures are accurately captured by the proposed
approach. Two protuberances opposite the fingers develop at about t = 1.36 (more no-
ticeable at t = 1.63). The evidence presented in [62] for the corresponding inviscid flow
suggests that the fingers collapse with these protuberances in finite time, giving rise to the
formation of trapped bubbles. However, the interface motion in the viscous flow is much
more complex than its inviscid counterpart. The fingers undergo a more pronounced
deformation and a stretching leading up to formation of thin, filament-like structures
(t=2.28).

Figure 7: Time evolution of the fluid interface undergoing RT instability in the presence of surface tension.
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Figure 8: Comparison of interface positions for different adaptive mesh resolutions at t=2.13.

Fig. 8 presents a convergence-under-refinement study at time t = 2.13. Three reso-
lutions are compared, 32×64 L5, 32×64 L6, and 32×64 L7. The corresponding average
distance between two Lagrangian points as well as the standard deviation from this av-
erage (a measure of equidistribution) is provided in Table 10. The fluid interface appears
to be accurately resolved with the 32×64 L7 composite grid and the Lagrangian equidis-
tribution is maintained up to truncation error. Further indication of the accuracy is given
in Fig. 9 which displays the percentage of relative area variation in time. As the fingers
develop, there is an evident area loss but throughout the entire long-time computation
the area variation is well below 0.0055%.

Table 10: Average Lagrangian point distance and its standard deviation at t=2.23.

Mesh Standard Deviation (t=2.13) Average Distance

32×64 L5 1.23×10−5 1.03×10−3

32×64 L6 4.04×10−6 5.12×10−4

32×64 L7 2.02×10−6 2.55×10−4

The dynamics leading to the last interface profile in Fig. 7, t = 2.28, suggests a pos-
sible pinch-off scenario as that in the inviscid case [62]. However, a close look at the
time behavior of the minimum distance between adjacent, opposite interfacial segments,
Fig. 10, reveals a contrasting outcome. Slightly before t = 2.26, the decrease of the min-
imum distance saturates, as clearly indicated by the two highest resolutions, 32×64 L6
and 32×64 L7. At that instant, the minimum distance achieved is about 5 computational
cells which starts to increase afterwards. This is reminiscent of the near pinching roll-up
observed in a 2D viscous interface undergoing Kelvin-Helmholtz instability where vis-
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Figure 9: Evolution in time of the percentage of relative area loss with for all composite grids.

Figure 10: Evolution of the minimum distance from disparate interface segments.

cous effects appear to prevent finite-time pinching [41, 87]. Fig. 11 shows a sequence of
close-ups around the near pinch-off region. In particular, the plots in the second row in
Fig. 11 provide details of the adaptive mesh structure at its finest level which effectively
covers the fluid boundary and adequately resolves the thin interfacial gap. Note that the
mollified delta function spans its support inside the light band showed in the figure (ap-
proximately four cells wide, about the same as the width of the support of the discrete
delta function). That band is the diffused interface itself. At the time when the minimum
distance is reached, the near pinch-off region has width larger than four computational
cells, indicating that the (diffused) interface did not touch itself - hence, computations are
still physically relevant.
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Figure 11: Rayleigh-Taylor instability at t=2.28. Fluid indicator, interface, grid details are depicted on a seven
level composite grid.

This simulation provides only a glimpse of the complex rheology of a viscous fluid
interface undergoing RT instability in the presence of surface tension and which can be
accurately and efficiently captured with the proposed methodology. There is a number of
important questions that remain open which include the limiting behavior as a) viscosity
goes to zero and b) as surface tension goes to zero, as well as the effects of viscosity
stratification. We intend to conduct a thorough investigation of these problems and will
report on the results elsewhere.

5.5 Ascending bubble dynamics

The rising motion of a single buoyant bubble in an initially quiescent ambient fluid is a
classical fluid dynamics problem which has been well studied both experimentally and
theoretically [88]. As such, it provides an excellent test for two-phase flow methods.
Experimental results are generally presented in terms of the following dimensionless
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groups [89]

Re=
ρ2DU

µ2
, Eo=

ρ2gD2

σ
, and M=

gµ4
2

σ3ρ2
,

where ρ2 and µ2 are the density and viscosity of the ambient fluid, respectively, D is the
initial diameter of the bubble, and U is the norm of the rise terminal velocity. Re, Eo,
M, are referred to as the rise Reynolds number, Eötvös number, and Morton number,
respectively.

In our test, we take Eo = 1, M = 10−2 (with a corresponding σ = 9N/m), ρ1/ρ2 = 0.1,
and µ1/µ2 = 1. Here ρ1 (ρ2) and µ1 (µ2) are the density and viscosity of the bubble (am-
bient fluid), respectively. With these parameters, it is expected that the bubble will rise
essentially preserving its circular shape with a small rise Re [88]. This is an appropriate
case to test the ability of the method to accurately resolve interfacial forces. A circular
interface is also a stringent test for AMR composite grids [32].

Our computational domain is Ω = [0, 10
3 D]×[0, 20

3 D], where D = 0.03m is the initial

diameter of the bubble. Initially, the center of the bubble is located at ( 5
3 D,D) and the ve-

locity field is zero. We applied for the velocity a boundary condition which was periodic
in x and Dirichlet (no-slip) in y.

Fig. 12 displays snapshots of the density field along with streamlines at different char-
acteristic times of the evolution. The characteristic (dimensionless) time is t∗= t/

√

D/g.
The flow, as depicted by the streamlines inside and outside the bubble, matches that of
an circular rising bubble through a quiescent flow [88] with no apparent effects from the
domain’s boundary. Also shown in Fig. 12 are the nested grids (rectangular patches)
for a 32×64L5 composite mesh whose finest level covers entirely the fluid interface at
all times, guaranteeing that the material properties stay sharply defined throughout the
computation. As an illustration of the computational efficiency of our adaptive strat-
egy in terms of memory usage, an equivalent uniform grid of 512×1024 would employ
733863 computational cells while our adaptive 32×64L5 mesh only uses 57800. Per time
step, the adaptive method is about six times faster than the uniform grid one at this res-
olution. Naturally, the computational savings increase with higher resolutions (i.e., as
more levels of refinement were added).

A look at the vorticity field, shown in Fig. 13, reveals that after a short transient period
the motion is dominated by a vortex pair whose strength and shape remain largely un-
changed. This steady motion is confirmed by a plot of the rise speed of the bubble (that
is, of its center) or equivalently the rise Re against time. This is shown in Fig. 14. The
steady, rise Re obtained from this simulation is 0.48 which is fairly close to the value of
0.5 from the shape-velocity diagram in [88] for the same Eo and M but for an unbounded
fluid. As pointed in [90], it is expected that for finite volume fractions the bubble’s rise
will be slower.

We now examine the accuracy of this simulation by looking at the pressure, the mean
curvature, and the bubble’s area variation for different resolutions. Fig. 15 shows the
pressure jump across the bubble’s boundary for fixed y corresponding to the bubble’s
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(a) (b) (c) (d)

Figure 12: Evolution of the density field superimposed with streamlines for a 32×64L5 composite grid simulation.
The nested adaptive grid patches are also shown. Eo=1 and M=10−2. (a) t∗=0.18, (b) t∗=5.3, (c) t∗=10.6,
and (d) t∗=16.0.

(a) (b) (c) (d)

Figure 13: Evolution of the vorticity field for a 32×64L5 composite grid simulation. Eo=1 and M=10−2. (a)
t∗=0.18, (b) t∗=5.3, (c) t∗=10.6, and (d) t∗=16.0.

centroid, for four different resolutions. The sharp pressure profiles obtained with four
and five levels of refinement are indistinguishable. Both resolutions give a pressure jump
equal to 591KPa while the theoretical value from the Laplace-Young condition is 2σ/D=
600KPa, i.e. there is a variation of less than 1.5%. We also compare the theoretical value
of the mean curvature (2/D) with that obtained from different resolutions in Table 11.
Here, the curvature was evaluated at the point corresponding to the angle π along the
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Figure 14: Rise Reynolds number against non-dimensional time on 32×64 L5 grid cells.

Figure 15: Capillary pressure of a circular bubble with Eo=1 and M =10−2.

circular interface at t∗= 25. As Table 11 shows, the percentage error is quite small and
approaches 0.176% for the four and five level adaptive grids.

Due to the interpolations at the interface, it is expected that the area (volume) of the
bubble is only approximately conserved. Typically, the area loss grows linearly in time
and with the mesh size. However, for this special case when the bubble keeps its shape
unchanged, the area conservation of our IB-based method is much better than expected
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Table 11: Mean curvature κ at θ = π and t∗= 25, and percentage error when compared to the analytic value
κ =2/D=66.6666.

Curvature error
Mesh κ at θ =π Error %

32×64L3 66.5461 0.181%
32×64L4 66.5484 0.177%
32×64L5 66.5492 0.176%

Table 12: Relative area variation per characteristic time (t∗= t/
√

D/g) for Eo=1 and M =10−2.

Relative area variation (%/t∗)
Mesh Hybrid force formulation Lagrangian force formulation

32×64L2 1.92·10−2 4.75·10−3

32×64L3 1.32·10−3 1.97·10−3

32×64L4 1.64·10−4 8.86·10−4

32×64L5 9.16·10−6 4.03·10−4

for both the hybrid force and the Lagrangian force formulations as Table 12 shows. The
area is computed from the interface position variable X by applying Stokes theorem and
approximating the resulting integral (with periodic integrand) with the trapezoidal rule.
For this particular flow, the adaptive method with the hybrid force formulation preserves
area with astonishing accuracy giving a relative area variation per characteristic time for
the five-level grid of less than 10−5%. This unprecedented accuracy in the area conser-
vation appears to be directly linked to the special, constant curvature nature of the fluid
interface. It is interesting to note however that the adaptive, nonsymmetric grid was able
to preserve that interface geometry and pressure-surface tension balance so accurately.

5.6 Impact and rebound of a deformable drop onto a fluid interface

Our final example to highlight the capabilities of the proposed adaptive, hybrid method
is the numerical simulation of a falling drop in an ambient fluid which impinges upon a
free fluid surface and bounces back due to inertia. This simulation is motivated by the
experiments of Mohamed-Kassim and Longmire [63] and by the level-set simulations of
Zheng, Lowengrub, Anderson, and Cristini [31].

The dynamics is dependent on the density and viscosity ratios, and three dimension-
less groups: the Reynolds number Re, the Weber number We, and the Froude number Fr.
Letting D be the initial diameter of the circular drop and U the drop’s terminal velocity
(i.e. the impact velocity), we have [63]

Re=
ρ2UD

µ2
, We=

ρ2U2D

σ
, Fr=

(

tg

ti

)2

, (5.6)

where ρ2(µ2) is the density (viscosity) of the ambient fluid, tg and ti are the gravity and
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impact velocity time scales respectively, which are defined as

tg =
D

U
, ti =

√

D

2g(ρ1−ρ2)/(ρ1+ρ2)
, (5.7)

with g the acceleration of gravity and ρ1 is the density of the drop and of the bottom fluid.
We adopted a 30 cm by 30 cm square as our computational domain which is slightly

narrower than the 3D tank used in the experiments [63] but three times wider and three
times taller than that in the level-set simulations [31]. We made this domain choice to
keep a good approximation of the experimental set up and reduce boundary effects while
at the same time keeping the computations affordable. The rest of the computational
parameters match those reported by Zheng et al. [31]: D=1 cm, ρ1/ρ2=1.189 and µ1/µ2=
0.33. Note that both the density and the viscosity ratios are the experimental parameters
employed by Mohamed-Kassim and Longmire [63] (referred to as “Combination 1” in
their work). With that particular choice of parameters the Reynolds, Weber and Froude
numbers are approximately 68, 7 and 1, respectively, close to those of the experiments [63]
and exactly those in the level set simulations [31].

Initially, the flat fluid interface was placed at a height of 13 cm as in the experi-
ments [63] and the circular drop had a radius of a=0.5 cm.

We employed for the velocity periodic boundary conditions in x and Dirichlet (no-
slip) boundary conditions in y. The adaptive mesh for this simulation was 32×32L9, that
is, it had a total of 9 refinement levels, beginning with a base level of 32×32. The finest
resolution was equivalent to that of a 8192×8192 uniform mesh.

When releasing the drop from rest at a height of 23 cm as in [63], we were unable to
reproduce the impact conditions (terminal velocity and drop interface shape) reported
in the experiments. This is not entirely surprising as the dynamics in the experiments is
three dimensional. Instead, the circular drop center was placed at yc, where yc = 13+w
with w, the actual distance between the initially flat interface and the center of the circu-
lar drop, satisfying the ratio w/a = 2.5 (a is the circular drop radius), as in the level-set
simulations [31]. Following Zheng et al. [31], we defined the initial velocity as the diver-
gence free projection of the field given by (0,−U) inside the drop and zero elsewhere,
where U =13.2 cm/s is the reported [63] impact (terminal) speed.

The dynamics of the impacting drop is illustrated in the sequence of snapshots of
Fig. 16. The time scale is chosen as in [31], t∗= tU/a, where a is the radius of the drop.
Following Mohamed-Kassim and Longmire [63], we define the impact time (t∗i = 0) as
the time when lower drop surface crosses the quiescent fluid interface level. The trailing
edge of the drop quickly flattens and the drop elongates significantly in the spanwise di-
rection prior to the collision and immediately after it [Fig. 16(d)]. This large deformation
is followed by a rebound occurring at about t∗−t∗i =2.9 which is clearly an inertia effect.
A look at the vorticity in Fig. 17 shows how this field is produced and subsequently shed
off the drop surface. The vorticity deposited in the wake contributes to the large drop
deformation. The vorticity field shown in Fig. 17 is in qualitative agreement with that
reported in the experiments [63].
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 16: Evolution of the density field for a 32×32L9 simulation. (a) t∗−t∗i =−1.22, (b) t∗−t∗i =−0.56, (c)
t∗−t∗i =0.32, (d) t∗−t∗i =1.20, (e) t∗−t∗i =2.07, (f) t∗−t∗i =2.95, (g) t∗−t∗i =3.83, (h)t∗−t∗i =4.71, and (i)
t∗−t∗i =5.59.

Fig. 18 shows positions of the free interface, and the drop’s lower and upper surfaces
and compares these with the numerical results of Zheng et al. [31]. Despite the differences
in the domain size, resolutions, and numerical approaches there is substantial agreement
between the two numerical simulations. The interfacial dynamics predicted by our nu-
merics is also qualitatively similar to that in the experiments but, as indicated by Zheng
et al. [31], the 2D results have slower dynamics as observed in Fig. 19.

The relative area variation of the drop in our numerical simulation is displayed in
Fig. 20. The maximum difference coincides with the event of largest drop deformation at
about t∗−t∗i =1.10 but the area is maintained within 0.5% for most of the simulation. The
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 17: Evolution of the vorticity field for a 32×32L9 simulation. (a) t∗−t∗i =−1.22, (b) t∗−t∗i =−0.56,
(c) t∗−t∗i =0.32, (d) t∗−t∗i =1.20, (e) t∗−t∗i =2.07, (f) t∗−t∗i =2.95, (g) t∗−t∗i =3.83, (h)t∗−t∗i =4.71, and
(i) t∗−t∗i =5.59.

finest level of the composite adaptive mesh accompanies the drop boundary and the free
liquid interface at all times. Close-ups of the actual meshes around the drop and at the
thinnest fluid gap region at t∗−t∗i = 3.4 are presented in Fig. 21. Note that the thin film
created by the drop-free surface interaction is well resolved at this time with more than
four grid cells covering the thinnest region. The separating film slowly begins to drain,
as can be observed in Figs. 18 and 19, which would lead to an eventual coalescence.

With our fully adaptive method we are able to efficiently resolve length scales span-
ning nearly four orders of magnitude and both fast and slow dynamics. Finally, to high-
light the computational savings for this case, we report that at the final simulation time,
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Figure 18: Interface position during impact of drop onto an interface. Comparison between Zheng et al. [31]
results on a unstructured mesh with 32×32L9 adaptive mesh. Dimensionless parameters: Re = 68, We = 7,
Fr =1, µ1/µ2 =0.33 ρ1/ρ2 =1.189 and h/D =0.0035. The y axis has been shifted to coincide with the initial
position of the free fluid interface.

Figure 19: Interface position during impact of drop onto an interface. Comparison between Mohamed-Kassim
and Longmire [63] results with 32×32L9 adaptive mesh. Dimensionless parameters: Re = 68, We = 7, Fr = 1,
µ1/µ2 =0.33 ρ1/ρ2 =1.189 and h/D=0.0035.
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Figure 20: Relative area variation of the drop for 32x32L9.

(a) (b)

Figure 21: Close-ups of the 32×32L9 adaptive mesh at t∗−t∗i =3.4. (a) A region enclosing the drop and part
of the free boundary and (b) a close-up of the smallest gap region.

the total number of computational cells was less than 6.3×105 while an equivalent uni-
form grid would have employed close to 6.7×107 computational cells, i.e. we reduce the
number of grid cells by two orders of magnitude (implying in memory savings).

6 Conclusions

We presented a variable time step, fully adaptive in space, hybrid level-set/front track-
ing method for the simulation of 2D two-phase flows in the presence of surface tension.
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It is hybrid first because we exploit qualities from both the IB Method (front tracking)
and from the level set formulation (front capturing) and, second, because the singular
interfacial force is computed employing a mixed Eulerian-Lagrangian formulation. Full
adaptivity is introduced in space both through dynamic control of the Lagrangian mark-
ers, which define the interface, and through Eulerian mesh refinement, which increases
locally the resolution of the fluid solver with a sequence of nested, progressively finer re-
finement levels. For the time discretization, we employ a variable time-step, second order
semi-implicit temporal scheme imbedded in a projection method of pressure-increment
type (no ”sub-cycling in time” is adopted).

Fluid interfaces are efficiently covered at all times with the finest grid resolution. An
effective time integration is attained with the proposed time discretization allowing for
stable simulations with only mild stability constraints for the flow conditions considered.
The use of the hybrid Lagrangian-Eulerian tension force representation in concert with
the our accurate signed-distance fluid indicator (level set) and the dynamic Lagrangian
equidistribution reduce the magnitude of the spurious currents by several orders with re-
spect to that obtained by other existing approaches. The increased resolution afforded by
the AMR yields also an accurate area conservation for long time integrations, as demon-
strated by the numerical examples. We restrict the presentation of the method to two
dimensions here but we envision that the full approach could be directly extended to
three dimensions.
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